首页 > 最新文献

Physics of Fluids最新文献

英文 中文
Modeling two-phase flows with complicated interface evolution using parallel physics-informed neural networks 利用并行物理信息神经网络模拟具有复杂界面演变的两相流动
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-17 DOI: 10.1063/5.0216609
Rundi Qiu, Haosen Dong, Jingzhu Wang, Chun Fan, Yiwei Wang
The physics-informed neural networks (PINNs) have shown great potential in solving a variety of high-dimensional partial differential equations (PDEs), but the complexity of a realistic problem still restricts the practical application of the PINNs for solving most complicated PDEs. In this paper, we propose a parallel framework for PINNs that is capable of modeling two-phase flows with complicated interface evolution. The proposed framework divides the problem into several simplified subproblems and solves them through training several PINNs on corresponding subdomains simultaneously. To enhance the accuracy of the parallel training framework in two-phase flow, the overlapping domain decomposition method is adopted. The optimal subnetwork sizes and partitioned method are systematically discussed, and a series of cases including a bubble rising, droplet splashing, and the Rayleigh–Taylor instability are applied for quantitative validation. The maximum relative error of quantitative values in these cases is 0.1319. Our results show that the proposed framework not only can accelerate the training procedure of PINNs, but also can capture the spatiotemporal evolution of the interface between various phases. This framework overcomes the difficulties of training PINNs to solve a forward problem in two-phase flow, and it is expected to model more realistic dynamic systems in nature.
物理信息神经网络(PINNs)在求解各种高维偏微分方程(PDEs)方面显示出巨大潜力,但现实问题的复杂性仍然限制了 PINNs 在求解大多数复杂 PDEs 方面的实际应用。在本文中,我们提出了一种 PINNs 并行框架,它能够模拟具有复杂界面演化的两相流。该框架将问题划分为多个简化子问题,并通过在相应子域上同时训练多个 PINNs 来解决这些问题。为了提高两相流并行训练框架的精度,采用了重叠域分解方法。系统地讨论了最佳子网络大小和划分方法,并应用气泡上升、液滴飞溅和瑞利-泰勒不稳定性等一系列案例进行定量验证。在这些情况下,定量值的最大相对误差为 0.1319。结果表明,所提出的框架不仅能加快 PINNs 的训练过程,还能捕捉各相之间界面的时空演变。该框架克服了训练 PINNs 解决两相流前向问题的困难,有望为自然界中更真实的动态系统建模。
{"title":"Modeling two-phase flows with complicated interface evolution using parallel physics-informed neural networks","authors":"Rundi Qiu, Haosen Dong, Jingzhu Wang, Chun Fan, Yiwei Wang","doi":"10.1063/5.0216609","DOIUrl":"https://doi.org/10.1063/5.0216609","url":null,"abstract":"The physics-informed neural networks (PINNs) have shown great potential in solving a variety of high-dimensional partial differential equations (PDEs), but the complexity of a realistic problem still restricts the practical application of the PINNs for solving most complicated PDEs. In this paper, we propose a parallel framework for PINNs that is capable of modeling two-phase flows with complicated interface evolution. The proposed framework divides the problem into several simplified subproblems and solves them through training several PINNs on corresponding subdomains simultaneously. To enhance the accuracy of the parallel training framework in two-phase flow, the overlapping domain decomposition method is adopted. The optimal subnetwork sizes and partitioned method are systematically discussed, and a series of cases including a bubble rising, droplet splashing, and the Rayleigh–Taylor instability are applied for quantitative validation. The maximum relative error of quantitative values in these cases is 0.1319. Our results show that the proposed framework not only can accelerate the training procedure of PINNs, but also can capture the spatiotemporal evolution of the interface between various phases. This framework overcomes the difficulties of training PINNs to solve a forward problem in two-phase flow, and it is expected to model more realistic dynamic systems in nature.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"206 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling of coherent structures in compressible wall-bounded turbulence 可压缩壁缘湍流中相干结构的缩放
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-17 DOI: 10.1063/5.0231296
Fuzhou Lyu, Chunxiao Xu
Semi-local scales have been widely used in compressible wall-bounded turbulence, but it is still unclear whether they are applicable to the scaling of coherent structures, especially under conditions of high Mach number and cold wall temperature. By scrutinizing the direct numerical simulation dataset at different Mach numbers and wall temperatures, this paper demonstrates that the coherent structures normalized by semi-local scales are universal in size. In addition to this, we find that the ratios of Kolmogorov scales to semi-local scales are independent of Mach number and wall temperature. Thus, Kolmogorov scales can achieve the same scaling effect as the semi-local scales. The velocity spectra are also compared to verify the current scaling method quantitatively. A method to determine the threshold for the vortex identification criterion is proposed, allowing the same threshold for different cases to obtain vortices of similar size. The scaling of other statistics including turbulent kinetic energy, streamwise Reynolds normal stress, and root mean square of fluctuating vorticity is also investigated. A new velocity scale is proposed based on the total-stress-based transformation for mean streamwise velocity, which can collapse the profiles of these statistics more accurately than the semi-local velocity scale. The present paper demonstrates that through appropriate normalization, the structures and statistics of compressible turbulence become universal, reaffirming the validity of Morkovin's hypothesis even for the present high Mach number and cold wall cases.
半局部尺度已被广泛应用于可压缩壁面湍流,但其是否适用于相干结构的缩放,尤其是在高马赫数和低壁温条件下,仍不清楚。通过仔细研究不同马赫数和壁温条件下的直接数值模拟数据集,本文证明了以半局部尺度归一化的相干结构在尺寸上具有普遍性。此外,我们还发现,柯尔莫哥洛夫尺度与半局部尺度的比率与马赫数和壁温无关。因此,柯尔莫哥洛夫尺度可以达到与半局部尺度相同的缩放效果。此外,还对速度谱进行了比较,以定量验证当前的缩放方法。提出了一种确定涡旋识别标准阈值的方法,允许在不同情况下使用相同的阈值来获得相似大小的涡旋。还研究了其他统计量的缩放,包括湍流动能、流向雷诺法向应力和波动涡度的均方根。根据基于总应力的平均流向速度变换,提出了一种新的速度尺度,它能比半局部速度尺度更精确地折叠这些统计量的剖面。本文证明,通过适当的归一化,可压缩湍流的结构和统计量变得通用,从而再次证实了莫尔科文假说的有效性,即使在目前的高马赫数和冷壁情况下也是如此。
{"title":"Scaling of coherent structures in compressible wall-bounded turbulence","authors":"Fuzhou Lyu, Chunxiao Xu","doi":"10.1063/5.0231296","DOIUrl":"https://doi.org/10.1063/5.0231296","url":null,"abstract":"Semi-local scales have been widely used in compressible wall-bounded turbulence, but it is still unclear whether they are applicable to the scaling of coherent structures, especially under conditions of high Mach number and cold wall temperature. By scrutinizing the direct numerical simulation dataset at different Mach numbers and wall temperatures, this paper demonstrates that the coherent structures normalized by semi-local scales are universal in size. In addition to this, we find that the ratios of Kolmogorov scales to semi-local scales are independent of Mach number and wall temperature. Thus, Kolmogorov scales can achieve the same scaling effect as the semi-local scales. The velocity spectra are also compared to verify the current scaling method quantitatively. A method to determine the threshold for the vortex identification criterion is proposed, allowing the same threshold for different cases to obtain vortices of similar size. The scaling of other statistics including turbulent kinetic energy, streamwise Reynolds normal stress, and root mean square of fluctuating vorticity is also investigated. A new velocity scale is proposed based on the total-stress-based transformation for mean streamwise velocity, which can collapse the profiles of these statistics more accurately than the semi-local velocity scale. The present paper demonstrates that through appropriate normalization, the structures and statistics of compressible turbulence become universal, reaffirming the validity of Morkovin's hypothesis even for the present high Mach number and cold wall cases.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"43 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142258848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrokinetic flow and energy conversion induced by streaming potential in nanochannels with symmetric corrugated walls 具有对称波纹壁的纳米通道中由流势诱导的电动流和能量转换
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-11 DOI: 10.1063/5.0226494
Zhiyong Xie, Xingyu Chen, Fang Tan
A theoretical and numerical investigation of electrokinetic flow is performed in a nanochannel with the charged symmetric corrugated surfaces. The perturbation and numerical solutions of electrokinetic flow variables are given, and the effects of corrugation geometry, such as wave amplitude and wave number, on the electrokinetic flow characteristics are systematically examined. The results show that the electrokinetic flow recirculation may occur easily at wave crest due to the electroviscous effect. The velocity profile is strongly dependent on wave number, but the maximum or minimum velocity may be insusceptible to wave number. Furthermore, the distributions of streaming potential and energy conversion efficiency are also investigated. We find that, for some special geometry of corrugations, the streaming current and conversion efficiency obtained from the present corrugated nanochannel are higher than that from the smooth nanochannel. Specially, when the dimensionless wave number is 0.5/π, the magnitude of streaming potential is enhanced about 29% at δ = 0.5 and the peak value of conversion efficiency is enhanced about 2% at δ = 0.1. We believe that the optimal corrugation geometry parameters can be of benefit in designing a microfluidic device with higher streaming current and conversion efficiency.
对带电对称波纹表面纳米通道中的电动力流进行了理论和数值研究。给出了电动力流变量的扰动和数值解,并系统研究了波纹的几何形状(如波幅和波数)对电动力流特性的影响。结果表明,由于电粘性效应,电动力流在波峰处很容易发生再循环。速度剖面与波数密切相关,但最大或最小速度可能不受波数影响。此外,我们还研究了流势和能量转换效率的分布。我们发现,对于一些特殊的波纹几何形状,本波纹纳米通道获得的流势和能量转换效率均高于光滑纳米通道。特别是当无量纲波数为 0.5/π 时,δ = 0.5 时的流势大小提高了约 29%,δ = 0.1 时的转换效率峰值提高了约 2%。我们相信,最佳的波纹几何参数有助于设计出具有更高流电势和转换效率的微流体装置。
{"title":"Electrokinetic flow and energy conversion induced by streaming potential in nanochannels with symmetric corrugated walls","authors":"Zhiyong Xie, Xingyu Chen, Fang Tan","doi":"10.1063/5.0226494","DOIUrl":"https://doi.org/10.1063/5.0226494","url":null,"abstract":"A theoretical and numerical investigation of electrokinetic flow is performed in a nanochannel with the charged symmetric corrugated surfaces. The perturbation and numerical solutions of electrokinetic flow variables are given, and the effects of corrugation geometry, such as wave amplitude and wave number, on the electrokinetic flow characteristics are systematically examined. The results show that the electrokinetic flow recirculation may occur easily at wave crest due to the electroviscous effect. The velocity profile is strongly dependent on wave number, but the maximum or minimum velocity may be insusceptible to wave number. Furthermore, the distributions of streaming potential and energy conversion efficiency are also investigated. We find that, for some special geometry of corrugations, the streaming current and conversion efficiency obtained from the present corrugated nanochannel are higher than that from the smooth nanochannel. Specially, when the dimensionless wave number is 0.5/π, the magnitude of streaming potential is enhanced about 29% at δ = 0.5 and the peak value of conversion efficiency is enhanced about 2% at δ = 0.1. We believe that the optimal corrugation geometry parameters can be of benefit in designing a microfluidic device with higher streaming current and conversion efficiency.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"188 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface wettability and capillary flow of water in nanoslits of two-dimensional hexagonal-boron nitride 二维六方氮化硼纳米片中水的表面润湿性和毛细流动
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-11 DOI: 10.1063/5.0224117
Ya-Wun Lu, Hsin-Yu Chang, Heng-Kwong Tsao, Yu-Jane Sheng
The wettability and imbibition dynamics of water within 2-dimensional hexagonal boron nitride (h-BN) nanochannels were investigated through nanoscale molecular dynamics simulations. Results from the sessile drop and liquid plug methods indicate that the contact angle on h-BN is notably lower than that on graphene, with single-layer h-BN exhibiting greater hydrophobicity compared to multilayer h-BN. The disjoining pressure in liquid nanoplug was calculated to validate the Young–Laplace equation. During the imbibition process, the penetration length follows l2 = Slt. Simultaneously, the decrease in internal energy (ΔE) follows ΔE = −SEt1/2. While the Lucas–Washburn expression (l2 ∼ wt) can capture such behavior, it does not account for the dependence on channel width (w), where w = Nb, with N denoting the number of h-BN sheets and b the thickness. In wide nanoslits (N > 4), the penetration velocity decreases as the channel width increases. The final ΔE converge to the same value, and SE2/Sl remains constant. In narrow nanoslits (N ≤ 4), the penetration velocity does not decrease consistently with channel width. The final ΔE does not converge to a consistent value for N = 1, 1.5, and 2, and SE exhibits distinct trends with Sl. Comparisons reveal that water in h-BN nanochannels exhibits a notably higher imbibition velocity than in graphene due to differences in the driving force.
通过纳米级分子动力学模拟研究了水在二维六方氮化硼(h-BN)纳米通道中的润湿性和浸润动力学。无柄液滴法和液塞法的结果表明,h-BN 上的接触角明显低于石墨烯上的接触角,与多层 h-BN 相比,单层 h-BN 表现出更大的疏水性。计算了液态纳米插头中的分离压力,以验证 Young-Laplace 方程。在浸泡过程中,渗透长度为 l2 = Slt。同时,内能(ΔE)的减少遵循ΔE = -SEt1/2。虽然卢卡斯-沃什伯恩表达式(l2 ∼ wt)可以捕捉到这种行为,但它没有考虑到与通道宽度(w)的关系,其中 w = Nb,N 表示 h-BN 薄片的数量,b 表示厚度。在宽纳米通道(N > 4)中,穿透速度随着通道宽度的增加而降低。最终的 ΔE 收敛到相同的值,SE2/Sl 保持不变。在窄纳米its(N ≤ 4)中,穿透速度不会随通道宽度的增加而持续降低。在 N = 1、1.5 和 2 时,最终的 ΔE 值并不趋于一致,SE 与 Sl 呈明显的变化趋势。比较结果表明,由于驱动力的不同,水在 h-BN 纳米通道中的浸润速度明显高于石墨烯。
{"title":"Surface wettability and capillary flow of water in nanoslits of two-dimensional hexagonal-boron nitride","authors":"Ya-Wun Lu, Hsin-Yu Chang, Heng-Kwong Tsao, Yu-Jane Sheng","doi":"10.1063/5.0224117","DOIUrl":"https://doi.org/10.1063/5.0224117","url":null,"abstract":"The wettability and imbibition dynamics of water within 2-dimensional hexagonal boron nitride (h-BN) nanochannels were investigated through nanoscale molecular dynamics simulations. Results from the sessile drop and liquid plug methods indicate that the contact angle on h-BN is notably lower than that on graphene, with single-layer h-BN exhibiting greater hydrophobicity compared to multilayer h-BN. The disjoining pressure in liquid nanoplug was calculated to validate the Young–Laplace equation. During the imbibition process, the penetration length follows l2 = Slt. Simultaneously, the decrease in internal energy (ΔE) follows ΔE = −SEt1/2. While the Lucas–Washburn expression (l2 ∼ wt) can capture such behavior, it does not account for the dependence on channel width (w), where w = Nb, with N denoting the number of h-BN sheets and b the thickness. In wide nanoslits (N > 4), the penetration velocity decreases as the channel width increases. The final ΔE converge to the same value, and SE2/Sl remains constant. In narrow nanoslits (N ≤ 4), the penetration velocity does not decrease consistently with channel width. The final ΔE does not converge to a consistent value for N = 1, 1.5, and 2, and SE exhibits distinct trends with Sl. Comparisons reveal that water in h-BN nanochannels exhibits a notably higher imbibition velocity than in graphene due to differences in the driving force.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"12 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive investigation and optimization of superheat degree on performance of supersonic nozzle by considering non-equilibrium condensation and entropy generation analysis 考虑非平衡冷凝和熵生成分析,全面研究和优化过热度对超音速喷嘴性能的影响
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-11 DOI: 10.1063/5.0224884
Rujie Xia, Delu Li, Mohammad Ali Faghih Aliabadi
Non-equilibrium condensation (NQC) induced heat transfer in the supersonic nozzle (SSN) results in entropy production and alters the flow structure. The analysis of entropy production offers valuable insights for enhancing the design of industrial equipment by pinpointing the origins of energy losses. The interplay between frictional entropy, thermal entropy, and NQC is a fascinating but relatively unexplored subject in the field. This study aims to examine the impact of the superheat degree on NQC, frictional entropy, and thermal entropy. The goal is to enhance our understanding of the interconnectedness among these three parameters and their relationship. The findings revealed that within the SSN, the generation of frictional entropy surpasses that of thermal entropy generation. Upon analyzing the variations in entropy production with an increase in the degree of superheat, a general trend of ascending–descending can be observed for thermal, frictional, and total entropy productions. Furthermore, as the degree of superheat increases, both the droplet diameter and liquid mass fraction within the nozzle decrease. Optimization techniques were employed to determine the optimal degree of superheat for the given scenario. After the optimization process, the range of 70–90 was identified as the optimal degree of superheat. At a superheat degree of 70, the parameters of production entropy, input flow rate, condensation loss, and energy kinetics undergo changes of 19.3%, 9.8%, 99.9%, and 14.3%, respectively.
超音速喷嘴(SSN)中的非平衡冷凝(NQC)诱导传热会产生熵并改变流动结构。对熵的产生进行分析,可以准确找出能量损失的根源,从而为改进工业设备的设计提供有价值的见解。摩擦熵、热熵和 NQC 之间的相互作用是该领域中一个引人入胜但相对尚未探索的课题。本研究旨在探讨过热度对 NQC、摩擦熵和热熵的影响。目的是加深我们对这三个参数之间相互联系及其关系的理解。研究结果表明,在 SSN 中,摩擦熵的产生超过了热熵的产生。在分析随着过热度的增加而产生的熵的变化时,可以发现热熵、摩擦熵和总熵的产生呈总体上升-下降趋势。此外,随着过热度的增加,喷嘴内的液滴直径和液体质量分数都会下降。我们采用了优化技术来确定特定情况下的最佳过热度。经过优化,确定 70-90 为最佳过热度。过热度为 70 时,生产熵、输入流量、冷凝损失和能量动力学参数分别发生了 19.3%、9.8%、99.9% 和 14.3% 的变化。
{"title":"A comprehensive investigation and optimization of superheat degree on performance of supersonic nozzle by considering non-equilibrium condensation and entropy generation analysis","authors":"Rujie Xia, Delu Li, Mohammad Ali Faghih Aliabadi","doi":"10.1063/5.0224884","DOIUrl":"https://doi.org/10.1063/5.0224884","url":null,"abstract":"Non-equilibrium condensation (NQC) induced heat transfer in the supersonic nozzle (SSN) results in entropy production and alters the flow structure. The analysis of entropy production offers valuable insights for enhancing the design of industrial equipment by pinpointing the origins of energy losses. The interplay between frictional entropy, thermal entropy, and NQC is a fascinating but relatively unexplored subject in the field. This study aims to examine the impact of the superheat degree on NQC, frictional entropy, and thermal entropy. The goal is to enhance our understanding of the interconnectedness among these three parameters and their relationship. The findings revealed that within the SSN, the generation of frictional entropy surpasses that of thermal entropy generation. Upon analyzing the variations in entropy production with an increase in the degree of superheat, a general trend of ascending–descending can be observed for thermal, frictional, and total entropy productions. Furthermore, as the degree of superheat increases, both the droplet diameter and liquid mass fraction within the nozzle decrease. Optimization techniques were employed to determine the optimal degree of superheat for the given scenario. After the optimization process, the range of 70–90 was identified as the optimal degree of superheat. At a superheat degree of 70, the parameters of production entropy, input flow rate, condensation loss, and energy kinetics undergo changes of 19.3%, 9.8%, 99.9%, and 14.3%, respectively.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"62 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lagrangian coherent structures around a bridge pier with scour hole 带有冲刷孔的桥墩周围的拉格朗日相干结构
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-11 DOI: 10.1063/5.0229952
Murali Krishnamraju Kalidindi, Rakesh Khosa
Accurate prediction of scour depth is essential for the safety of the bridge. The downflow upstream of the pier plays a significant role in scour hole formation. The present study used Lagrangian coherent structures (LCSs) to derive an expression to estimate the force exerted by the downflow on the sediment bed. The LCSs extracted a trapping region upstream of the pier, which trapped the fluid, which was then converted into downflow. The expressions derived in this Letter can be used to improve the efficiency of scour depth prediction equations.
准确预测冲刷深度对桥梁的安全至关重要。桥墩上游的下沉流对冲刷孔的形成起着重要作用。本研究利用拉格朗日相干结构(LCS)推导出一个表达式,用于估算下沉流对沉积床施加的力。拉格朗日相干结构提取了码头上游的捕集区,该区域捕集了流体,然后将其转化为下沉流。本信推导的表达式可用于提高冲刷深度预测方程的效率。
{"title":"Lagrangian coherent structures around a bridge pier with scour hole","authors":"Murali Krishnamraju Kalidindi, Rakesh Khosa","doi":"10.1063/5.0229952","DOIUrl":"https://doi.org/10.1063/5.0229952","url":null,"abstract":"Accurate prediction of scour depth is essential for the safety of the bridge. The downflow upstream of the pier plays a significant role in scour hole formation. The present study used Lagrangian coherent structures (LCSs) to derive an expression to estimate the force exerted by the downflow on the sediment bed. The LCSs extracted a trapping region upstream of the pier, which trapped the fluid, which was then converted into downflow. The expressions derived in this Letter can be used to improve the efficiency of scour depth prediction equations.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"319 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First- and second-order unconditionally stable and decoupled schemes for the closed-loop geothermal system based on the coupled multiphysics model 基于耦合多物理场模型的闭环地热系统一阶和二阶无条件稳定解耦方案
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-11 DOI: 10.1063/5.0228565
Xinhui Wang, Xiaoli Li
In this paper, we construct first- and second-order implicit–explicit schemes for the closed-loop geothermal system, which includes the heat transfer between the porous media flow with Darcy equation in the geothermal reservoir and the free flow with Navier–Stokes equation in the pipe. The constructed fully discrete schemes are based on the exponential auxiliary variable method in time, which we have proposed in Li et al. [“New SAV-pressure correction methods for the Navier-Stokes equations: Stability and error analysis,” Math. Comput. 91, 141–167 (2022)] and the finite element method in space. These schemes are linear and uniquely solvable, decoupling not only the two flow regions but also the temperature field, and only require solving a sequence of linear differential equations with constant coefficients at each time step. In addition, we rigorously prove that the constructed first- and second-order schemes are unconditionally stable without any time step and stability parameter restrictions. Finally, some numerical simulations, including convergence tests, the benchmark problem for thermal convection in a square cavity, and the heat transfer in simplified closed-loop geothermal systems, are demonstrated to present the reliability and efficiency of the constructed schemes.
本文构建了闭环地热系统的一阶和二阶隐式-显式方案,其中包括地热储层中含达西方程的多孔介质流与管道中含纳维-斯托克斯方程的自由流之间的传热。所构建的全离散方案基于指数辅助变量时间法,我们在 Li 等人的论文["Navier-Stokes 方程的新 SAV 压力修正方法:稳定性和误差分析",Math.Comput.91,141-167 (2022)]和空间有限元法。这些方案是线性和唯一可解的,不仅解耦了两个流动区域,还解耦了温度场,并且只需要在每个时间步求解一连串具有常数系数的线性微分方程。此外,我们还严格证明了所构建的一阶和二阶方案是无条件稳定的,不受任何时间步长和稳定参数的限制。最后,我们演示了一些数值模拟,包括收敛性测试、方形空腔中热对流的基准问题以及简化闭环地热系统中的传热问题,以展示所构建方案的可靠性和效率。
{"title":"First- and second-order unconditionally stable and decoupled schemes for the closed-loop geothermal system based on the coupled multiphysics model","authors":"Xinhui Wang, Xiaoli Li","doi":"10.1063/5.0228565","DOIUrl":"https://doi.org/10.1063/5.0228565","url":null,"abstract":"In this paper, we construct first- and second-order implicit–explicit schemes for the closed-loop geothermal system, which includes the heat transfer between the porous media flow with Darcy equation in the geothermal reservoir and the free flow with Navier–Stokes equation in the pipe. The constructed fully discrete schemes are based on the exponential auxiliary variable method in time, which we have proposed in Li et al. [“New SAV-pressure correction methods for the Navier-Stokes equations: Stability and error analysis,” Math. Comput. 91, 141–167 (2022)] and the finite element method in space. These schemes are linear and uniquely solvable, decoupling not only the two flow regions but also the temperature field, and only require solving a sequence of linear differential equations with constant coefficients at each time step. In addition, we rigorously prove that the constructed first- and second-order schemes are unconditionally stable without any time step and stability parameter restrictions. Finally, some numerical simulations, including convergence tests, the benchmark problem for thermal convection in a square cavity, and the heat transfer in simplified closed-loop geothermal systems, are demonstrated to present the reliability and efficiency of the constructed schemes.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"54 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-purpose wave farm with nonlinear stiffness mechanism for energy extraction and wave attenuation 具有非线性刚度机制的两用波浪场,用于提取能量和衰减波浪
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-11 DOI: 10.1063/5.0227165
Huaqing Jin, Haicheng Zhang, Siming Zheng, Ye Lu, Daolin Xu, Deborah Greaves
This study proposes a novel model of a dual-purpose nonlinear wave farm, wherein multiple wave energy converters (WECs) equipped with nonlinear stiffness mechanism (NSM) are deployed for energy production and wave attenuation. A hybrid semi-analytical approach integrating the eigenfunction expansion matching method (EEMM) with the multi-harmonic balance method (MHBM) is developed to address the nonlinear wave-structure interactions among an array of WECs. Each device is modeled as a truncated cylinder, and the effects of the nonlinear interaction on power absorption and wave evolution from the array are studied. The analytical results are validated through published experimental results and computational fluid dynamics (CFD) results. A multi-parameter analysis is conducted to explore the impact of various factors including power takeoff (PTO) damping, NSM configuration, wave direction, and layout geometry on both wave power absorption and wave evolution. The results demonstrate that the nonlinear wave farm exhibits improved power-capture efficiency and enhanced wave attenuation compared to the linear wave farm, attributed to the phase control mechanism of NSM. This work may provide profound guidelines for large-scale wave energy exploitation and coast protection.
本研究提出了一种新型的两用非线性波浪场模型,其中部署了多个配备非线性刚度机制(NSM)的波浪能转换器(WECs),用于能量生产和波浪衰减。为解决波能转换器阵列之间的非线性波-结构相互作用问题,开发了一种将特征函数扩展匹配法(EEMM)与多谐波平衡法(MHBM)相结合的混合半分析方法。每个设备都被建模为一个截顶圆柱体,研究了非线性相互作用对阵列功率吸收和波浪演变的影响。已公布的实验结果和计算流体动力学(CFD)结果对分析结果进行了验证。进行了多参数分析,以探讨各种因素(包括功率输出(PTO)阻尼、NSM 配置、波浪方向和布局几何形状)对波功率吸收和波浪演变的影响。结果表明,与线性波浪场相比,非线性波浪场表现出更高的功率吸收效率和更强的波浪衰减能力,这归功于 NSM 的相位控制机制。这项研究可为大规模波浪能开发和海岸保护提供深远的指导。
{"title":"Dual-purpose wave farm with nonlinear stiffness mechanism for energy extraction and wave attenuation","authors":"Huaqing Jin, Haicheng Zhang, Siming Zheng, Ye Lu, Daolin Xu, Deborah Greaves","doi":"10.1063/5.0227165","DOIUrl":"https://doi.org/10.1063/5.0227165","url":null,"abstract":"This study proposes a novel model of a dual-purpose nonlinear wave farm, wherein multiple wave energy converters (WECs) equipped with nonlinear stiffness mechanism (NSM) are deployed for energy production and wave attenuation. A hybrid semi-analytical approach integrating the eigenfunction expansion matching method (EEMM) with the multi-harmonic balance method (MHBM) is developed to address the nonlinear wave-structure interactions among an array of WECs. Each device is modeled as a truncated cylinder, and the effects of the nonlinear interaction on power absorption and wave evolution from the array are studied. The analytical results are validated through published experimental results and computational fluid dynamics (CFD) results. A multi-parameter analysis is conducted to explore the impact of various factors including power takeoff (PTO) damping, NSM configuration, wave direction, and layout geometry on both wave power absorption and wave evolution. The results demonstrate that the nonlinear wave farm exhibits improved power-capture efficiency and enhanced wave attenuation compared to the linear wave farm, attributed to the phase control mechanism of NSM. This work may provide profound guidelines for large-scale wave energy exploitation and coast protection.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"1 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LKFlowNet: A deep neural network based on large kernel convolution for fast and accurate nonlinear fluid-changing prediction LKFlowNet:基于大核卷积的深度神经网络,用于快速准确地预测非线性流体变化
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-11 DOI: 10.1063/5.0221881
Yan Liu, Qingyang Zhang, Xinhai Chen, Chuanfu Xu, Qinglin Wang, Jie Liu
The rapid development of artificial intelligence has promoted the emergence of new flow field prediction methods. These methods address challenges posed by nonlinear problems and significantly reduce computational time and cost compared to traditional numerical simulations. However, they often struggle to capture the dynamic sparse characteristics of the flow field effectively. To bridge this gap, we introduce LKFlowNet, a new large kernel convolutional neural network specifically designed for complex flow fields in nonlinear fluid dynamics systems. LKFlowNet adopts a multi-branch large kernel convolution computing architecture, which can skillfully handle the complex nonlinear dynamic characteristics of flow changes. Drawing inspiration from the dilated convolution mechanism, we developed the RepDWConv block, a re-parameterized depthwise convolution that extends the convolutional kernel's coverage. This enhancement improves the model's ability to capture long-range dependencies and sparse structural features in fluid dynamics. Additionally, a customized physical loss function ensures accuracy and physical consistency in flow field reconstruction. Comparative studies reveal that LKFlowNet significantly outperforms existing neural network architectures, providing more accurate and physically consistent predictions in complex nonlinear variations such as velocity and pressure fields. The model demonstrates strong versatility and scalability, accurately predicting the flow field of various geometric configurations without modifying the architecture. This capability positions LKFlowNet as a promising new direction in fluid dynamics research, potentially revolutionizing flow field prediction by combining high efficiency and accuracy. Our results suggest that LKFlowNet could become an indispensable tool in intelligent flow field prediction, reshaping the analysis and processing of fluid dynamics.
人工智能的快速发展促进了新流场预测方法的出现。与传统的数值模拟相比,这些方法能够解决非线性问题带来的挑战,并显著减少计算时间和成本。然而,这些方法往往难以有效捕捉流场的动态稀疏特征。为了弥补这一差距,我们引入了 LKFlowNet,这是一种新的大核卷积神经网络,专为非线性流体动力学系统中的复杂流场而设计。LKFlowNet 采用多分支大核卷积计算架构,能巧妙地处理流动变化的复杂非线性动态特性。受扩张卷积机制的启发,我们开发了 RepDWConv 模块,这是一种重新参数化的深度卷积,可扩展卷积核的覆盖范围。这一改进提高了模型捕捉流体动力学中长程依赖性和稀疏结构特征的能力。此外,定制的物理损失函数确保了流场重建的准确性和物理一致性。对比研究表明,LKFlowNet 的性能明显优于现有的神经网络架构,在速度场和压力场等复杂的非线性变化中提供了更准确和物理上更一致的预测。该模型具有很强的通用性和可扩展性,无需修改架构即可准确预测各种几何配置的流场。这种能力将 LKFlowNet 定位为流体动力学研究中一个前景广阔的新方向,通过结合高效率和高精度,有可能彻底改变流场预测。我们的研究结果表明,LKFlowNet 有可能成为智能流场预测领域不可或缺的工具,重塑流体动力学的分析和处理过程。
{"title":"LKFlowNet: A deep neural network based on large kernel convolution for fast and accurate nonlinear fluid-changing prediction","authors":"Yan Liu, Qingyang Zhang, Xinhai Chen, Chuanfu Xu, Qinglin Wang, Jie Liu","doi":"10.1063/5.0221881","DOIUrl":"https://doi.org/10.1063/5.0221881","url":null,"abstract":"The rapid development of artificial intelligence has promoted the emergence of new flow field prediction methods. These methods address challenges posed by nonlinear problems and significantly reduce computational time and cost compared to traditional numerical simulations. However, they often struggle to capture the dynamic sparse characteristics of the flow field effectively. To bridge this gap, we introduce LKFlowNet, a new large kernel convolutional neural network specifically designed for complex flow fields in nonlinear fluid dynamics systems. LKFlowNet adopts a multi-branch large kernel convolution computing architecture, which can skillfully handle the complex nonlinear dynamic characteristics of flow changes. Drawing inspiration from the dilated convolution mechanism, we developed the RepDWConv block, a re-parameterized depthwise convolution that extends the convolutional kernel's coverage. This enhancement improves the model's ability to capture long-range dependencies and sparse structural features in fluid dynamics. Additionally, a customized physical loss function ensures accuracy and physical consistency in flow field reconstruction. Comparative studies reveal that LKFlowNet significantly outperforms existing neural network architectures, providing more accurate and physically consistent predictions in complex nonlinear variations such as velocity and pressure fields. The model demonstrates strong versatility and scalability, accurately predicting the flow field of various geometric configurations without modifying the architecture. This capability positions LKFlowNet as a promising new direction in fluid dynamics research, potentially revolutionizing flow field prediction by combining high efficiency and accuracy. Our results suggest that LKFlowNet could become an indispensable tool in intelligent flow field prediction, reshaping the analysis and processing of fluid dynamics.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"62 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting orientation in extruded wood polymer composites 预测挤压木材聚合物复合材料的取向
IF 4.6 2区 工程技术 Q1 MECHANICS Pub Date : 2024-09-11 DOI: 10.1063/5.0224011
Sajjad Pashazadeh, Arvindh Seshadri Suresh, Viney Ghai, Tobias Moberg, Anders Brolin, Roland Kádár
A general procedure for combining material functions and numerical modeling to predict the orientation of highly filled wood polymer composites (WPCs) in a single screw extrusion and validation thereof is elaborated in this study. Capillary rheometry was used to determine the shear viscosity and wall slip functions as well as the melt density of the biocomposites. The numerical model consisted of a model film die where the melt flow was simulated using a finite element method in the generalized Newtonian constitute equation framework. Fiber orientation was modeled using the Folgar–Tucker approach and included fiber–fiber interaction during the process. Reference extrusion tests were performed on a single screw extruder on the biocomposites. The extrusion setup included two melt pressure transducers that were used to determine the die inlet initial conditions (end of the extruder/die inlet) and provide feedback on the wall slip boundary conditions (pressure discharge along the die). Overall, the pressure error between experiments and simulations was less than 6.5% for all screw speeds investigated in 20 wt. % WPCs. Extrudates were produced, and the wood fiber orientation was estimated based on scanning electron microscopy micrographs and image analysis and compared with the simulations of fiber orientation. We show that the general procedure outlined can be calibrated to predict the overall orientation distribution of wood fiber biocomposites during single screw extrusion.
本研究阐述了结合材料函数和数值建模预测高填充木质聚合物复合材料(WPC)在单螺杆挤压中的取向及其验证的一般程序。毛细管流变仪用于确定生物复合材料的剪切粘度和壁滑函数以及熔体密度。数值模型包括一个模型膜模,在该膜模中使用广义牛顿构成方程框架中的有限元法模拟熔体流动。纤维取向采用 Folgar-Tucker 方法建模,并包括过程中纤维与纤维之间的相互作用。在单螺杆挤压机上对生物复合材料进行了参考挤压试验。挤出装置包括两个熔体压力传感器,用于确定模头入口初始条件(挤出机末端/模头入口),并对壁滑边界条件(沿模头排出的压力)提供反馈。总体而言,在 20 wt. % WPC 的所有螺杆速度下,实验与模拟的压力误差均小于 6.5%。生产挤出物时,根据扫描电子显微镜显微照片和图像分析估算木纤维的取向,并与模拟的纤维取向进行比较。结果表明,所概述的一般程序可用于校准,以预测单螺杆挤压过程中木质纤维生物复合材料的总体取向分布。
{"title":"Predicting orientation in extruded wood polymer composites","authors":"Sajjad Pashazadeh, Arvindh Seshadri Suresh, Viney Ghai, Tobias Moberg, Anders Brolin, Roland Kádár","doi":"10.1063/5.0224011","DOIUrl":"https://doi.org/10.1063/5.0224011","url":null,"abstract":"A general procedure for combining material functions and numerical modeling to predict the orientation of highly filled wood polymer composites (WPCs) in a single screw extrusion and validation thereof is elaborated in this study. Capillary rheometry was used to determine the shear viscosity and wall slip functions as well as the melt density of the biocomposites. The numerical model consisted of a model film die where the melt flow was simulated using a finite element method in the generalized Newtonian constitute equation framework. Fiber orientation was modeled using the Folgar–Tucker approach and included fiber–fiber interaction during the process. Reference extrusion tests were performed on a single screw extruder on the biocomposites. The extrusion setup included two melt pressure transducers that were used to determine the die inlet initial conditions (end of the extruder/die inlet) and provide feedback on the wall slip boundary conditions (pressure discharge along the die). Overall, the pressure error between experiments and simulations was less than 6.5% for all screw speeds investigated in 20 wt. % WPCs. Extrudates were produced, and the wood fiber orientation was estimated based on scanning electron microscopy micrographs and image analysis and compared with the simulations of fiber orientation. We show that the general procedure outlined can be calibrated to predict the overall orientation distribution of wood fiber biocomposites during single screw extrusion.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"74 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physics of Fluids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1