首页 > 最新文献

Plant Molecular Biology最新文献

英文 中文
Multi-omic applications for understanding and enhancing tropical fruit flavour. 应用多原子技术了解和提升热带水果风味。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-08 DOI: 10.1007/s11103-024-01480-7
Joshua Lomax, Rebecca Ford, Ido Bar

Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.

消费者对营养丰富的食品的需求趋势促使全球对热带水果的需求不断增加。然而,为满足市场需求而量身定制的商业栽培品种在育种过程中却面临着果味品质下降的风险。这是因为经常优先选择优良的农艺性状,而不是水果风味,这反过来可能会降低消费者的满意度。人们意识到,必须对包括风味在内的果实品质性状进行同样的选择;但目前可用于选择果实风味性状的工具和资源有限,尤其是在热带水果品种中。虽然已知糖、酸和挥发性有机化合物可确定水果风味,但对于许多热带水果品种来说,这些物质的具体组合可产生明确的消费者偏好,但这些组合仍是未知数。要确定水果风味偏好并将其纳入选择性育种,必须确定支撑这些偏好的代谢物。然后,就可以进行客观的定量分析,而不是仅仅依靠人类感官面板。这可能会通过针对风味活性化合物生物合成途径的综合组学方法,开发出选择性遗传标记。在这篇综述中,我们探讨了在热带水果新品种培育过程中,为战略性地定义和选择消费者偏好的风味特征而开发工具方面取得的进展。
{"title":"Multi-omic applications for understanding and enhancing tropical fruit flavour.","authors":"Joshua Lomax, Rebecca Ford, Ido Bar","doi":"10.1007/s11103-024-01480-7","DOIUrl":"10.1007/s11103-024-01480-7","url":null,"abstract":"<p><p>Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"83"},"PeriodicalIF":3.9,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OsNAC121 regulates root development, tillering, panicle morphology, and grain filling in rice plant. OsNAC121 调节水稻植株的根系发育、分蘖、圆锥花序形态和籽粒灌浆。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-02 DOI: 10.1007/s11103-024-01476-3
Nazma Anjum, Mrinal K Maiti

Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.

转录因子与植物激素配合形成了一个复杂的调控网络,调节着植物的发育、生长和衰老等重要细胞机制。在这项研究中,我们通过培育基因沉默和过表达转基因水稻植株,对转录因子 OsNAC121 进行了功能表征,随后对植株结构进行了详细分析。转基因品系在冠根发育、侧根结构和密度、分蘖高度和数量、圆锥花序和谷粒形态等方面都表现出了重塑,这也是由于扰乱了辅素运输而导致的辅素:细胞分裂素比例失调的基础。细胞分裂素、辅助素和赤霉酸的应用分别使 OsNAC121 基因的表达量提高了近 17 倍、6 倍和 91 倍。与 14 天的嫩枝组织相比,未转化水稻在乳熟期的 OsNAC121 表达水平高出 47 倍,这表明它在谷粒充实过程中起着关键作用;基因沉默株产生的大量未发育谷粒就是证明。转基因植株的重力反应减弱表明它们的辅素运输功能受损。生物信息学发现,OsNAC121 与共抑制蛋白(TOPLESS)相互作用,并构成抑制复合体 OsIAA10 的一部分,而 OsIAA10 是辅助素信号通路的重要核心成分。因此,OsNAC121通过调节植物生长素和细胞分裂素之间的相互作用,改变它们在分生区的浓度梯度,进而改变植物器官发生的不同过程,成为植物结构各方面的重要调节因子。
{"title":"OsNAC121 regulates root development, tillering, panicle morphology, and grain filling in rice plant.","authors":"Nazma Anjum, Mrinal K Maiti","doi":"10.1007/s11103-024-01476-3","DOIUrl":"10.1007/s11103-024-01476-3","url":null,"abstract":"<p><p>Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"82"},"PeriodicalIF":3.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of stomatal development by epidermal, subepidermal and long-distance signals. 表皮、亚表皮和远距离信号对气孔发育的调控。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-28 DOI: 10.1007/s11103-024-01456-7
Liang Chen

Plant leaves consist of three layers, including epidermis, mesophyll and vascular tissues. Their development is meticulously orchestrated. Stomata are the specified structures on the epidermis for uptake of carbon dioxide (CO2) while release of water vapour and oxygen (O2), and thus play essential roles in regulation of plant photosynthesis and water use efficiency. To function efficiently, stomatal formation must coordinate with the development of other epidermal cell types, such as pavement cell and trichome, and tissues of other layers, such as mesophyll and leaf vein. This review summarizes the regulation of stomatal development in three dimensions (3D). In the epidermis, specific stomatal transcription factors determine cell fate transitions and also activate a ligand-receptor- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling for ensuring proper stomatal density and patterning. This forms the core regulation network of stomatal development, which integrates various environmental cues and phytohormone signals to modulate stomatal production. Under the epidermis, mesophyll, endodermis of hypocotyl and inflorescence stem, and veins in grasses secrete mobile signals to influence stomatal formation in the epidermis. In addition, long-distance signals which may include phytohormones, RNAs, peptides and proteins originated from other plant organs modulate stomatal development, enabling plants to systematically adapt to the ever changing environment.

植物叶片由三层组成,包括表皮、叶肉和维管组织。它们的生长发育都是经过精心安排的。气孔是表皮上吸收二氧化碳(CO2)、释放水蒸气和氧气(O2)的特定结构,因此在调节植物光合作用和水分利用效率方面起着至关重要的作用。气孔的形成必须与铺层细胞和毛状体等其他表皮细胞类型以及叶肉和叶脉等其他层组织的发育相协调,才能有效发挥作用。本综述总结了气孔发育的三维调控。在表皮中,特定的气孔转录因子决定着细胞命运的转变,并激活配体-受体-MITOGEN-活性蛋白激酶(MAPK)信号,以确保适当的气孔密度和形态。这就形成了气孔发育的核心调控网络,它整合了各种环境线索和植物激素信号,以调节气孔的生成。在表皮下,叶肉、下胚轴和花序茎的内皮以及禾本科植物的叶脉会分泌移动信号,影响表皮的气孔形成。此外,来自植物其他器官的远距离信号(可能包括植物激素、核糖核酸、肽和蛋白质)也会调节气孔的发育,使植物能够系统地适应不断变化的环境。
{"title":"Regulation of stomatal development by epidermal, subepidermal and long-distance signals.","authors":"Liang Chen","doi":"10.1007/s11103-024-01456-7","DOIUrl":"10.1007/s11103-024-01456-7","url":null,"abstract":"<p><p>Plant leaves consist of three layers, including epidermis, mesophyll and vascular tissues. Their development is meticulously orchestrated. Stomata are the specified structures on the epidermis for uptake of carbon dioxide (CO<sub>2</sub>) while release of water vapour and oxygen (O<sub>2</sub>), and thus play essential roles in regulation of plant photosynthesis and water use efficiency. To function efficiently, stomatal formation must coordinate with the development of other epidermal cell types, such as pavement cell and trichome, and tissues of other layers, such as mesophyll and leaf vein. This review summarizes the regulation of stomatal development in three dimensions (3D). In the epidermis, specific stomatal transcription factors determine cell fate transitions and also activate a ligand-receptor- MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling for ensuring proper stomatal density and patterning. This forms the core regulation network of stomatal development, which integrates various environmental cues and phytohormone signals to modulate stomatal production. Under the epidermis, mesophyll, endodermis of hypocotyl and inflorescence stem, and veins in grasses secrete mobile signals to influence stomatal formation in the epidermis. In addition, long-distance signals which may include phytohormones, RNAs, peptides and proteins originated from other plant organs modulate stomatal development, enabling plants to systematically adapt to the ever changing environment.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"80"},"PeriodicalIF":3.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BdRCN4, a Brachypodium distachyon TFL1 homologue, is involved in regulation of apical meristem fate. BdRCN4是Brachypodium distachyon TFL1的同源物,参与顶端分生组织命运的调控。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-28 DOI: 10.1007/s11103-024-01467-4
Rodrigo Machado, Sebastián Elias Muchut, Carlos Dezar, Andrea Guadalupe Reutemann, Carlos Agustín Alesso, María Margarita Günthardt, Abelardo Carlos Vegetti, John Vogel, Nora G Uberti Manassero

In higher plants, the shift from vegetative to reproductive development is governed by complex interplay of internal and external signals. TERMINALFLOWER1 (TFL1) plays a crucial role in the regulation of flowering time and inflorescence architecture in Arabidopsis thaliana. This study aimed to explore the function of BdRCN4, a homolog of TFL1 in Brachypodium distachyon, through functional analyses in mutant and transgenic plants. The results revealed that overexpression of BdRCN4 in B. distachyon leads to an extended vegetative phase and reduced production of spikelets. Similar results were found in A. thaliana, where constitutive expression of BdRCN4 promoted a delay in flowering time, followed by the development of hypervegetative shoots, with no flowers or siliques produced. Our results suggest that BdRCN4 acts as a flowering repressor analogous to TFL1, negatively regulating AP1, but no LFY expression. To further validate this hypothesis, a 35S::LFY-GR co-transformation approach on 35::BdRCN4 lines was performed. Remarkably, AP1 expression levels and flower formation were restored to normal in co-transformed plants when treated with dexamethasone. Although further molecular studies will be necessary, the evidence in B. distachyon support the idea that a balance between LFY and BdRCN4/TFL1 seems to be essential for activating AP1 expression and initiating floral organ identity gene expression. This study also demonstrates interesting conservation through the molecular pathways that regulate flowering meristem transition and identity across the evolution of monocot and dicot plants.

在高等植物中,从无性发育到生殖发育的转变是由内部和外部信号的复杂相互作用决定的。TERMINALFLOWER1(TFL1)在拟南芥开花时间和花序结构的调控中起着至关重要的作用。本研究旨在通过突变体和转基因植株的功能分析,探索拟南芥中 TFL1 的同源物 BdRCN4 的功能。结果表明,BdRCN4在B. distachyon中的过表达会导致无性期延长和小穗产量减少。在 A. thaliana 中也发现了类似的结果,BdRCN4 的组成型表达促进了开花时间的延迟,随后发育出活力低下的嫩枝,但没有花或小穗产生。我们的研究结果表明,BdRCN4 是一种类似于 TFL1 的开花抑制因子,能负向调节 AP1,但不能调节 LFY 的表达。为了进一步验证这一假设,我们在 35::BdRCN4 株系上进行了 35S::LFY-GR 共转化。值得注意的是,当使用地塞米松处理时,共转化植株的 AP1 表达水平和花的形成恢复正常。尽管有必要进行进一步的分子研究,但在 B. distachyon 中的证据支持了这样一种观点,即 LFY 和 BdRCN4/TFL1 之间的平衡似乎对激活 AP1 表达和启动花器官特征基因表达至关重要。这项研究还表明,在单子叶植物和双子叶植物的进化过程中,调控开花分生组织过渡和特征的分子途径保持着有趣的一致。
{"title":"BdRCN4, a Brachypodium distachyon TFL1 homologue, is involved in regulation of apical meristem fate.","authors":"Rodrigo Machado, Sebastián Elias Muchut, Carlos Dezar, Andrea Guadalupe Reutemann, Carlos Agustín Alesso, María Margarita Günthardt, Abelardo Carlos Vegetti, John Vogel, Nora G Uberti Manassero","doi":"10.1007/s11103-024-01467-4","DOIUrl":"10.1007/s11103-024-01467-4","url":null,"abstract":"<p><p>In higher plants, the shift from vegetative to reproductive development is governed by complex interplay of internal and external signals. TERMINALFLOWER1 (TFL1) plays a crucial role in the regulation of flowering time and inflorescence architecture in Arabidopsis thaliana. This study aimed to explore the function of BdRCN4, a homolog of TFL1 in Brachypodium distachyon, through functional analyses in mutant and transgenic plants. The results revealed that overexpression of BdRCN4 in B. distachyon leads to an extended vegetative phase and reduced production of spikelets. Similar results were found in A. thaliana, where constitutive expression of BdRCN4 promoted a delay in flowering time, followed by the development of hypervegetative shoots, with no flowers or siliques produced. Our results suggest that BdRCN4 acts as a flowering repressor analogous to TFL1, negatively regulating AP1, but no LFY expression. To further validate this hypothesis, a 35S::LFY-GR co-transformation approach on 35::BdRCN4 lines was performed. Remarkably, AP1 expression levels and flower formation were restored to normal in co-transformed plants when treated with dexamethasone. Although further molecular studies will be necessary, the evidence in B. distachyon support the idea that a balance between LFY and BdRCN4/TFL1 seems to be essential for activating AP1 expression and initiating floral organ identity gene expression. This study also demonstrates interesting conservation through the molecular pathways that regulate flowering meristem transition and identity across the evolution of monocot and dicot plants.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"81"},"PeriodicalIF":3.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional response of Arabidopsis thaliana's root-tip to spaceflight. 拟南芥根尖对太空飞行的转录反应
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-27 DOI: 10.1007/s11103-024-01478-1
Mohammad Shahbazi, Lindsay A Rutter, Richard Barker

Plants are expected to play a critical role in the biological life support systems of crewed spaceflight missions, including in the context of upcoming missions targeting the Moon and Mars. Therefore, understanding the response of plants to spaceflight is essential for improving the selection and engineering of plants and spaceflight conditions. In particular, understanding the root-tip's response to spaceflight is of importance as it is the center of orchestrating the development of the root, the primary organ for the absorption of nutrients and anchorage. GLDS-120 is a pioneering study by Paul et al. that used transcriptomics to evaluate the spaceflight response of the root-tip of the model plant Arabidopsis thaliana in dark and light through separate analyses of three genotype groups (Wassilewskija, Columbia-0, and Columbia-0 PhyD) and comparison of genotype responses. Here, we provide a complementary analysis of this dataset through a combined analysis of all samples while controlling for the genotypes in a paired analysis. We identified a robust transcriptional response to spaceflight with 622 DEGs in light and 200 DEGs in dark conditions. Gene enrichment analysis identified 37 and 13 significantly enriched terms from biological processes in light and dark conditions, respectively. Prominent enrichment for hypoxia-related terms in both conditions suggests hypoxia is a key stressor for root development during spaceflight. Additional enriched terms in light conditions include the circadian cycle, light response, and terms for the metabolism of flavonoid and indole-containing compounds. These results further our understanding of plants' responses to the spaceflight environment.

植物预计将在载人航天飞行任务的生物生命支持系统中发挥关键作用,包括在即将进行的以月球和火星为目标的飞行任务中。因此,了解植物对太空飞行的反应对于改进植物和太空飞行条件的选择和工程设计至关重要。特别是,了解根尖对太空飞行的反应非常重要,因为根尖是协调根系发育的中心,是吸收养分和锚定的主要器官。GLDS-120是保罗等人的一项开创性研究,该研究通过对三个基因型组(Wassilewskija、Columbia-0和Columbia-0 PhyD)的单独分析和基因型响应的比较,利用转录组学评估了模式植物拟南芥根尖在黑暗和光照下的空间飞行响应。在这里,我们通过对所有样本进行综合分析,同时在配对分析中控制基因型,对该数据集进行了补充分析。我们发现了太空飞行的强大转录反应,在光照条件下有 622 个 DEGs,在黑暗条件下有 200 个 DEGs。基因富集分析发现,在光照和黑暗条件下,生物过程中分别有 37 和 13 个术语显著富集。缺氧相关术语在两种条件下都有明显的富集,这表明缺氧是太空飞行期间根系发育的一个关键应激源。其他在光照条件下富集的术语包括昼夜节律周期、光反应以及类黄酮和含吲哚化合物代谢的术语。这些结果进一步加深了我们对植物对太空飞行环境反应的了解。
{"title":"Transcriptional response of Arabidopsis thaliana's root-tip to spaceflight.","authors":"Mohammad Shahbazi, Lindsay A Rutter, Richard Barker","doi":"10.1007/s11103-024-01478-1","DOIUrl":"10.1007/s11103-024-01478-1","url":null,"abstract":"<p><p>Plants are expected to play a critical role in the biological life support systems of crewed spaceflight missions, including in the context of upcoming missions targeting the Moon and Mars. Therefore, understanding the response of plants to spaceflight is essential for improving the selection and engineering of plants and spaceflight conditions. In particular, understanding the root-tip's response to spaceflight is of importance as it is the center of orchestrating the development of the root, the primary organ for the absorption of nutrients and anchorage. GLDS-120 is a pioneering study by Paul et al. that used transcriptomics to evaluate the spaceflight response of the root-tip of the model plant Arabidopsis thaliana in dark and light through separate analyses of three genotype groups (Wassilewskija, Columbia-0, and Columbia-0 PhyD) and comparison of genotype responses. Here, we provide a complementary analysis of this dataset through a combined analysis of all samples while controlling for the genotypes in a paired analysis. We identified a robust transcriptional response to spaceflight with 622 DEGs in light and 200 DEGs in dark conditions. Gene enrichment analysis identified 37 and 13 significantly enriched terms from biological processes in light and dark conditions, respectively. Prominent enrichment for hypoxia-related terms in both conditions suggests hypoxia is a key stressor for root development during spaceflight. Additional enriched terms in light conditions include the circadian cycle, light response, and terms for the metabolism of flavonoid and indole-containing compounds. These results further our understanding of plants' responses to the spaceflight environment.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"79"},"PeriodicalIF":3.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of soybean RNL and TIR domain proteins. 大豆 RNL 和 TIR 结构域蛋白质的全面回顾。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-26 DOI: 10.1007/s11103-024-01473-6
Joydeep Chakraborty

Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.

原核生物和真核生物都利用核苷酸结合域/富亮氨酸重复序列(NBD/LRR)触发免疫(NLR触发免疫)信号途径来抵御病原体。植物 NLR 是细胞内的免疫受体,可与病原体分泌的效应蛋白结合。双子叶植物表达的一种 NLR 被称为含 TIR 结构域的 NLR(TNLs)。TIR 结构域是一种酶,可催化产生对免疫信号传递至关重要的小分子,并导致植物细胞死亡。这些小分子促进了下游 TNL 信号元件的激活,如疾病易感性增强 1(EDS1)、植物毒素缺乏 4(PAD4)和衰老相关基因 101(SAG101)。辅助 NLRs(hNLRs)和 EDS1-PAD4/SAG101 复合物在激活后结合在一起,导致 hNLRs 寡聚化、转运到质膜(PM)并产生阳离子选择性通道。根据最新理论,阳离子通过低聚体 hNLRs 形成的孔隙进入细胞,并引发细胞死亡。偶尔,TNLs 也会自我结合,形成更高阶的寡聚体。在此,我们根据大豆 TNLs 所具有的蛋白质结构域对其进行了分类。我们相信,TNLs 可作为遗传抗性的来源,帮助大豆植物有效对抗病原体。总之,本综述旨在阐明大豆中表达的 TNLs 的范围。
{"title":"A comprehensive review of soybean RNL and TIR domain proteins.","authors":"Joydeep Chakraborty","doi":"10.1007/s11103-024-01473-6","DOIUrl":"10.1007/s11103-024-01473-6","url":null,"abstract":"<p><p>Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"78"},"PeriodicalIF":3.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of CgHSFB1 in the regulation of self-incompatibility in 'Shatian' pummelo. CgHSFB1 参与调控'沙田'西瓜的自相容性。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-23 DOI: 10.1007/s11103-024-01475-4
Chenchen Liu, Xin Zheng, Jianbing Hu, Qiang Xu, Hao Wen, Zhezhong Zhang, Ran Liu, Xiangling Chen, Zongzhou Xie, Junli Ye, Xiuxin Deng, Lijun Chai

As self-incompatibility is a major issue in pummelo breeding and production, its mechanism in citrus was analyzed to improve breeding efficiency and reduce production costs. Rutaceae belongs to S-RNase type of gametophytic self-incompatibility. While the function of S-RNase/SLF and the mechanism of self-incompatibility have been studied extensively, the transcriptional regulation of S-RNase has been less studied. We performed transcriptome sequencing with the styles of 'Shatian' pummelo on the day of anthesis and 1-5 days before anthesis, and found that the transcript level of S-RNase gradually decreased with flower development. By analyzing differentially expressed genes and correlation with the expression trend of S-RNase, we identified a candidate gene, CgHSFB1, and utilized biochemical experiments such as yeast one-hybrid assay, electrophoretic mobility shift assay and dual-luciferase assay, as well as transient transformation of citrus calli and Citrus microcarpa and demonstrated that CgHSFB1 could directly bind to the S1-RNase promoter and repress the expression of S1-RNase, which is involved in the pummelo self-incompatibility response. In contrast, CgHSFB1 did not bind to the promoter of S2-RNase, and there was specificity in the regulation of S-RNase.

由于自交不亲和是柚子育种和生产中的一个主要问题,因此对其在柑橘中的机理进行了分析,以提高育种效率和降低生产成本。芦柑属于配子体自交不亲和的 S-RNase 类型。虽然对 S-RNase/SLF 的功能和自交不亲和机理进行了广泛研究,但对 S-RNase 的转录调控研究较少。我们对'沙田'西瓜开花当天和开花前 1-5 天的花柱进行了转录组测序,发现随着花的发育,S-RNase 的转录水平逐渐降低。通过分析差异表达基因及其与 S-RNase 表达趋势的相关性,我们确定了候选基因 CgHSFB1,并利用酵母单杂交实验、电泳迁移实验和双荧光素酶实验等生化实验对其进行了分析、结果表明,CgHSFB1能直接与S1-RNase启动子结合并抑制S1-RNase的表达,而S1-RNase参与了柚子自相容反应。相比之下,CgHSFB1不与S2-RNase启动子结合,对S-RNase的调控存在特异性。
{"title":"Involvement of CgHSFB1 in the regulation of self-incompatibility in 'Shatian' pummelo.","authors":"Chenchen Liu, Xin Zheng, Jianbing Hu, Qiang Xu, Hao Wen, Zhezhong Zhang, Ran Liu, Xiangling Chen, Zongzhou Xie, Junli Ye, Xiuxin Deng, Lijun Chai","doi":"10.1007/s11103-024-01475-4","DOIUrl":"10.1007/s11103-024-01475-4","url":null,"abstract":"<p><p>As self-incompatibility is a major issue in pummelo breeding and production, its mechanism in citrus was analyzed to improve breeding efficiency and reduce production costs. Rutaceae belongs to S-RNase type of gametophytic self-incompatibility. While the function of S-RNase/SLF and the mechanism of self-incompatibility have been studied extensively, the transcriptional regulation of S-RNase has been less studied. We performed transcriptome sequencing with the styles of 'Shatian' pummelo on the day of anthesis and 1-5 days before anthesis, and found that the transcript level of S-RNase gradually decreased with flower development. By analyzing differentially expressed genes and correlation with the expression trend of S-RNase, we identified a candidate gene, CgHSFB1, and utilized biochemical experiments such as yeast one-hybrid assay, electrophoretic mobility shift assay and dual-luciferase assay, as well as transient transformation of citrus calli and Citrus microcarpa and demonstrated that CgHSFB1 could directly bind to the S<sub>1</sub>-RNase promoter and repress the expression of S<sub>1</sub>-RNase, which is involved in the pummelo self-incompatibility response. In contrast, CgHSFB1 did not bind to the promoter of S<sub>2</sub>-RNase, and there was specificity in the regulation of S-RNase.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"77"},"PeriodicalIF":3.9,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Five amino acid mismatches in the zinc-finger domains of Cellulose Synthase 5 and Cellulose Synthase 6 cooperatively modulate their functional properties by controlling homodimerization in Arabidopsis. 拟南芥中纤维素合成酶 5 和纤维素合成酶 6 的锌指结构域中的五个氨基酸错配通过控制同源二聚体来协同调节它们的功能特性。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-18 DOI: 10.1007/s11103-024-01471-8
Sungjin Park, Shi-You Ding

Cellulose synthase 5 (CESA5) and CESA6 are known to share substantial functional overlap. In the zinc-finger domain (ZN) of CESA5, there are five amino acid (AA) mismatches when compared to CESA6. These mismatches in CESA5 were replaced with their CESA6 counterparts one by one until all were replaced, generating nine engineered CESA5s. Each N-terminal enhanced yellow fluorescent protein-tagged engineered CESA5 was introduced to prc1-1, a cesa6 null mutant, and resulting mutants were subjected to phenotypic analyses. We found that five single AA-replaced CESA5 proteins partially rescue the prc1-1 mutant phenotypes to different extents. Multi-AA replaced CESA5s further rescued the mutant phenotypes in an additive manner, culminating in full recovery by CESA5G43R + S49T+S54P+S80A+Y88F. Investigations in cellulose content, cellulose synthase complex (CSC) motility, and cellulose microfibril organization in the same mutants support the results of the phenotypic analyses. Bimolecular fluorescence complementation assays demonstrated that the level of homodimerization in every engineered CESA5 is substantially higher than CESA5. The mean fluorescence intensity of CSCs carrying each engineered CESA5 fluctuates with the degree to which the prc1-1 mutant phenotypes are rescued by introducing a corresponding engineered CESA5. Taken together, these five AA mismatches in the ZNs of CESA5 and CESA6 cooperatively modulate the functional properties of these CESAs by controlling their homodimerization capacity, which in turn imposes proportional changes on the incorporation of these CESAs into CSCs.

众所周知,纤维素合成酶 5(CESA5)和 CESA6 在功能上有很大的重叠。与 CESA6 相比,CESA5 的锌指结构域(ZN)中有五个氨基酸(AA)错配。将 CESA5 中的这些错配逐一替换为 CESA6 中的对应氨基酸,直至全部替换完毕,生成了九个工程化的 CESA5。将每个 N 端增强型黄色荧光蛋白标记的工程化 CESA5 导入 cesa6 空缺突变体 prc1-1,并对所产生的突变体进行表型分析。我们发现,五个单AA置换的CESA5蛋白在不同程度上部分拯救了prc1-1突变体的表型。多AA置换的CESA5以相加的方式进一步拯救突变体表型,最终CESA5G43R+S49T+S54P+S80A+Y88F完全恢复。对相同突变体中纤维素含量、纤维素合成酶复合物(CSC)运动性和纤维素微纤维组织的研究支持了表型分析的结果。双分子荧光互补试验表明,每个工程化 CESA5 的同源二聚化水平都大大高于 CESA5。携带每种工程化 CESA5 的 CSCs 的平均荧光强度随着引入相应的工程化 CESA5 对 prc1-1 突变体表型的拯救程度而波动。综上所述,CESA5和CESA6的ZNs中的这五个AA错配通过控制它们的同源二聚化能力而协同调节了这些CESA的功能特性,而这又反过来对这些CESA融入CSCs的过程产生了比例上的变化。
{"title":"Five amino acid mismatches in the zinc-finger domains of Cellulose Synthase 5 and Cellulose Synthase 6 cooperatively modulate their functional properties by controlling homodimerization in Arabidopsis.","authors":"Sungjin Park, Shi-You Ding","doi":"10.1007/s11103-024-01471-8","DOIUrl":"10.1007/s11103-024-01471-8","url":null,"abstract":"<p><p>Cellulose synthase 5 (CESA5) and CESA6 are known to share substantial functional overlap. In the zinc-finger domain (ZN) of CESA5, there are five amino acid (AA) mismatches when compared to CESA6. These mismatches in CESA5 were replaced with their CESA6 counterparts one by one until all were replaced, generating nine engineered CESA5s. Each N-terminal enhanced yellow fluorescent protein-tagged engineered CESA5 was introduced to prc1-1, a cesa6 null mutant, and resulting mutants were subjected to phenotypic analyses. We found that five single AA-replaced CESA5 proteins partially rescue the prc1-1 mutant phenotypes to different extents. Multi-AA replaced CESA5s further rescued the mutant phenotypes in an additive manner, culminating in full recovery by CESA5<sup>G43R + S49T+S54P+S80A+Y88F</sup>. Investigations in cellulose content, cellulose synthase complex (CSC) motility, and cellulose microfibril organization in the same mutants support the results of the phenotypic analyses. Bimolecular fluorescence complementation assays demonstrated that the level of homodimerization in every engineered CESA5 is substantially higher than CESA5. The mean fluorescence intensity of CSCs carrying each engineered CESA5 fluctuates with the degree to which the prc1-1 mutant phenotypes are rescued by introducing a corresponding engineered CESA5. Taken together, these five AA mismatches in the ZNs of CESA5 and CESA6 cooperatively modulate the functional properties of these CESAs by controlling their homodimerization capacity, which in turn imposes proportional changes on the incorporation of these CESAs into CSCs.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"76"},"PeriodicalIF":3.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141420332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maize auxin response factor ZmARF1 confers multiple abiotic stresses resistances in transgenic Arabidopsis. 玉米辅助因子 ZmARF1 在转基因拟南芥中赋予多种抗非生物性胁迫能力
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-15 DOI: 10.1007/s11103-024-01470-9
Ling Liu, Ying Gong, Baba Salifu Yahaya, Yushu Chen, Dengke Shi, Fangyuan Liu, Junlin Gou, Zhanmei Zhou, Yanli Lu, Fengkai Wu

Prolonged exposure to abiotic stresses causes oxidative stress, which affects plant development and survival. In this research, the overexpression of ZmARF1 improved tolerance to low Pi, drought and salinity stresses. The transgenic plants manifested tolerance to low Pi by their superior root phenotypic traits: root length, root tips, root surface area, and root volume, compared to wide-type (WT) plants. Moreover, the transgenic plants exhibited higher root and leaf Pi content and upregulated the high affinity Pi transporters PHT1;2 and phosphorus starvation inducing (PSI) genes PHO2 and PHR1 under low Pi conditions. Transgenic Arabidopsis displayed tolerance to drought and salt stress by maintaining higher chlorophyll content and chlorophyll fluorescence, lower water loss rates, and ion leakage, which contributed to the survival of overexpression lines compared to the WT. Transcriptome profiling identified a peroxidase gene, POX, whose transcript was upregulated by these abiotic stresses. Furthermore, we confirmed that ZmARF1 bound to the auxin response element (AuxRE) in the promoter of POX and enhanced its transcription to mediate tolerance to oxidative stress imposed by low Pi, drought and salt stress in the transgenic seedlings. These results demonstrate that ZmARF1 has significant potential for improving the tolerance of crops to multiple abiotic stresses.

长期遭受非生物胁迫会导致氧化胁迫,从而影响植物的生长发育和存活。在这项研究中,过表达 ZmARF1 提高了对低 Pi、干旱和盐度胁迫的耐受性。与宽基因型(WT)植株相比,转基因植株在根长、根尖、根表面积和根体积等根表型性状方面表现出更强的耐低 Pi 能力。此外,在低 Pi 条件下,转基因植株表现出更高的根和叶片 Pi 含量,并上调高亲和性 Pi 转运体 PHT1;2 和磷饥饿诱导(PSI)基因 PHO2 和 PHR1。转基因拟南芥通过保持较高的叶绿素含量和叶绿素荧光、较低的失水率和离子渗漏,显示出对干旱和盐胁迫的耐受性,与 WT 相比,这有助于过表达株系的存活。转录组分析发现了一个过氧化物酶基因 POX,其转录本在这些非生物胁迫下上调。此外,我们证实 ZmARF1 与 POX 启动子中的辅助因子反应元件(AuxRE)结合,增强了其转录,从而介导转基因幼苗对低 Pi、干旱和盐胁迫施加的氧化胁迫的耐受性。这些结果表明,ZmARF1 在提高作物对多种非生物胁迫的耐受性方面具有巨大潜力。
{"title":"Maize auxin response factor ZmARF1 confers multiple abiotic stresses resistances in transgenic Arabidopsis.","authors":"Ling Liu, Ying Gong, Baba Salifu Yahaya, Yushu Chen, Dengke Shi, Fangyuan Liu, Junlin Gou, Zhanmei Zhou, Yanli Lu, Fengkai Wu","doi":"10.1007/s11103-024-01470-9","DOIUrl":"10.1007/s11103-024-01470-9","url":null,"abstract":"<p><p>Prolonged exposure to abiotic stresses causes oxidative stress, which affects plant development and survival. In this research, the overexpression of ZmARF1 improved tolerance to low Pi, drought and salinity stresses. The transgenic plants manifested tolerance to low Pi by their superior root phenotypic traits: root length, root tips, root surface area, and root volume, compared to wide-type (WT) plants. Moreover, the transgenic plants exhibited higher root and leaf Pi content and upregulated the high affinity Pi transporters PHT1;2 and phosphorus starvation inducing (PSI) genes PHO2 and PHR1 under low Pi conditions. Transgenic Arabidopsis displayed tolerance to drought and salt stress by maintaining higher chlorophyll content and chlorophyll fluorescence, lower water loss rates, and ion leakage, which contributed to the survival of overexpression lines compared to the WT. Transcriptome profiling identified a peroxidase gene, POX, whose transcript was upregulated by these abiotic stresses. Furthermore, we confirmed that ZmARF1 bound to the auxin response element (AuxRE) in the promoter of POX and enhanced its transcription to mediate tolerance to oxidative stress imposed by low Pi, drought and salt stress in the transgenic seedlings. These results demonstrate that ZmARF1 has significant potential for improving the tolerance of crops to multiple abiotic stresses.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"75"},"PeriodicalIF":3.9,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cytosol-tethered YHB variant of phytochrome B retains photomorphogenic signaling activity. 植物色素 B 的细胞质系链 YHB 变体保留了光形态发生信号的活性。
IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-14 DOI: 10.1007/s11103-024-01469-2
Wei Hu, J Clark Lagarias

The red and far-red light photoreceptor phytochrome B (phyB) transmits light signals following cytosol-to-nuclear translocation to regulate transcriptional networks therein. This necessitates changes in protein-protein interactions of phyB in the cytosol, about which little is presently known. Via introduction of a nucleus-excluding G767R mutation into the dominant, constitutively active phyBY276H (YHB) allele, we explore the functional consequences of expressing a cytosol-localized YHBG767R variant in transgenic Arabidopsis seedlings. We show that YHBG767R elicits selective constitutive photomorphogenic phenotypes in dark-grown phyABCDE null mutants, wild type and other phy-deficient genotypes. These responses include light-independent apical hook opening, cotyledon unfolding, seed germination and agravitropic hypocotyl growth with minimal suppression of hypocotyl elongation. Such phenotypes correlate with reduced PIF3 levels, which implicates cytosolic targeting of PIF3 turnover or PIF3 translational inhibition by YHBG767R. However, as expected for a cytoplasm-tethered phyB, YHBG767R elicits reduced light-mediated signaling activity compared with similarly expressed wild-type phyB in phyABCDE mutant backgrounds. YHBG767R also interferes with wild-type phyB light signaling, presumably by formation of cytosol-retained and/or otherwise inactivated heterodimers. Our results suggest that cytosolic interactions with PIFs play an important role in phyB signaling even under physiological conditions.

红光和远红光光感受器phytochrome B(phyB)通过从细胞质到细胞核的转位传递光信号,以调节其中的转录网络。这就需要改变 phyB 在细胞质中蛋白质与蛋白质之间的相互作用,而目前人们对此知之甚少。通过在显性、组成型活性 phyBY276H(YHB)等位基因中引入排除细胞核的 G767R 突变,我们探索了在转基因拟南芥幼苗中表达细胞质定位的 YHBG767R 变体的功能性后果。我们发现,YHBG767R 在黑暗生长的phyABCDE 空缺突变体、野生型和其他phy缺陷基因型中引起了选择性组成型光形态发生表型。这些反应包括与光无关的顶端钩打开、子叶展开、种子萌发和下胚轴向外生长,对下胚轴伸长的抑制作用很小。这些表型与 PIF3 水平的降低有关,这意味着 YHBG767R 对 PIF3 翻转的细胞质靶向作用或 PIF3 的翻译抑制作用。然而,正如细胞质系留的phyB所预期的那样,在phyABCDE突变体背景中,与类似表达的野生型phyB相比,YHBG767R引起的光介导信号活性降低。YHBG767R 还干扰了野生型 phyB 的光信号转导,可能是通过形成保留在细胞质中的和(或)以其他方式失活的异二聚体。我们的研究结果表明,即使在生理条件下,细胞膜与 PIFs 的相互作用在 phyB 信号转导中也起着重要作用。
{"title":"A cytosol-tethered YHB variant of phytochrome B retains photomorphogenic signaling activity.","authors":"Wei Hu, J Clark Lagarias","doi":"10.1007/s11103-024-01469-2","DOIUrl":"10.1007/s11103-024-01469-2","url":null,"abstract":"<p><p>The red and far-red light photoreceptor phytochrome B (phyB) transmits light signals following cytosol-to-nuclear translocation to regulate transcriptional networks therein. This necessitates changes in protein-protein interactions of phyB in the cytosol, about which little is presently known. Via introduction of a nucleus-excluding G767R mutation into the dominant, constitutively active phyB<sup>Y276H</sup> (YHB) allele, we explore the functional consequences of expressing a cytosol-localized YHB<sup>G767R</sup> variant in transgenic Arabidopsis seedlings. We show that YHB<sup>G767R</sup> elicits selective constitutive photomorphogenic phenotypes in dark-grown phyABCDE null mutants, wild type and other phy-deficient genotypes. These responses include light-independent apical hook opening, cotyledon unfolding, seed germination and agravitropic hypocotyl growth with minimal suppression of hypocotyl elongation. Such phenotypes correlate with reduced PIF3 levels, which implicates cytosolic targeting of PIF3 turnover or PIF3 translational inhibition by YHB<sup>G767R</sup>. However, as expected for a cytoplasm-tethered phyB, YHB<sup>G767R</sup> elicits reduced light-mediated signaling activity compared with similarly expressed wild-type phyB in phyABCDE mutant backgrounds. YHB<sup>G767R</sup> also interferes with wild-type phyB light signaling, presumably by formation of cytosol-retained and/or otherwise inactivated heterodimers. Our results suggest that cytosolic interactions with PIFs play an important role in phyB signaling even under physiological conditions.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 4","pages":"72"},"PeriodicalIF":3.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141317911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1