Yuan Wang, Pedro Tovar, Juntong Yang, Liang Chen, Xiaoyi Bao
{"title":"Distributed phase-matching measurement for dynamic strain and temperature sensing based on stimulated Brillouin scattering enhanced Four-wave mixing","authors":"Yuan Wang, Pedro Tovar, Juntong Yang, Liang Chen, Xiaoyi Bao","doi":"10.1364/prj.497955","DOIUrl":"https://doi.org/10.1364/prj.497955","url":null,"abstract":"","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":" 46","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanyi Fan, Jinkui Chu, Ran Zhang, Chuanlong Guan, and Jianying Liu
The study of pixelated metamaterials that integrate both the functions of linear and circular polarization filters is rapidly growing due to the need for full-Stokes polarization imaging. However, there is a lack of large-area, ultracompact pixelated full-Stokes metamaterials with excellent performance, especially circular polarization filters with a high extinction ratio, a broad operating bandwidth, and a low-cost, high-quality, efficient manufacturing process, which limits the practical applications of pixelated full-Stokes metamaterials. In this study, we propose a universal design and fabrication scheme for large-area, ultracompact pixelated aluminum wire-grid-based metamaterials used in Vis-NIR full-Stokes polarization imaging. The aluminum wire-grid was designed as a linear polarization filter with an average linear polarization extinction ratio of 36,000 and a circular polarization filter with an average circular polarization extinction ratio of 110 in Vis-NIR. A large-area, ultracompact 320×320 pixelated aluminum wire-grid-based full-Stokes metamaterial was fabricated using nanoimprint lithography and nano transfer printing with the advantages of low cost and high efficiency. This metamaterial was used to achieve full-Stokes polarization imaging with errors within 8.77%, 12.58%, 14.04%, and 25.96% for Stokes parameters S0, S1, S2, and S3, respectively. The inversion errors of the compensated Stokes parameters can be reduced to 0.21%, 0.21%, 0.42%, and 1.96%, respectively.
{"title":"Large-area ultracompact pixelated aluminum-wire-grid-based metamaterials for Vis-NIR full-Stokes polarization imaging","authors":"Yuanyi Fan, Jinkui Chu, Ran Zhang, Chuanlong Guan, and Jianying Liu","doi":"10.1364/prj.494728","DOIUrl":"https://doi.org/10.1364/prj.494728","url":null,"abstract":"The study of pixelated metamaterials that integrate both the functions of linear and circular polarization filters is rapidly growing due to the need for full-Stokes polarization imaging. However, there is a lack of large-area, ultracompact pixelated full-Stokes metamaterials with excellent performance, especially circular polarization filters with a high extinction ratio, a broad operating bandwidth, and a low-cost, high-quality, efficient manufacturing process, which limits the practical applications of pixelated full-Stokes metamaterials. In this study, we propose a universal design and fabrication scheme for large-area, ultracompact pixelated aluminum wire-grid-based metamaterials used in Vis-NIR full-Stokes polarization imaging. The aluminum wire-grid was designed as a linear polarization filter with an average linear polarization extinction ratio of 36,000 and a circular polarization filter with an average circular polarization extinction ratio of 110 in Vis-NIR. A large-area, ultracompact <span><span style=\"color: inherit;\"><span><span><span>320</span><span style=\"margin-left: 0.267em; margin-right: 0.267em;\">×</span><span>320</span></span></span></span><script type=\"math/mml\"><math display=\"inline\"><mrow><mn>320</mn><mo>×</mo><mn>320</mn></mrow></math></script></span> pixelated aluminum wire-grid-based full-Stokes metamaterial was fabricated using nanoimprint lithography and nano transfer printing with the advantages of low cost and high efficiency. This metamaterial was used to achieve full-Stokes polarization imaging with errors within 8.77%, 12.58%, 14.04%, and 25.96% for Stokes parameters <span><span style=\"color: inherit;\"><span><span><span><span style=\"margin-right: 0.05em;\">S</span><span style=\"vertical-align: -0.4em;\">0</span></span></span></span></span><script type=\"math/mml\"><math display=\"inline\"><mrow><msub><mi>S</mi><mn>0</mn></msub></mrow></math></script></span>, <span><span style=\"color: inherit;\"><span><span><span><span style=\"margin-right: 0.05em;\">S</span><span style=\"vertical-align: -0.4em;\">1</span></span></span></span></span><script type=\"math/mml\"><math display=\"inline\"><mrow><msub><mi>S</mi><mn>1</mn></msub></mrow></math></script></span>, <span><span style=\"color: inherit;\"><span><span><span><span style=\"margin-right: 0.05em;\">S</span><span style=\"vertical-align: -0.4em;\">2</span></span></span></span></span><script type=\"math/mml\"><math display=\"inline\"><mrow><msub><mi>S</mi><mn>2</mn></msub></mrow></math></script></span>, and <span><span style=\"color: inherit;\"><span><span><span><span style=\"margin-right: 0.05em;\">S</span><span style=\"vertical-align: -0.4em;\">3</span></span></span></span></span><script type=\"math/mml\"><math display=\"inline\"><mrow><msub><mi>S</mi><mn>3</mn></msub></mrow></math></script></span>, respectively. The inversion errors of the compensated Stokes parameters can be reduced to 0.21%, 0.21%, 0.42%, and 1.96%, respectively.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"23 4","pages":""},"PeriodicalIF":7.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71509801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}