首页 > 最新文献

Physics of Fluids最新文献

英文 中文
On particle dispersion statistics using unsupervised learning and Gaussian mixture models 利用无监督学习和高斯混合物模型研究粒子弥散统计
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-10 DOI: 10.1063/5.0229111
Nicholas Christakis, Dimitris Drikakis
Understanding the dispersion of particles in enclosed spaces is crucial for controlling the spread of infectious diseases. This study introduces an innovative approach that combines an unsupervised learning algorithm with a Gaussian mixture model to analyze the behavior of saliva droplets emitted from a coughing individual. The algorithm effectively clusters data, while the Gaussian mixture model captures the distribution of these clusters, revealing underlying sub-populations and variations in particle dispersion. Using computational fluid dynamics simulation data, this integrated method offers a robust, data-driven perspective on particle dynamics, unveiling intricate patterns and probabilistic distributions previously unattainable. The combined approach significantly enhances the accuracy and interpretability of predictions, providing valuable insights for public health strategies to prevent virus transmission in indoor environments. The practical implications of this study are profound, as it demonstrates the potential of advanced unsupervised learning techniques in addressing complex biomedical and engineering challenges and underscores the importance of coupling sophisticated algorithms with statistical models for comprehensive data analysis. The potential impact of these findings on public health strategies is significant, highlighting the relevance of this research to real-world applications.
了解颗粒在封闭空间中的扩散情况对于控制传染病的传播至关重要。本研究引入了一种创新方法,将无监督学习算法与高斯混合物模型相结合,分析咳嗽者唾液飞沫的行为。该算法能有效地对数据进行聚类,而高斯混合物模型则能捕捉这些聚类的分布,从而揭示潜在的亚群和颗粒分散的变化。利用计算流体动力学模拟数据,这种综合方法为粒子动力学提供了一个强大的、数据驱动的视角,揭示了以前无法实现的复杂模式和概率分布。这种综合方法大大提高了预测的准确性和可解释性,为防止病毒在室内环境传播的公共卫生策略提供了宝贵的见解。这项研究具有深远的现实意义,因为它展示了先进的无监督学习技术在应对复杂的生物医学和工程挑战方面的潜力,并强调了将复杂算法与统计模型结合起来进行综合数据分析的重要性。这些发现对公共卫生战略的潜在影响是巨大的,凸显了这项研究与现实世界应用的相关性。
{"title":"On particle dispersion statistics using unsupervised learning and Gaussian mixture models","authors":"Nicholas Christakis, Dimitris Drikakis","doi":"10.1063/5.0229111","DOIUrl":"https://doi.org/10.1063/5.0229111","url":null,"abstract":"Understanding the dispersion of particles in enclosed spaces is crucial for controlling the spread of infectious diseases. This study introduces an innovative approach that combines an unsupervised learning algorithm with a Gaussian mixture model to analyze the behavior of saliva droplets emitted from a coughing individual. The algorithm effectively clusters data, while the Gaussian mixture model captures the distribution of these clusters, revealing underlying sub-populations and variations in particle dispersion. Using computational fluid dynamics simulation data, this integrated method offers a robust, data-driven perspective on particle dynamics, unveiling intricate patterns and probabilistic distributions previously unattainable. The combined approach significantly enhances the accuracy and interpretability of predictions, providing valuable insights for public health strategies to prevent virus transmission in indoor environments. The practical implications of this study are profound, as it demonstrates the potential of advanced unsupervised learning techniques in addressing complex biomedical and engineering challenges and underscores the importance of coupling sophisticated algorithms with statistical models for comprehensive data analysis. The potential impact of these findings on public health strategies is significant, highlighting the relevance of this research to real-world applications.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"19 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wing ice accretion prediction based on conditional generation adversarial network 基于条件生成对抗网络的机翼积冰预测
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-10 DOI: 10.1063/5.0223205
Xudong Ma, Yang Zhang, Xiaogang Xu, Hui Wang, Tianbo Wang
The ice accretion on the aircraft's surface under low temperatures and high humidity is crucial for flight safety. With respect to the limitation of traditional icing simulation methods, it is very hard to predict exact ice profiles, which can extremely affect the flight performance of an aircraft. A conditional generative adversarial network (CGAN) is utilized to rapidly predict ice accretion and reconstruct three-dimensional ice patterns along the leading edge of a wing. The CGAN is trained using experimental data obtained from a wing with varying sweep angles. The results indicate that the CGAN achieves a high level of accuracy, specifically 97.5%, in predicting the similarity of ice shapes in the test set. When assessing the sample feature capture and prediction capability of the predictive model, it is shown that the CGAN exhibits superior predictive performance across different sample sizes.
低温高湿条件下飞机表面的结冰对飞行安全至关重要。由于传统结冰模拟方法的局限性,很难预测准确的结冰轮廓,这对飞机的飞行性能影响极大。利用条件生成对抗网络(CGAN)可快速预测结冰情况,并重建机翼前缘的三维结冰模式。CGAN 是利用从不同后掠角的机翼上获得的实验数据进行训练的。结果表明,CGAN 在预测测试集中冰形状的相似性方面达到了很高的准确率,具体为 97.5%。在评估预测模型的样本特征捕获和预测能力时,结果表明 CGAN 在不同样本大小的情况下均表现出卓越的预测性能。
{"title":"Wing ice accretion prediction based on conditional generation adversarial network","authors":"Xudong Ma, Yang Zhang, Xiaogang Xu, Hui Wang, Tianbo Wang","doi":"10.1063/5.0223205","DOIUrl":"https://doi.org/10.1063/5.0223205","url":null,"abstract":"The ice accretion on the aircraft's surface under low temperatures and high humidity is crucial for flight safety. With respect to the limitation of traditional icing simulation methods, it is very hard to predict exact ice profiles, which can extremely affect the flight performance of an aircraft. A conditional generative adversarial network (CGAN) is utilized to rapidly predict ice accretion and reconstruct three-dimensional ice patterns along the leading edge of a wing. The CGAN is trained using experimental data obtained from a wing with varying sweep angles. The results indicate that the CGAN achieves a high level of accuracy, specifically 97.5%, in predicting the similarity of ice shapes in the test set. When assessing the sample feature capture and prediction capability of the predictive model, it is shown that the CGAN exhibits superior predictive performance across different sample sizes.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"157 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fast and reliable semi-analytical method for assessing energy replenishment from fracturing-flooding in low-permeability and tight oil reservoirs 评估低渗透致密油藏压裂注水能量补充的快速可靠半分析方法
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-10 DOI: 10.1063/5.0225841
Yubao Gao, Weiyao Zhu, Wengang Bu, Ming Yue, Debin Kong
The development of low-permeability and tight oil reservoirs is challenged by insufficient natural energy and rapid production decline. Fracturing-flooding is a technique that relies on high-pressure and large-volume fluid injection to replenish reservoir energy, making it a significant method for rapidly boosting formation energy. To evaluate the energy replenishment effect of fracturing-flooding technology in low-permeability and tight reservoirs, this study proposes a semi-analytical method for quick calculation. This approach employs dimensionless simplification, Pedrosa's substitution, Laplace transformation, and Stehfest inversion methods to derive pressure solutions for both the stimulation region and the external matrix region, each with varying flow capacities. The average formation pressure (AFP) of the reservoir is determined using the area-weighted average method, and numerical verification is performed using a commercial simulator. A case study from the Binnan area, along with a sensitivity analysis, demonstrates that after 30 days of fracturing-flooding, the AFP of the reservoir increases to 46.97 MPa, the corresponding reservoir pressure coefficient rises from 1.2 to 1.68, and reservoir energy increases by 40%. The factors influencing energy replenishment are ranked as follows: reservoir thickness, injection rate, stress sensitivity coefficient, matrix permeability, stimulation region radius, and mobility ratio. This study provides theoretical guidance for optimizing fracturing-flooding development schemes in low-permeability and tight oil reservoirs and offers valuable reference for the industry.
低渗透和致密油藏的开发面临着天然能量不足和产量快速下降的挑战。压裂-注水技术是一种依靠高压、大体积流体注入来补充储层能量的技术,是快速提高地层能量的重要方法。为评估压裂-注水技术在低渗透致密储层中的能量补充效果,本研究提出了一种半解析快速计算方法。该方法采用了无量纲简化、Pedrosa 代换、拉普拉斯变换和 Stehfest 反演等方法,得出了刺激区和外部基质区各自不同流动能力的压力解。储层的平均地层压力(AFP)采用面积加权平均法确定,并使用商业模拟器进行数值验证。一项来自宾南地区的案例研究以及一项敏感性分析表明,经过 30 天的压裂-注水,储层平均地层压力(AFP)上升到 46.97 兆帕,相应的储层压力系数从 1.2 上升到 1.68,储层能量增加了 40%。影响能量补充的因素排序如下:储层厚度、注入速度、应力敏感系数、基质渗透率、刺激区域半径和流动比率。该研究为优化低渗透致密油藏的压裂-注水开发方案提供了理论指导,为业界提供了有价值的参考。
{"title":"A fast and reliable semi-analytical method for assessing energy replenishment from fracturing-flooding in low-permeability and tight oil reservoirs","authors":"Yubao Gao, Weiyao Zhu, Wengang Bu, Ming Yue, Debin Kong","doi":"10.1063/5.0225841","DOIUrl":"https://doi.org/10.1063/5.0225841","url":null,"abstract":"The development of low-permeability and tight oil reservoirs is challenged by insufficient natural energy and rapid production decline. Fracturing-flooding is a technique that relies on high-pressure and large-volume fluid injection to replenish reservoir energy, making it a significant method for rapidly boosting formation energy. To evaluate the energy replenishment effect of fracturing-flooding technology in low-permeability and tight reservoirs, this study proposes a semi-analytical method for quick calculation. This approach employs dimensionless simplification, Pedrosa's substitution, Laplace transformation, and Stehfest inversion methods to derive pressure solutions for both the stimulation region and the external matrix region, each with varying flow capacities. The average formation pressure (AFP) of the reservoir is determined using the area-weighted average method, and numerical verification is performed using a commercial simulator. A case study from the Binnan area, along with a sensitivity analysis, demonstrates that after 30 days of fracturing-flooding, the AFP of the reservoir increases to 46.97 MPa, the corresponding reservoir pressure coefficient rises from 1.2 to 1.68, and reservoir energy increases by 40%. The factors influencing energy replenishment are ranked as follows: reservoir thickness, injection rate, stress sensitivity coefficient, matrix permeability, stimulation region radius, and mobility ratio. This study provides theoretical guidance for optimizing fracturing-flooding development schemes in low-permeability and tight oil reservoirs and offers valuable reference for the industry.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"34 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism-specific chemical energy accommodation with finite-rate surface chemistry in non-equilibrium flow 非平衡流动中有限速率表面化学的特定机制化学能调适
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-10 DOI: 10.1063/5.0222518
Youngil Ko, Eunji Jun
During atmospheric reentry, the vehicle surface is exposed to highly non-equilibrium flow. The vehicle surface can experience heterogeneous recombination of reactive atoms, which contributes to its aerothermodynamic heating. This process is followed by chemical energy accommodation (CEA), where the released energy is either transferred to the surface or the internal energy modes of the recombined molecule. Heterogeneous recombination can be categorized into Eley–Rideal (ER) and Langmuir–Hinshelwood mechanisms, which differ in their methods of molecule formation and degrees of CEA. The complete CEA assumption may not consider the dependency of CEA on the mechanisms of heterogeneous recombination. This study aims to consider the mechanism-specific CEA for a more accurate prediction of surface heat flux. The authors implement mechanism-specific CEA within the direct simulation Monte Carlo framework using the finite-rate surface chemistry model, resolving elementary surface reactions and assigning a CEA coefficient, β, to each mechanism. The model is verified through comparisons with analytical solutions of surface coverage and validated against benchmark references. A parametric investigation of rarefied hypersonic flow over a two-dimensional cylinder is conducted under different freestream Mach and Knudsen numbers. Results show a reduction in total heat flux of up to 14.44% using mechanism-specific CEA compared to the complete CEA assumption. The reduction is attributed to the relative contribution of the ER mechanism, which can be a function of atomic partial pressure at the boundary layer.
在重返大气层期间,飞行器表面暴露在高度非平衡流动中。飞行器表面会发生反应原子的异质重组,从而导致其空气热力学加热。这一过程之后是化学能容纳(CEA),释放的能量会转移到表面或重组分子的内部能量模式。异质重组可分为 Eley-Rideal (ER) 和 Langmuir-Hinshelwood 机制,它们在分子形成方法和 CEA 程度上各不相同。完全 CEA 假设可能没有考虑 CEA 对异质重组机制的依赖性。本研究旨在考虑特定机制的 CEA,以更准确地预测表面热通量。作者利用有限速率表面化学模型,在直接模拟蒙特卡罗框架内实现了特定机理 CEA,解析了基本表面反应,并为每种机理分配了 CEA 系数 β。该模型通过与表面覆盖率的分析解进行比较,并根据基准参考资料进行验证。在不同自由流马赫数和努森数条件下,对二维圆柱体上的稀薄高超声速流进行了参数研究。结果表明,与完全 CEA 假设相比,使用特定机制 CEA 可使总热流量减少 14.44%。这种减少归因于 ER 机制的相对贡献,它可能是边界层原子分压的函数。
{"title":"Mechanism-specific chemical energy accommodation with finite-rate surface chemistry in non-equilibrium flow","authors":"Youngil Ko, Eunji Jun","doi":"10.1063/5.0222518","DOIUrl":"https://doi.org/10.1063/5.0222518","url":null,"abstract":"During atmospheric reentry, the vehicle surface is exposed to highly non-equilibrium flow. The vehicle surface can experience heterogeneous recombination of reactive atoms, which contributes to its aerothermodynamic heating. This process is followed by chemical energy accommodation (CEA), where the released energy is either transferred to the surface or the internal energy modes of the recombined molecule. Heterogeneous recombination can be categorized into Eley–Rideal (ER) and Langmuir–Hinshelwood mechanisms, which differ in their methods of molecule formation and degrees of CEA. The complete CEA assumption may not consider the dependency of CEA on the mechanisms of heterogeneous recombination. This study aims to consider the mechanism-specific CEA for a more accurate prediction of surface heat flux. The authors implement mechanism-specific CEA within the direct simulation Monte Carlo framework using the finite-rate surface chemistry model, resolving elementary surface reactions and assigning a CEA coefficient, β, to each mechanism. The model is verified through comparisons with analytical solutions of surface coverage and validated against benchmark references. A parametric investigation of rarefied hypersonic flow over a two-dimensional cylinder is conducted under different freestream Mach and Knudsen numbers. Results show a reduction in total heat flux of up to 14.44% using mechanism-specific CEA compared to the complete CEA assumption. The reduction is attributed to the relative contribution of the ER mechanism, which can be a function of atomic partial pressure at the boundary layer.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"38 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation of sodium-alginate droplets in an X-microdevice: Characterization of the pinching efficiency 在 X 微装置中形成海藻酸钠液滴:捏合效率的特征
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-10 DOI: 10.1063/5.0223938
Sara Tomasi Masoni, Alessandro Mariotti, Chiara Galletti, Roberto Mauri, Maria Vittoria Salvetti, Elisabetta Brunazzi
Experiments and simulations are used jointly to gain a comprehensive insight into the pinching mechanism that generates alginate droplets in an X-microdevice operating in a hydrodynamic flow-focusing configuration. The X-microdevice is fed with an aqueous alginate solution into one inlet channel, while sunflower oil and Span80 are fed into the other two inlet channels. The use of the adaptive mesh refinement and volume of fluid method allows accurate tracking of the interface in numerical simulations. The sensitivities of numerical predictions to the contact angle and the surface tension are estimated through dedicated sets of simulations. Subsequently, numerical simulations and experiments are compared for different flow rates with a satisfactory agreement. We observe that the pinch-off mechanism may lead to the formation of several satellite drops in addition to the main droplet. A pinching performance indicator is suggested based on the amount of alginate that is encapsulated in the main droplet. The effect of operating conditions on the pinching efficiency, frequency, and droplet diameter is discussed to provide valuable information to optimize the droplets production. The pinching efficiency is closely related to the length and diameter of the liquid thread. At low flow rates, a short liquid thread is observed. This leads to the formation of few satellites and, thus, to high pinching efficiency but low droplet production. Increasing the dispersed-phase flow rate slightly reduces the efficiency but significantly increases the production.
实验和模拟相结合,全面了解了在流体动力流聚焦配置下运行的 X 微装置中产生藻酸盐液滴的捏合机制。在 X 微装置的一个入口通道中注入海藻酸水溶液,而在另外两个入口通道中注入葵花籽油和斯盘80。使用自适应网格细化和流体体积法可以在数值模拟中准确跟踪界面。通过专门的模拟集估算了数值预测对接触角和表面张力的敏感性。随后,对不同流速下的数值模拟和实验进行了比较,结果令人满意。我们观察到,除主液滴外,捏合机制还可能导致形成多个卫星液滴。根据主液滴中包裹的海藻酸数量,我们提出了一种捏合性能指标。讨论了操作条件对捏合效率、频率和液滴直径的影响,为优化液滴生产提供了有价值的信息。捏合效率与液体螺纹的长度和直径密切相关。在低流速下,观察到的液体螺纹较短。这导致形成的卫星数量少,因此捏合效率高,但液滴产量低。提高分散相流速会略微降低效率,但会显著提高产量。
{"title":"Formation of sodium-alginate droplets in an X-microdevice: Characterization of the pinching efficiency","authors":"Sara Tomasi Masoni, Alessandro Mariotti, Chiara Galletti, Roberto Mauri, Maria Vittoria Salvetti, Elisabetta Brunazzi","doi":"10.1063/5.0223938","DOIUrl":"https://doi.org/10.1063/5.0223938","url":null,"abstract":"Experiments and simulations are used jointly to gain a comprehensive insight into the pinching mechanism that generates alginate droplets in an X-microdevice operating in a hydrodynamic flow-focusing configuration. The X-microdevice is fed with an aqueous alginate solution into one inlet channel, while sunflower oil and Span80 are fed into the other two inlet channels. The use of the adaptive mesh refinement and volume of fluid method allows accurate tracking of the interface in numerical simulations. The sensitivities of numerical predictions to the contact angle and the surface tension are estimated through dedicated sets of simulations. Subsequently, numerical simulations and experiments are compared for different flow rates with a satisfactory agreement. We observe that the pinch-off mechanism may lead to the formation of several satellite drops in addition to the main droplet. A pinching performance indicator is suggested based on the amount of alginate that is encapsulated in the main droplet. The effect of operating conditions on the pinching efficiency, frequency, and droplet diameter is discussed to provide valuable information to optimize the droplets production. The pinching efficiency is closely related to the length and diameter of the liquid thread. At low flow rates, a short liquid thread is observed. This leads to the formation of few satellites and, thus, to high pinching efficiency but low droplet production. Increasing the dispersed-phase flow rate slightly reduces the efficiency but significantly increases the production.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"6 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The topology-conditioned turbulence kinetic energy budget 拓扑条件下的湍流动能预算
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-10 DOI: 10.1063/5.0224167
Pawel Baj
The paper reports on the conditionally averaged turbulence kinetic energy (TKE) budget, where the conditioning is based on the invariants of the velocity gradient tensor. Three different datasets are utilized for this analysis. The particular terms of the budget are presented in the (R, Q) plane, showcasing a striking similarity (both quantitative and qualitative) among the results from each dataset. The importance of conditional averages for the overall variance of the specific terms of the TKE budget is also evaluated. Subsequently, the budgets are presented along conditional mean trajectories (CMTs), revealing the dynamics of the TKE budget associated with the evolution of local flow topology. Results obtained for different CMTs approximately collapse when suitably normalized (at least for certain parts of the trajectories). The conditional budget is clearly dominated by inertial and pressure transport terms, indicative of a “sweeping” effect.
本文报告了条件平均湍流动能(TKE)预算,其中条件是基于速度梯度张量的不变量。分析中使用了三个不同的数据集。预算的特定项显示在(R,Q)平面上,展示了每个数据集结果之间惊人的相似性(包括定量和定性)。此外,还评估了条件平均值对 TKE 预算特定项总体方差的重要性。随后,沿着条件平均轨迹(CMT)展示了预算,揭示了与局部流拓扑演变相关的 TKE 预算动态。对不同的 CMT 进行适当的归一化处理后(至少在轨迹的某些部分),得到的结果近似折叠。条件预算明显由惯性和压力传输项主导,表明存在 "横扫 "效应。
{"title":"The topology-conditioned turbulence kinetic energy budget","authors":"Pawel Baj","doi":"10.1063/5.0224167","DOIUrl":"https://doi.org/10.1063/5.0224167","url":null,"abstract":"The paper reports on the conditionally averaged turbulence kinetic energy (TKE) budget, where the conditioning is based on the invariants of the velocity gradient tensor. Three different datasets are utilized for this analysis. The particular terms of the budget are presented in the (R, Q) plane, showcasing a striking similarity (both quantitative and qualitative) among the results from each dataset. The importance of conditional averages for the overall variance of the specific terms of the TKE budget is also evaluated. Subsequently, the budgets are presented along conditional mean trajectories (CMTs), revealing the dynamics of the TKE budget associated with the evolution of local flow topology. Results obtained for different CMTs approximately collapse when suitably normalized (at least for certain parts of the trajectories). The conditional budget is clearly dominated by inertial and pressure transport terms, indicative of a “sweeping” effect.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"6 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experiments on critical behavior of oblique detonation wave in stratified mixtures 分层混合物中斜向爆轰波临界行为实验
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-10 DOI: 10.1063/5.0225498
K. Iwata, N. Hanyu, S. Maeda, T. Obara
Two-stage gas-gun ballistic experiments are performed to investigate the feasibility of stratified mixtures with variable global equivalence ratios Φglobal for the formation of sphere-induced oblique detonation wave (ODW) and quantify their critical behaviors, which include local quenching and transitional structure to ODW, by testing conventional detonation criteria for uniform mixtures. 2 Φglobal H2 + O2 + 3Ar mixtures are tested with different concentration gradients for each fuel-lean/fuel-rich global composition. Opposite responses are observed depending on the global equivalence ratio: the lean mixture of Φglobal = 0.7, which forms ODW in the uniform mixture, fails partly in the strongest stratification, whereas the richest mixture of Φglobal = 2.0 turns to ODW in the strongly stratified conditions. As elucidated in the authors' previous work, Chapman–Jouguet (C–J) theory, including the curvature effects, reproduces the wave angles of the stable ODWs, as well as provides a good prediction on the local quenching of ODW occurring in the area with less reactive composition. Comparison of different wave regimes observed in the explored conditions reveals that wave curvature governs the critical behaviors of ODW far away from the projectile, whereas the initiation structure around the projectile is also influenced by the non-dimensional diameter. Surface energy theory is proven to quantify well the initiation structure on the projectile using a local equivalence ratio. These results indicate a new possibility of controlling the methodology of ignition and stabilization of detonation in aerospace engines, in which perfect mixing is difficult and non-stoichiometric and non-uniform mixtures are expected.
通过测试均匀混合物的常规起爆标准,进行了两级气枪弹道实验,以研究具有可变全局当量比Φglobal的分层混合物形成球形诱发斜向爆轰波(ODW)的可行性,并量化其临界行为,包括局部淬火和向ODW的过渡结构。2 Φ全局 H2 + O2 + 3Ar 混合物进行了测试,每种燃料稀薄/燃料丰富的全局成分具有不同的浓度梯度。根据全局当量比,观察到了相反的反应:Φglobal = 0.7 的贫油混合物在均匀混合物中形成 ODW,但在最强分层条件下部分失效,而Φglobal = 2.0 的最富油混合物在强分层条件下变成 ODW。正如作者在之前的工作中所阐明的,包括曲率效应在内的查普曼-朱盖特(C-J)理论再现了稳定 ODW 的波角,并很好地预测了在反应成分较少的区域发生的 ODW 局部淬火现象。对所探索条件下观察到的不同波形进行比较后发现,波形曲率决定了远离射弹的 ODW 的临界行为,而射弹周围的起始结构也受到非尺寸直径的影响。表面能理论证明,使用局部等效比可以很好地量化弹丸上的起爆结构。这些结果为控制航空航天发动机的点火和稳定爆燃方法提供了新的可能性,因为在航空航天发动机中很难实现完美混合,预计会出现非化学计量和非均匀混合物。
{"title":"Experiments on critical behavior of oblique detonation wave in stratified mixtures","authors":"K. Iwata, N. Hanyu, S. Maeda, T. Obara","doi":"10.1063/5.0225498","DOIUrl":"https://doi.org/10.1063/5.0225498","url":null,"abstract":"Two-stage gas-gun ballistic experiments are performed to investigate the feasibility of stratified mixtures with variable global equivalence ratios Φglobal for the formation of sphere-induced oblique detonation wave (ODW) and quantify their critical behaviors, which include local quenching and transitional structure to ODW, by testing conventional detonation criteria for uniform mixtures. 2 Φglobal H2 + O2 + 3Ar mixtures are tested with different concentration gradients for each fuel-lean/fuel-rich global composition. Opposite responses are observed depending on the global equivalence ratio: the lean mixture of Φglobal = 0.7, which forms ODW in the uniform mixture, fails partly in the strongest stratification, whereas the richest mixture of Φglobal = 2.0 turns to ODW in the strongly stratified conditions. As elucidated in the authors' previous work, Chapman–Jouguet (C–J) theory, including the curvature effects, reproduces the wave angles of the stable ODWs, as well as provides a good prediction on the local quenching of ODW occurring in the area with less reactive composition. Comparison of different wave regimes observed in the explored conditions reveals that wave curvature governs the critical behaviors of ODW far away from the projectile, whereas the initiation structure around the projectile is also influenced by the non-dimensional diameter. Surface energy theory is proven to quantify well the initiation structure on the projectile using a local equivalence ratio. These results indicate a new possibility of controlling the methodology of ignition and stabilization of detonation in aerospace engines, in which perfect mixing is difficult and non-stoichiometric and non-uniform mixtures are expected.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"38 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of geometric uncertainty on hypersonic aerodynamics in scramjet inlets 高超音速空气动力学的几何不确定性量化
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-10 DOI: 10.1063/5.0227619
Hongkang Liu, Kehui Peng, Youjun Zhang, Di Sun, Yatian Zhao
Geometric deviations arising from manufacturing and assembly processes can significantly impact the aerodynamic stability of scramjet inlets. This study aims to quantify the uncertainty and sensitivity of the inlet aerodynamics caused by geometric deviations. Specifically, three representative operating modes are considered: start, half-start, and unstart. Five geometric parameters are extracted as random uncertain variables, including the first and second ramp angle (α1, α2), the horizontal and vertical distance between the lip point and the throat point (dh, dv), and the inner angle of the cowl lip (α3). To achieve the quantification objective, the non-intrusive polynomial chaos method is employed for uncertainty quantification. Sobol indices are utilized to assess the impact of each geometric parameter on the uncertainty of quantities of interest. Results indicate that geometric deviations for only ±1% can have a significant impact on the aerodynamic performance of the inlet. Specifically, the pressure uncertainty in the shock region is more than four times that of the non-shock region, exceeding 40%. With respect to the performance parameters, the mass capture ratio demonstrates a high sensitivity to geometric deviations, with the uncertainty for 6.76%. Sensitivity analysis indicates that the three primary factors affecting the aerodynamic stability within the isolator are dv, α2, and dh. Therefore, deviations in their manufacturing and assembly should be strictly controlled.
制造和装配过程中产生的几何偏差会严重影响喷气发动机进气口的气动稳定性。本研究旨在量化几何偏差引起的进气口空气动力学的不确定性和敏感性。具体来说,考虑了三种具有代表性的运行模式:启动、半启动和非启动。提取了五个几何参数作为随机不确定变量,包括第一和第二斜角(α1、α2)、唇点和喉点之间的水平和垂直距离(dh、dv)以及罩唇内角(α3)。为实现量化目标,采用了非侵入式多项式混沌法进行不确定性量化。利用 Sobol 指数来评估每个几何参数对相关量的不确定性的影响。结果表明,仅 ±1% 的几何偏差就会对进气口的空气动力性能产生重大影响。具体而言,冲击区域的压力不确定性是非冲击区域的四倍多,超过 40%。在性能参数方面,质量捕获比对几何偏差非常敏感,不确定性为 6.76%。敏感性分析表明,影响隔振器内部气动稳定性的三个主要因素是 dv、α2 和 dh。因此,应严格控制其制造和装配偏差。
{"title":"Quantification of geometric uncertainty on hypersonic aerodynamics in scramjet inlets","authors":"Hongkang Liu, Kehui Peng, Youjun Zhang, Di Sun, Yatian Zhao","doi":"10.1063/5.0227619","DOIUrl":"https://doi.org/10.1063/5.0227619","url":null,"abstract":"Geometric deviations arising from manufacturing and assembly processes can significantly impact the aerodynamic stability of scramjet inlets. This study aims to quantify the uncertainty and sensitivity of the inlet aerodynamics caused by geometric deviations. Specifically, three representative operating modes are considered: start, half-start, and unstart. Five geometric parameters are extracted as random uncertain variables, including the first and second ramp angle (α1, α2), the horizontal and vertical distance between the lip point and the throat point (dh, dv), and the inner angle of the cowl lip (α3). To achieve the quantification objective, the non-intrusive polynomial chaos method is employed for uncertainty quantification. Sobol indices are utilized to assess the impact of each geometric parameter on the uncertainty of quantities of interest. Results indicate that geometric deviations for only ±1% can have a significant impact on the aerodynamic performance of the inlet. Specifically, the pressure uncertainty in the shock region is more than four times that of the non-shock region, exceeding 40%. With respect to the performance parameters, the mass capture ratio demonstrates a high sensitivity to geometric deviations, with the uncertainty for 6.76%. Sensitivity analysis indicates that the three primary factors affecting the aerodynamic stability within the isolator are dv, α2, and dh. Therefore, deviations in their manufacturing and assembly should be strictly controlled.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"3 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study on the motion of two parallel spherical particles with different diameters in upward flow 关于两个直径不同的平行球形颗粒在上升流中运动的数值研究
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-10 DOI: 10.1063/5.0230427
Xiwang Sun, Zhe Lin, Linmin Li, Zuchao Zhu
The settling of particles is related to many industrial processes and research fields. However, due to the complex particle–particle and particle–fluid interactions, the settling mechanism of particles in flowing fluids is not fully understood. This article conducts numerical research on the settling process of two particles with different diameters in parallel in upward flow using the immersion boundary method. The numerical method was validated against experimental results including one particle settling, two parallel particles settling, and two series particles settling. The effects of large particle diameter, upward flow velocity, and initial particle spacing on the settling process were explored. The results indicate that the two particles with same diameter will repel each other when settling in upward flow. Moreover, when the diameters differ, the two particles can experience both attractive and repulsive interactions. The larger the diameter of the large particle, the stronger its attractive influence on the small particle. When the diameter of large particle d2 = 3.0d1, large particle only has an attractive effect on small particle. The wake of each particle forms a distinct velocity boundary with the upward fluid. As the upward flow velocity increases, the interactions between the two particles become increasingly intense. With increasing initial spacing between the particles, their mutual interactions gradually weaken.
颗粒沉降与许多工业过程和研究领域有关。然而,由于颗粒与颗粒、颗粒与流体之间存在复杂的相互作用,颗粒在流动流体中的沉降机理并不完全清楚。本文采用浸入边界法对两个直径不同的颗粒在平行上升流中的沉降过程进行了数值研究。数值方法与实验结果进行了验证,包括一个颗粒沉降、两个平行颗粒沉降和两个串联颗粒沉降。探讨了大颗粒直径、上升流速和初始颗粒间距对沉降过程的影响。结果表明,直径相同的两个颗粒在上升流中沉降时会相互排斥。此外,当直径不同时,两个颗粒会同时发生吸引和排斥作用。大颗粒的直径越大,对小颗粒的吸引力就越强。当大颗粒的直径 d2 = 3.0d1 时,大颗粒对小颗粒只有吸引力。每个粒子的尾流与上升流体形成明显的速度边界。随着上升流速的增加,两个粒子之间的相互作用会越来越强烈。随着粒子间初始间距的增加,它们之间的相互作用逐渐减弱。
{"title":"Numerical study on the motion of two parallel spherical particles with different diameters in upward flow","authors":"Xiwang Sun, Zhe Lin, Linmin Li, Zuchao Zhu","doi":"10.1063/5.0230427","DOIUrl":"https://doi.org/10.1063/5.0230427","url":null,"abstract":"The settling of particles is related to many industrial processes and research fields. However, due to the complex particle–particle and particle–fluid interactions, the settling mechanism of particles in flowing fluids is not fully understood. This article conducts numerical research on the settling process of two particles with different diameters in parallel in upward flow using the immersion boundary method. The numerical method was validated against experimental results including one particle settling, two parallel particles settling, and two series particles settling. The effects of large particle diameter, upward flow velocity, and initial particle spacing on the settling process were explored. The results indicate that the two particles with same diameter will repel each other when settling in upward flow. Moreover, when the diameters differ, the two particles can experience both attractive and repulsive interactions. The larger the diameter of the large particle, the stronger its attractive influence on the small particle. When the diameter of large particle d2 = 3.0d1, large particle only has an attractive effect on small particle. The wake of each particle forms a distinct velocity boundary with the upward fluid. As the upward flow velocity increases, the interactions between the two particles become increasingly intense. With increasing initial spacing between the particles, their mutual interactions gradually weaken.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"6 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study on the polarity change process during internal wave shoaling 关于内波浅滩过程中极性变化过程的数值研究
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-10 DOI: 10.1063/5.0223970
Xueyu Wang, Zehua Wen, Li Zou, Xinyu Ma, Zongbing Yu, Tao Zhao
Polarity change is an important mechanism for internal waves shoaling. In this study, a numerical model for simulating the real-scale internal wave passing over slope-shelf topography is established based on the Fourier pseudo-spectral method and weakly nonlinear theory. By numerical simulation, the effects of shelf height, initial wave amplitude, and inclination angle on the waveform characteristics and energy properties of the internal wave during its shoaling are investigated. In the polarity change process, the initial internal wave converts into a depression wave and a generated elevation wave behind it. The distance between the peak of the elevation wave and the trough of the depression wave is a key feature to describe the polarity change. In terms of energy properties, the energy ratio of depression and generated elevation waves compared with the initial wave as well as their relative magnitude is mainly determined by the shelf height. In addition, the initial wave amplitude also affects the generation of the elevation wave and the attenuation of the depression wave to a certain extent. The increase in the inclination angle hinders the formation of the elevation wave but has little effect on the depression wave energy.
极性变化是内波浅滩化的一个重要机制。本研究基于傅立叶伪谱法和弱非线性理论,建立了模拟实际尺度内波经过坡岸地形的数值模型。通过数值模拟,研究了陆架高度、初始波幅和倾斜角对内波在其冲滩过程中的波形特征和能量特性的影响。在极性变化过程中,初始内波转化为凹陷波,并在其后产生抬升波。抬升波的波峰与凹陷波的波谷之间的距离是描述极性变化的关键特征。在能量特性方面,与初波相比,消沉波和生成的高升波的能量比及其相对大小主要由陆架高度决定。此外,初波振幅也会在一定程度上影响高程波的产生和消沉波的衰减。倾角的增加会阻碍仰波的形成,但对消沉波的能量影响不大。
{"title":"Numerical study on the polarity change process during internal wave shoaling","authors":"Xueyu Wang, Zehua Wen, Li Zou, Xinyu Ma, Zongbing Yu, Tao Zhao","doi":"10.1063/5.0223970","DOIUrl":"https://doi.org/10.1063/5.0223970","url":null,"abstract":"Polarity change is an important mechanism for internal waves shoaling. In this study, a numerical model for simulating the real-scale internal wave passing over slope-shelf topography is established based on the Fourier pseudo-spectral method and weakly nonlinear theory. By numerical simulation, the effects of shelf height, initial wave amplitude, and inclination angle on the waveform characteristics and energy properties of the internal wave during its shoaling are investigated. In the polarity change process, the initial internal wave converts into a depression wave and a generated elevation wave behind it. The distance between the peak of the elevation wave and the trough of the depression wave is a key feature to describe the polarity change. In terms of energy properties, the energy ratio of depression and generated elevation waves compared with the initial wave as well as their relative magnitude is mainly determined by the shelf height. In addition, the initial wave amplitude also affects the generation of the elevation wave and the attenuation of the depression wave to a certain extent. The increase in the inclination angle hinders the formation of the elevation wave but has little effect on the depression wave energy.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"7 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physics of Fluids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1