首页 > 最新文献

Physiological genomics最新文献

英文 中文
Fluxomics combined with shotgun proteomics reveals a differential response of bovine kidney cells to extracellular palmitic and α-linolenic acid. 通量组学联合鸟枪蛋白质组学揭示了牛肾细胞对细胞外棕榈酸和α-亚麻酸的差异反应。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-03-01 Epub Date: 2025-02-07 DOI: 10.1152/physiolgenomics.00141.2024
Linda M Beckett, Sara Scinto, Emma Shelton, Kyrstin M Gouveia, Chaylen Andolino, Addison M Hill, Nishanth E Sunny, Susan Hilger, Madeline P Sheeley, Juliana Guimarães Laguna, Dorothy Teegarden, Theresa M Casey, Shawn S Donkin

Pyruvate carboxylase (PC) catalyzes the formation of oxaloacetate, a TCA cycle intermediate and gluconeogenic substrate. Altering saturated to unsaturated fatty acid ratio alters PC expression, suggesting a central role in mediating carbon flow through metabolic pathways. Herein, we describe changes in metabolic flux of TCA cycle intermediates and proteome in Madin-Darby bovine kidney (MDBK) cells with PC expression knocked-down (PC-KD), overexpressed (PC-OE), unaltered using a Scramble control, or cells pretreated for 21 h with vehicle control bovine serum albumin (BSA) or different ratios of palmitic acid (P) and α-linolenic acid (L) ranging from 1 mM P:0 mM L (1P:0L) to 0P:1L. All cells were collected for proteome analysis and to measure [U-13C] pyruvate flux or oxidation of [1-14C] palmitic acid and [U-14C] lactate. Compared with Scramble, 13C enrichment of all TCA cycle intermediates was greater in PC-OE, but all were reduced in PC-KD except succinate. Proteins greater in abundance in both cell lines included solute transporters, propionyl CoA carboxylase, and fatty acid binding protein 3. Relative to BSA, 1P:0L increased cell death and increased 13C flux to citrate but decreased enrichment of succinate. Abundance of citrate synthase, aconitase, glutamine aminotransferases, and succinyl CoA synthetases was greater in 1P:0L, but not different in other pretreatments. Results indicate preferential utilization of pyruvate and amino acids by 1P:0L cells whereas 0P:1L treated cells show preference for α-linolenic acid metabolism. PC regulates metabolic flux, C18:3n - 3 cis prevents lipotoxicity, and both alterations in PC and the addition of C18:3n - 3 cis promote oxidation of fatty acids.NEW & NOTEWORTHY PC overexpression increases the capacity for fatty acid oxidation, whereas PC knockdown requires extracellular amino acids to support TCA cycle intermediates. Cells incubated in palmitic acid demonstrated dependency of pyruvate and amino acids as substrates for the TCA cycle. Exposure to α-linolenic acid reduces the dependency of pyruvate as a substrate likely because carbon from α-linolenic acid can be used to supply TCA cycle intermediates whereas palmitic acid carbon is not used.

丙酮酸羧化酶(PC)催化草酰乙酸的形成,草酰乙酸是TCA循环的中间产物和糖异生底物。改变饱和脂肪酸与不饱和脂肪酸的比例会改变PC的表达,这表明PC在代谢途径中介导碳流中起着核心作用。在此,我们描述了马丁达比牛肾(MDBK)细胞中TCA循环中间体和蛋白质组代谢通量的变化,这些细胞分别是PC表达低表达(PC- kd)、过表达(PC- oe)、使用Scramble对照组未改变、用对照牛血清白蛋白(BSA)或不同比例的棕榈酸(P)和α-亚麻酸(L)预处理21小时,范围为1mm P:0 mM L (1P:0L)到0P:1L。收集所有细胞进行蛋白质组学分析,并测量[U-13C]丙酮酸通量或[1-14C]棕榈酸和[U-14C]乳酸的氧化。与Scramble相比,PC-OE中所有TCA循环中间体的13C富集程度都更高,但PC-KD中除了琥珀酸盐外,其他中间体的13C富集程度都有所降低。两种细胞系中丰度较高的蛋白质包括溶质转运蛋白、丙酰辅酶a羧化酶和脂肪酸结合蛋白3。与BSA相比,1P:0L增加了细胞死亡,增加了13C对柠檬酸盐的通量,但减少了琥珀酸盐的富集。柠檬酸合成酶、乌头酸酶、谷氨酰胺转氨酶和琥珀酰辅酶a合成酶的丰度在1P:0L时较高,而在其他预处理中差异不显著。结果表明,1P:0L细胞更倾向于利用丙酮酸和氨基酸,而0P:1L处理的细胞更倾向于α-亚麻酸代谢。PC调节代谢通量,C18:3n-3顺式可防止脂肪毒性,改变PC和添加C18:3n-3顺式均可促进脂肪酸氧化。
{"title":"Fluxomics combined with shotgun proteomics reveals a differential response of bovine kidney cells to extracellular palmitic and α-linolenic acid.","authors":"Linda M Beckett, Sara Scinto, Emma Shelton, Kyrstin M Gouveia, Chaylen Andolino, Addison M Hill, Nishanth E Sunny, Susan Hilger, Madeline P Sheeley, Juliana Guimarães Laguna, Dorothy Teegarden, Theresa M Casey, Shawn S Donkin","doi":"10.1152/physiolgenomics.00141.2024","DOIUrl":"10.1152/physiolgenomics.00141.2024","url":null,"abstract":"<p><p>Pyruvate carboxylase (PC) catalyzes the formation of oxaloacetate, a TCA cycle intermediate and gluconeogenic substrate. Altering saturated to unsaturated fatty acid ratio alters <i>PC</i> expression, suggesting a central role in mediating carbon flow through metabolic pathways. Herein, we describe changes in metabolic flux of TCA cycle intermediates and proteome in Madin-Darby bovine kidney (MDBK) cells with <i>PC</i> expression knocked-down (PC-KD), overexpressed (PC-OE), unaltered using a Scramble control, or cells pretreated for 21 h with vehicle control bovine serum albumin (BSA) or different ratios of palmitic acid (P) and α-linolenic acid (L) ranging from 1 mM P:0 mM L (1P:0L) to 0P:1L. All cells were collected for proteome analysis and to measure [U-<sup>13</sup>C] pyruvate flux or oxidation of [1-<sup>14</sup>C] palmitic acid and [U-<sup>14</sup>C] lactate. Compared with Scramble, <sup>13</sup>C enrichment of all TCA cycle intermediates was greater in PC-OE, but all were reduced in PC-KD except succinate. Proteins greater in abundance in both cell lines included solute transporters, propionyl CoA carboxylase, and fatty acid binding protein 3. Relative to BSA, 1P:0L increased cell death and increased <sup>13</sup>C flux to citrate but decreased enrichment of succinate. Abundance of citrate synthase, aconitase, glutamine aminotransferases, and succinyl CoA synthetases was greater in 1P:0L, but not different in other pretreatments. Results indicate preferential utilization of pyruvate and amino acids by 1P:0L cells whereas 0P:1L treated cells show preference for α-linolenic acid metabolism. <i>PC</i> regulates metabolic flux, C18:3<i>n</i> - 3 <i>cis</i> prevents lipotoxicity, and both alterations in <i>PC</i> and the addition of C18:3<i>n</i> - 3 <i>cis</i> promote oxidation of fatty acids.<b>NEW & NOTEWORTHY</b> <i>PC</i> overexpression increases the capacity for fatty acid oxidation, whereas <i>PC</i> knockdown requires extracellular amino acids to support TCA cycle intermediates. Cells incubated in palmitic acid demonstrated dependency of pyruvate and amino acids as substrates for the TCA cycle. Exposure to α-linolenic acid reduces the dependency of pyruvate as a substrate likely because carbon from α-linolenic acid can be used to supply TCA cycle intermediates whereas palmitic acid carbon is not used.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"195-216"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationship between Guillain-Barré syndrome and cardiovascular disease: a bidirectional Mendelian randomization study. 格林-巴利综合征与心血管疾病的关系:孟德尔随机双向研究
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-10-28 DOI: 10.1152/physiolgenomics.00048.2024
Tianyi Wang, Na Li, Yong Zeng

Guillain-Barré syndrome (GBS) and cardiovascular diseases (CVDs) have been observed to have a potential association, with GBS potentially leading to cardiovascular complications. However, these observational studies may be influenced by confounding factors. This study aimed to assess the causal relationship between GBS and CVDs, including heart failure (HF), atrial fibrillation (AF), and coronary artery disease (CAD), using a two-sample bidirectional Mendelian randomization (MR) analysis. We analyzed four datasets from the UK Biobank, selecting only datasets of European origin according to predetermined criteria to avoid population stratification bias. Datasets for GBS and CVDs were retrieved from the UK Biobank and analyzed using selected instrumental variables (IVs) related to genetic variations. Sensitivity tests, including heterogeneity and horizontal pleiotropy tests, were conducted to ensure the reliability of the selected IVs. The analysis results were then visualized to illustrate the causal relationships. The study identified genetic variants as IVs for both GBS and CVDs. MR analysis revealed a significant causal effect of GBS on the increased risk of HF [inverse-variance weighted (IVW), P < 0.05], but no significant causal relationship was found between GBS and AF or CAD. Similarly, no causal effect of CVDs on the occurrence of GBS was observed. Sensitivity analyses indicated no significant heterogeneity or horizontal pleiotropy, supporting the robustness of the results. These findings underscore the importance of considering cardiovascular complications, particularly HF, in the clinical management of patients with GBS in European populations.NEW & NOTEWORTHY This study utilizes bidirectional Mendelian randomization to analyze the causal relationships between Guillain-Barré syndrome (GBS) and cardiovascular diseases (CVDs). It uniquely demonstrates a significant causal link from GBS to an increased risk of heart failure (HF), without similar effects on atrial fibrillation (AF) or coronary artery disease (CAD). No reverse causality from CVDs to GBS was found, highlighting the need for targeted cardiovascular management in patients with GBS.

背景和目的:据观察,吉兰-巴雷综合征(GBS)与心血管疾病(CVDs)之间存在潜在联系,GBS 有可能导致心血管并发症。然而,这些观察性研究可能会受到混杂因素的影响。本研究旨在通过双样本双向孟德尔随机化(MR)分析,评估GBS与心血管疾病(包括心力衰竭(HF)、心房颤动(AF)和冠状动脉疾病(CAD))之间的因果关系:方法:从英国生物库(United Kingdom Biobank)中检索了GBS和心血管疾病的数据集,并使用与遗传变异相关的选定工具变量(IV)进行了分析。进行了敏感性测试,包括异质性和水平多向性测试,以确保所选 IV 的可靠性。然后将分析结果可视化,以说明因果关系:研究发现遗传变异是 GBS 和心血管疾病的 IVs。磁共振分析表明,GBS 对心房颤动风险的增加有明显的因果效应(逆方差加权 [IVW],pConclusion):这项双向 MR 分析表明,GBS 与 HF 风险增加之间存在因果关系,但与房颤或 CAD 无关,也未观察到 CVDs 对 GBS 的反向因果效应。这些发现强调了在欧洲人群中对 GBS 患者进行临床管理时考虑心血管并发症,尤其是心房颤动的重要性。
{"title":"Relationship between Guillain-Barré syndrome and cardiovascular disease: a bidirectional Mendelian randomization study.","authors":"Tianyi Wang, Na Li, Yong Zeng","doi":"10.1152/physiolgenomics.00048.2024","DOIUrl":"10.1152/physiolgenomics.00048.2024","url":null,"abstract":"<p><p>Guillain-Barré syndrome (GBS) and cardiovascular diseases (CVDs) have been observed to have a potential association, with GBS potentially leading to cardiovascular complications. However, these observational studies may be influenced by confounding factors. This study aimed to assess the causal relationship between GBS and CVDs, including heart failure (HF), atrial fibrillation (AF), and coronary artery disease (CAD), using a two-sample bidirectional Mendelian randomization (MR) analysis. We analyzed four datasets from the UK Biobank, selecting only datasets of European origin according to predetermined criteria to avoid population stratification bias. Datasets for GBS and CVDs were retrieved from the UK Biobank and analyzed using selected instrumental variables (IVs) related to genetic variations. Sensitivity tests, including heterogeneity and horizontal pleiotropy tests, were conducted to ensure the reliability of the selected IVs. The analysis results were then visualized to illustrate the causal relationships. The study identified genetic variants as IVs for both GBS and CVDs. MR analysis revealed a significant causal effect of GBS on the increased risk of HF [inverse-variance weighted (IVW), <i>P</i> < 0.05], but no significant causal relationship was found between GBS and AF or CAD. Similarly, no causal effect of CVDs on the occurrence of GBS was observed. Sensitivity analyses indicated no significant heterogeneity or horizontal pleiotropy, supporting the robustness of the results. These findings underscore the importance of considering cardiovascular complications, particularly HF, in the clinical management of patients with GBS in European populations.<b>NEW & NOTEWORTHY</b> This study utilizes bidirectional Mendelian randomization to analyze the causal relationships between Guillain-Barré syndrome (GBS) and cardiovascular diseases (CVDs). It uniquely demonstrates a significant causal link from GBS to an increased risk of heart failure (HF), without similar effects on atrial fibrillation (AF) or coronary artery disease (CAD). No reverse causality from CVDs to GBS was found, highlighting the need for targeted cardiovascular management in patients with GBS.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"80-90"},"PeriodicalIF":2.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological, biochemical, and genome-wide expression patterns during graded normobaric hypoxia in healthy individuals. 健康个体在分级常压缺氧期间的生理、生化和全基因组表达模式。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-12-24 DOI: 10.1152/physiolgenomics.00056.2024
Ritu Rani, Rintu Kutum, Deep Shikha Punera, Anand Prakash Yadav, Vishal Bansal, Bhavana Prasher

The regulation of oxygen homeostasis is critical in physiology and disease pathogenesis. High-altitude environment or hypoxia (lack of oxygen) can lead to adverse health conditions such as high-altitude pulmonary edema (HAPE) despite initial adaptive physiological responses. Studying genetic, hematological and biochemical, and the physiological outcomes of hypoxia together could yield a comprehensive understanding and potentially uncover valuable biomarkers for predicting responses. To this end, healthy individuals (n = 51) were recruited and exposed to graded normobaric hypoxia. Physiological parameters such as heart rate (HR), heart rate variability (HRV), oxygen saturation (Spo2), and blood pressure (BP) were constantly monitored, and a blood sample was collected before and after the hypoxia exposure for the hematological and gene-expression profiles. HR was elevated, and Spo2 and HRV were significantly reduced in a fraction of inspired oxygen ([Formula: see text])-dependent manner. After exposure to hypoxia, there was a minimal decrease in HCT, red blood cell distribution width (RDW)-coefficient of variation (CV), mean platelet volume (MPV), platelet distribution width, plateletcrit, eosinophils, lymphocytes, and HDL cholesterol. Additionally, there was a marginal increase observed in neutrophils. The effect of hypoxia was further assessed at the genome-wide expression level in a subset of individuals. Eighty-two genes significantly differed after hypoxia exposure, with 46 upregulated genes and 36 downregulated genes (P ≤ 0.05 and log2-fold change greater than ±0.5). We also conducted an integrative analysis of global gene expression profiles linked with physiological parameters, and we uncovered numerous reliable gene signatures associated with BP, Spo2, HR, and HRV in response to graded normobaric hypoxia.NEW & NOTEWORTHY Our study delves into the multifaceted response to hypoxia, integrating gene expression and hematological, biochemical, and physiological assessments. Hypoxia, crucial in both physiology and pathology, prompts varied responses, necessitating a thorough systemic understanding. Examining healthy subjects exposed to graded normobaric hypoxia, we observed significant shifts in heart rate, oxygen saturation, and heart rate variability. Moreover, genomic analysis unveiled distinct gene signatures associated with physiological parameters, offering insights into molecular perturbations and adaptations to oxygen deprivation.

氧稳态的调节在生理和疾病发病中起着至关重要的作用。高海拔环境或缺氧(缺氧)可导致不利的健康状况,如HAPE,尽管最初的适应性生理反应。研究缺氧的遗传、血液学、生化和生理结果可以产生一个全面的了解,并有可能发现有价值的生物标志物来预测反应。为此,招募健康个体(n=51)并进行分级常压缺氧。持续监测心率(HR)、心率变异性(HRV)、血氧饱和度(SpO2)和血压(BP)等生理参数,并在缺氧暴露前后采集血液样本进行血液学和基因表达谱分析。HR升高,SpO2和HRV显著降低,并呈o2依赖性。缺氧后,HCT、RDW-CV、MPV、血小板分布宽度、血小板电积、嗜酸性粒细胞、淋巴细胞和hdl -胆固醇均有轻微下降。此外,中性粒细胞也有轻微的增加。在一部分个体的全基因组表达水平上进一步评估了缺氧的影响。82个基因在缺氧暴露后差异显著,其中46个基因上调,36个基因下调(p≤0.05,log2倍变化>±0.5)。我们还对与生理参数相关的全球基因表达谱进行了综合分析,并发现了许多与BP、SpO2、HR和HRV相关的可靠基因特征,这些基因特征与分级常压缺氧的反应有关。
{"title":"Physiological, biochemical, and genome-wide expression patterns during graded normobaric hypoxia in healthy individuals.","authors":"Ritu Rani, Rintu Kutum, Deep Shikha Punera, Anand Prakash Yadav, Vishal Bansal, Bhavana Prasher","doi":"10.1152/physiolgenomics.00056.2024","DOIUrl":"10.1152/physiolgenomics.00056.2024","url":null,"abstract":"<p><p>The regulation of oxygen homeostasis is critical in physiology and disease pathogenesis. High-altitude environment or hypoxia (lack of oxygen) can lead to adverse health conditions such as high-altitude pulmonary edema (HAPE) despite initial adaptive physiological responses. Studying genetic, hematological and biochemical, and the physiological outcomes of hypoxia together could yield a comprehensive understanding and potentially uncover valuable biomarkers for predicting responses. To this end, healthy individuals (<i>n</i> = 51) were recruited and exposed to graded normobaric hypoxia. Physiological parameters such as heart rate (HR), heart rate variability (HRV), oxygen saturation (Spo<sub>2</sub>), and blood pressure (BP) were constantly monitored, and a blood sample was collected before and after the hypoxia exposure for the hematological and gene-expression profiles. HR was elevated, and Spo<sub>2</sub> and HRV were significantly reduced in a fraction of inspired oxygen ([Formula: see text])-dependent manner. After exposure to hypoxia, there was a minimal decrease in HCT, red blood cell distribution width (RDW)-coefficient of variation (CV), mean platelet volume (MPV), platelet distribution width, plateletcrit, eosinophils, lymphocytes, and HDL cholesterol. Additionally, there was a marginal increase observed in neutrophils. The effect of hypoxia was further assessed at the genome-wide expression level in a subset of individuals. Eighty-two genes significantly differed after hypoxia exposure, with 46 upregulated genes and 36 downregulated genes (<i>P</i> ≤ 0.05 and log<sub>2</sub>-fold change greater than ±0.5). We also conducted an integrative analysis of global gene expression profiles linked with physiological parameters, and we uncovered numerous reliable gene signatures associated with BP, Spo<sub>2</sub>, HR, and HRV in response to graded normobaric hypoxia.<b>NEW & NOTEWORTHY</b> Our study delves into the multifaceted response to hypoxia, integrating gene expression and hematological, biochemical, and physiological assessments. Hypoxia, crucial in both physiology and pathology, prompts varied responses, necessitating a thorough systemic understanding. Examining healthy subjects exposed to graded normobaric hypoxia, we observed significant shifts in heart rate, oxygen saturation, and heart rate variability. Moreover, genomic analysis unveiled distinct gene signatures associated with physiological parameters, offering insights into molecular perturbations and adaptations to oxygen deprivation.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"49-64"},"PeriodicalIF":2.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age-related differences in gene expression and pathway activation following heatstroke. 中暑后基因表达和通路激活的年龄相关性差异。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-12-24 DOI: 10.1152/physiolgenomics.00053.2024
Maria Gomez, Saeed Al Mahri, Mashan Abdullah, Shuja Shafi Malik, Saber Yezli, Yara Yassin, Anas Khan, Cynthia Lehe, Sameer Mohammad, Robert Hoehndorf, Abderrezak Bouchama

This study investigates the molecular responses to heatstroke in young and old patients by comparing whole-genome transcriptomes between age groups. We analyzed transcriptomic profiles from patients categorized into two age-defined cohorts: young (mean age = 44.9 ± 6 yr) and old (mean age = 66.1 ± 4 yr). Control subjects, exposed to similar environmental heat conditions but without developing heatstroke, were also included in the analysis to provide a baseline for comparison. Despite uniform heatstroke severity at admission, as indicated by core body temperature, consciousness level, and organ damage markers, notable gene expression differences emerged. Old patients showed 37% fewer differentially expressed genes compared with young patients at admission, with a shift toward gene upregulation, deviating from the usual downregulation seen in heat stress responses. Both age groups exhibited increased heat shock protein gene expression, activated the heat stress, and unfolded protein responses indicating comparable proteotoxic stress. Nonetheless, age-specific differences were evident in critical regulatory pathways like Sirtuin, mTOR, and p53 signaling, along with key pathways related to proteostasis, energy metabolism, oxidative stress, and immune responses. Following cooling, older adults exhibited a decline in the heat stress response and a cessation of the unfolded protein response, in contrast to the sustained responses seen in younger individuals. This pattern suggests an age-related adaptability or a diminished protective response capacity with aging. These findings provide insights into the biological mechanisms that may contribute to age-specific vulnerabilities to heat.NEW & NOTEWORTHY Our study reveals distinct molecular responses to heatstroke across age groups, with older adults showing fewer differentially expressed genes and an atypical pattern of gene upregulation, contrasting with the downregulation in usual heat stress responses. It also uncovers a reduced heat stress response and an abbreviated unfolded protein response in older adults, likely impairing their cellular repair mechanisms. This contributes to increased vulnerability during severe heat waves, underscoring the urgent need for age-specific interventions.

本研究通过比较不同年龄组之间的全基因组转录组来研究年轻和老年患者对中暑的分子反应。我们分析了两组患者的转录组特征:年轻(平均年龄= 44.9±6岁)和老年(平均年龄= 66.1±4岁)。暴露于类似环境高温条件但未发生中暑的对照受试者也被纳入分析,以提供比较基线。尽管入院时中暑严重程度一致,如核心体温、意识水平和器官损伤标记所示,但明显的基因表达差异出现了。与入院时的年轻患者相比,老年患者的差异表达基因减少了37%,这与通常在热应激反应中看到的下调不同,他们向基因上调转变。两个年龄组都表现出热休克蛋白基因表达增加,激活热应激和未折叠蛋白反应,表明类似的蛋白质毒性应激。尽管如此,在关键的调控途径,如Sirtuin、mTOR和p53信号,以及与蛋白质平衡、能量代谢、氧化应激和免疫反应相关的关键途径中,年龄特异性差异是明显的。降温后,老年人表现出热应激反应的下降和未折叠蛋白反应的停止,与年轻人的持续反应形成对比。这种模式表明与年龄相关的适应性或随着年龄增长而减少的保护反应能力。这些发现提供了对可能导致年龄特异性热脆弱性的生物学机制的见解。
{"title":"Age-related differences in gene expression and pathway activation following heatstroke.","authors":"Maria Gomez, Saeed Al Mahri, Mashan Abdullah, Shuja Shafi Malik, Saber Yezli, Yara Yassin, Anas Khan, Cynthia Lehe, Sameer Mohammad, Robert Hoehndorf, Abderrezak Bouchama","doi":"10.1152/physiolgenomics.00053.2024","DOIUrl":"10.1152/physiolgenomics.00053.2024","url":null,"abstract":"<p><p>This study investigates the molecular responses to heatstroke in young and old patients by comparing whole-genome transcriptomes between age groups. We analyzed transcriptomic profiles from patients categorized into two age-defined cohorts: young (mean age = 44.9 ± 6 yr) and old (mean age = 66.1 ± 4 yr). Control subjects, exposed to similar environmental heat conditions but without developing heatstroke, were also included in the analysis to provide a baseline for comparison. Despite uniform heatstroke severity at admission, as indicated by core body temperature, consciousness level, and organ damage markers, notable gene expression differences emerged. Old patients showed 37% fewer differentially expressed genes compared with young patients at admission, with a shift toward gene upregulation, deviating from the usual downregulation seen in heat stress responses. Both age groups exhibited increased heat shock protein gene expression, activated the heat stress, and unfolded protein responses indicating comparable proteotoxic stress. Nonetheless, age-specific differences were evident in critical regulatory pathways like Sirtuin, mTOR, and p53 signaling, along with key pathways related to proteostasis, energy metabolism, oxidative stress, and immune responses. Following cooling, older adults exhibited a decline in the heat stress response and a cessation of the unfolded protein response, in contrast to the sustained responses seen in younger individuals. This pattern suggests an age-related adaptability or a diminished protective response capacity with aging. These findings provide insights into the biological mechanisms that may contribute to age-specific vulnerabilities to heat.<b>NEW & NOTEWORTHY</b> Our study reveals distinct molecular responses to heatstroke across age groups, with older adults showing fewer differentially expressed genes and an atypical pattern of gene upregulation, contrasting with the downregulation in usual heat stress responses. It also uncovers a reduced heat stress response and an abbreviated unfolded protein response in older adults, likely impairing their cellular repair mechanisms. This contributes to increased vulnerability during severe heat waves, underscoring the urgent need for age-specific interventions.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"65-79"},"PeriodicalIF":2.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated analysis of methylome and transcriptome responses to exercise training in children with overweight/obesity. 综合分析超重/肥胖儿童的甲基组和转录组对运动训练的反应
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-01-03 DOI: 10.1152/physiolgenomics.00059.2024
Abel Plaza-Florido, Augusto Anguita-Ruiz, Francisco J Esteban, Concepción M Aguilera, Idoia Labayen, Stefan Markus Reitzner, Carl Johan Sundberg, Shlomit Radom-Aizik, Francisco B Ortega, Signe Altmäe

We examined the effects of a 20-wk exercise intervention on whole blood genome-wide DNA methylation signature and its association with the exercise-induced changes in gene expression profiles in boys and girls with overweight/obesity (OW/OB). Twenty-three children (10.05 ± 1.39 yr, 56% girls) with OW/OB were randomized to either a 20-wk exercise intervention [exercise group (EG); n = 10; 4 boys/6 girls] or to usual lifestyle [control group (CG); n = 13; 6 boys/7 girls]. Whole blood genome-wide methylome (CpG sites) analysis using Infinium Methylation EPIC array and transcriptome analysis using RNA-seq (STRT2 protocol) were performed. Exercise-induced modifications in DNA methylation at 485 and 386 CpGs sites in boys and girls, respectively. These CpG sites are mapped to loci enriched in distinct gene pathways related to metabolic diseases, fatty acid metabolism, and immune function. In boys, changes in the DNA methylation of 87 CpG sites (18% of the 485 CpGs sites altered by exercise) were associated with changes in the gene expression levels of 51 genes also regulated by exercise. Among girls, changes in DNA methylation at 46 CpG sites (12% of the initial 386 significant CpGs) were associated with changes in the expression levels of 30 exercise-affected genes. Genes affected by exercise that were associated with DNA methylation are related to obesity, metabolic syndrome, and inflammation. Multiomics analysis of whole blood samples from children with OW/OB suggests that gene expression response to exercise may be modulated by DNA methylation and involve gene pathways related to metabolism and immune functions.NEW & NOTEWORTHY This study pioneers the exploration into the effects of exercise on whole blood genome-wide DNA methylation patterns and its association with changes in transcriptome profiles in children with overweight/obesity. Exercise potentially impacts molecular pathways involved in metabolism and immune functions in children with overweight/obesity (sex-specific responses) through the modification of epigenetic and transcriptomic profiles. Our preliminary results provide initial steps to understand better the molecular mechanisms underlying cardiometabolic benefits of exercise in children with overweight/obesity.

我们研究了20周的运动干预对超重/肥胖(OW/OB)男孩和女孩全血基因组DNA甲基化特征的影响及其与运动引起的基因表达谱变化的关联。23名患有OW/OB的儿童(10.05±1.39岁,56%为女孩)被随机分为20周运动干预组(运动组[EG];n = 10;4名男孩/ 6名女孩),或恢复正常生活方式(对照组[CG] (n=13;6个男孩/ 7个女孩)。使用Infinium Methylation EPIC阵列进行全血全基因组甲基组(CpG位点)分析,使用RNA-seq (STRT2协议)进行转录组分析。运动分别诱导男孩和女孩的485和386个CpGs位点的DNA甲基化改变。这些CpG位点定位于与代谢性疾病、脂肪酸代谢和免疫功能相关的不同基因通路中富集的位点。在男孩中,87个CpG位点的DNA甲基化变化(485个CpG位点中有18%因运动而改变)与51个基因表达水平的变化相关,这些基因也受运动调节。在女孩中,46个CpG位点的DNA甲基化变化(占最初386个重要CpG的12%)与30个运动影响基因表达水平的变化有关。受运动影响的与DNA甲基化相关的基因与肥胖、代谢综合征和炎症有关。对OW/OB儿童全血样本的多组学分析表明,基因表达对运动的反应可能受到DNA甲基化的调节,并涉及与代谢和免疫功能相关的基因途径。
{"title":"Integrated analysis of methylome and transcriptome responses to exercise training in children with overweight/obesity.","authors":"Abel Plaza-Florido, Augusto Anguita-Ruiz, Francisco J Esteban, Concepción M Aguilera, Idoia Labayen, Stefan Markus Reitzner, Carl Johan Sundberg, Shlomit Radom-Aizik, Francisco B Ortega, Signe Altmäe","doi":"10.1152/physiolgenomics.00059.2024","DOIUrl":"10.1152/physiolgenomics.00059.2024","url":null,"abstract":"<p><p>We examined the effects of a 20-wk exercise intervention on whole blood genome-wide DNA methylation signature and its association with the exercise-induced changes in gene expression profiles in boys and girls with overweight/obesity (OW/OB). Twenty-three children (10.05 ± 1.39 yr, 56% girls) with OW/OB were randomized to either a 20-wk exercise intervention [exercise group (EG); <i>n</i> = 10; 4 boys/6 girls] or to usual lifestyle [control group (CG); <i>n</i> = 13; 6 boys/7 girls]. Whole blood genome-wide methylome (CpG sites) analysis using Infinium Methylation EPIC array and transcriptome analysis using RNA-seq (STRT2 protocol) were performed. Exercise-induced modifications in DNA methylation at 485 and 386 CpGs sites in boys and girls, respectively. These CpG sites are mapped to loci enriched in distinct gene pathways related to metabolic diseases, fatty acid metabolism, and immune function. In boys, changes in the DNA methylation of 87 CpG sites (18% of the 485 CpGs sites altered by exercise) were associated with changes in the gene expression levels of 51 genes also regulated by exercise. Among girls, changes in DNA methylation at 46 CpG sites (12% of the initial 386 significant CpGs) were associated with changes in the expression levels of 30 exercise-affected genes. Genes affected by exercise that were associated with DNA methylation are related to obesity, metabolic syndrome, and inflammation. Multiomics analysis of whole blood samples from children with OW/OB suggests that gene expression response to exercise may be modulated by DNA methylation and involve gene pathways related to metabolism and immune functions.<b>NEW & NOTEWORTHY</b> This study pioneers the exploration into the effects of exercise on whole blood genome-wide DNA methylation patterns and its association with changes in transcriptome profiles in children with overweight/obesity. Exercise potentially impacts molecular pathways involved in metabolism and immune functions in children with overweight/obesity (sex-specific responses) through the modification of epigenetic and transcriptomic profiles. Our preliminary results provide initial steps to understand better the molecular mechanisms underlying cardiometabolic benefits of exercise in children with overweight/obesity.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"91-102"},"PeriodicalIF":2.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12629589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MYL9 binding with MYO19 suppresses epithelial-mesenchymal transition in non-small-cell lung cancer. MYL9 与 MYO19 结合可抑制非小细胞肺癌的上皮-间质转化。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-22 DOI: 10.1152/physiolgenomics.00119.2024
Meiling Sheng, Qunzhi Wang, Yabo Lou, Yuanchao Xiao, Xiaoming Wu

The elusive function of myosin light chain 9 (MYL9) in cancer is an area ripe for further investigation. Bioinformatics was used to compare the expression levels of MYL9 in non-small-cell lung cancer (NSCLC) and normal tissues. Gene set enrichment analysis was used to investigate the pathways associated with MYL9. The BioGRID database was used to screen for potential targets of MYL9. The expression of MYL9 and myosin 19 (MYO19) mRNA was quantified using quantitative reverse transcriptase PCR. Cell migration was assessed using a scratch wound healing assay. The protein levels of MYL9, MYO19, and epithelial-mesenchymal transition (EMT) biomarkers were examined using Western blot (WB). Epithelial cell adhesion molecule (EpCAM) expression in different cell groups was profiled using flow cytometry analysis. Coimmunoprecipitation assays were performed to determine the binding affinity between MYL9 and MYO19. In addition, the direct protein interaction between MYL9 and MYO19 was explored using a glutathione-S-transferase (GST) pull-down assay. In NSCLC patients, MYL9 was significantly downregulated both in vivo and in cell cultures and had a high enrichment score in the EMT pathway. Scratch assays pointed to its inhibitory effect on cancer cell migration. WB showed that MYL9 could suppress EMT marker protein expression in NSCLC cells. Flow cytometry found that MYL9 greatly reduced the distribution of EpCAM on the cell surface. MYO19 was pinpointed as a potential target of MYL9, as confirmed by coimmunoprecipitation and GST pull-down assays. Rescue experiments confirmed that MYO19 could enhance cell migration, promote the expression of EMT markers, and increase EpCAM levels on the cell surface, but these effects were reserved by MYL9 overexpression. MYL9 impedes the migration and EMT in NSCLC cells by binding to MYO19.NEW & NOTEWORTHY Myosin light chain 9 (MYL9) is downregulated in non-small-cell lung cancer (NSCLC). MYL9 suppresses epithelial-mesenchymal transition (EMT) in NSCLC cells. MYL9 binds to myosin 19 (MYO19). MYL9/MYO19 signaling inhibits EMT in NSCLC.

背景:肌球蛋白轻链 9 (MYL9)在癌症中难以捉摸的功能是一个有待进一步研究的领域:方法:利用生物信息学比较了MYL9在非小细胞肺癌(NSCLC)和正常组织中的表达水平。采用基因组富集分析(GSEA)研究与MYL9相关的通路。利用BioGRID数据库筛选MYL9的潜在靶点。采用定量反转录酶PCR技术对MYL9和肌球蛋白19(MYO19)mRNA的表达进行定量。细胞迁移采用划痕伤口愈合试验进行评估。采用Western印迹(WB)检测MYL9、MYO19和上皮-间质转化(EMT)生物标志物的蛋白水平。流式细胞术分析了不同细胞组中 EpCAM 的表达情况。进行了共免疫共沉淀试验,以确定 MYL9 和 MYO19 之间的结合亲和力。此外,还利用GST-拉低试验探讨了MYL9和MYO19之间的直接蛋白质相互作用:结果:在 NSCLC 患者中,MYL9 在体内和细胞培养中均显著下调,并在 EMT 通路中高度富集。划痕实验表明其对细胞迁移有抑制作用。Western 印迹显示,MYL9 可抑制 NSCLC 细胞中 EMT 标记蛋白的表达。流式细胞术显示,MYL9降低了细胞表面的EpCAM水平。通过 CoIP 和 GST-拉低试验,MYO19 被确定为 MYL9 的潜在靶标。拯救实验表明,MYO19可增强细胞迁移、EMT标记物表达和EpCAM水平,但MYL9的过表达可抵消这些效应:结论:MYL9通过与MYO19结合阻碍了NSCLC细胞的迁移和EMT。
{"title":"MYL9 binding with MYO19 suppresses epithelial-mesenchymal transition in non-small-cell lung cancer.","authors":"Meiling Sheng, Qunzhi Wang, Yabo Lou, Yuanchao Xiao, Xiaoming Wu","doi":"10.1152/physiolgenomics.00119.2024","DOIUrl":"10.1152/physiolgenomics.00119.2024","url":null,"abstract":"<p><p>The elusive function of myosin light chain 9 (MYL9) in cancer is an area ripe for further investigation. Bioinformatics was used to compare the expression levels of MYL9 in non-small-cell lung cancer (NSCLC) and normal tissues. Gene set enrichment analysis was used to investigate the pathways associated with MYL9. The BioGRID database was used to screen for potential targets of MYL9. The expression of MYL9 and myosin 19 (MYO19) mRNA was quantified using quantitative reverse transcriptase PCR. Cell migration was assessed using a scratch wound healing assay. The protein levels of MYL9, MYO19, and epithelial-mesenchymal transition (EMT) biomarkers were examined using Western blot (WB). Epithelial cell adhesion molecule (EpCAM) expression in different cell groups was profiled using flow cytometry analysis. Coimmunoprecipitation assays were performed to determine the binding affinity between MYL9 and MYO19. In addition, the direct protein interaction between MYL9 and MYO19 was explored using a glutathione-S-transferase (GST) pull-down assay. In NSCLC patients, MYL9 was significantly downregulated both in vivo and in cell cultures and had a high enrichment score in the EMT pathway. Scratch assays pointed to its inhibitory effect on cancer cell migration. WB showed that MYL9 could suppress EMT marker protein expression in NSCLC cells. Flow cytometry found that MYL9 greatly reduced the distribution of EpCAM on the cell surface. MYO19 was pinpointed as a potential target of MYL9, as confirmed by coimmunoprecipitation and GST pull-down assays. Rescue experiments confirmed that MYO19 could enhance cell migration, promote the expression of EMT markers, and increase EpCAM levels on the cell surface, but these effects were reserved by MYL9 overexpression. MYL9 impedes the migration and EMT in NSCLC cells by binding to MYO19.<b>NEW & NOTEWORTHY</b> Myosin light chain 9 (MYL9) is downregulated in non-small-cell lung cancer (NSCLC). MYL9 suppresses epithelial-mesenchymal transition (EMT) in NSCLC cells. MYL9 binds to myosin 19 (MYO19). MYL9/MYO19 signaling inhibits EMT in NSCLC.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"1-7"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention. 与胎盘功能不全有关的母胎界面转录组变化和一种新型基因治疗干预方法。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-07 DOI: 10.1152/physiolgenomics.00131.2024
Helen N Jones, Baylea N Davenport, Rebecca L Wilson

The etiology of fetal growth restriction (FGR) is multifactorial, although many cases often involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion, resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a nonviral, polymer-based nanoparticle that facilitates delivery and transient gene expression of human insulin-like 1 growth factor (hIGF1) in placental trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, the aim of the study was to identify novel pathways in the subplacenta/decidua that provide insight into the underlying mechanism driving placental insufficiency and may be corrected with hIGF1 nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or hIGF1 nanoparticle treatment at midpregnancy, and subplacenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR subplacenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion, and downregulation of genelists involved in the regulation of cell migration. hIGF1 nanoparticle treatment resulted in marked changes to transporter activity in the MNR + hIGF1 subplacenta/decidua when compared with sham MNR. Under normal growth conditions however, hIGF1 nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis, indicative of homeostasis. Overall, this study identified changes to the subplacenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that hIGF1 nanoparticle treatment acts on to restore or maintain appropriate placenta function.NEW & NOTEWORTHY Placental insufficiency at midpregnancy, established through moderate maternal nutrient restriction, is characterized with fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion, and downregulation of genelists involved in the regulation of cell migration. Treatment of placenta insufficiency with a hIGF1 nanoparticle results in marked changes to transporter activity and increases our mechanistic understanding of how therapies designed to improve fetal growth may impact the placenta.

胎儿生长受限(FGR)的病因是多因素的,但许多病例涉及胎盘功能不全。胎盘功能不全与滋养层侵入不足有关,滋养层侵入不足会导致血流阻力增大、营养供应减少和缺氧加剧。我们开发了一种基于聚合物的非病毒纳米粒子,可促进人胰岛素样 1 生长因子(hIGF1)在滋养细胞中的传递和瞬时基因表达,用于治疗胎盘功能不全和妊娠合并绒毛膜促性腺激素(FGR)。该研究利用已建立的豚鼠母体营养限制(MNR)胎盘功能不全模型,旨在确定胎盘下/蜕膜中的新通路,以深入了解驱动胎盘功能不全的潜在机制,并通过 hIGF1 纳米粒子治疗加以纠正。妊娠豚鼠在妊娠中期接受超声引导下的假治疗或 hIGF1 纳米粒子治疗,5 天后收集胎盘下/蜕膜组织。利用 Illumina 平台上的 RNA 测序技术进行转录组分析。与假MNR相比,hIGF1纳米颗粒处理导致MNR + hIGF1亚前置胎盘/蜕膜的转运体活性发生明显变化。然而,在正常生长条件下,hIGF1 纳米粒子处理减少了富含激酶信号通路的基因列表,而增加了富含蛋白水解的基因列表,这表明了体内平衡。总之,这项研究确定了可能导致滋养细胞侵袭不足的胎盘下/蜕膜转录组的变化,并增加了我们对 hIGF1 纳米粒子治疗作用于恢复或维持适当胎盘功能的途径的了解。
{"title":"Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention.","authors":"Helen N Jones, Baylea N Davenport, Rebecca L Wilson","doi":"10.1152/physiolgenomics.00131.2024","DOIUrl":"10.1152/physiolgenomics.00131.2024","url":null,"abstract":"<p><p>The etiology of fetal growth restriction (FGR) is multifactorial, although many cases often involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion, resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a nonviral, polymer-based nanoparticle that facilitates delivery and transient gene expression of human insulin-like 1 growth factor (<i>hIGF1</i>) in placental trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, the aim of the study was to identify novel pathways in the subplacenta/decidua that provide insight into the underlying mechanism driving placental insufficiency and may be corrected with <i>hIGF1</i> nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or <i>hIGF1</i> nanoparticle treatment at midpregnancy, and subplacenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR subplacenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion, and downregulation of genelists involved in the regulation of cell migration. <i>hIGF1</i> nanoparticle treatment resulted in marked changes to transporter activity in the MNR + <i>hIGF1</i> subplacenta/decidua when compared with sham MNR. Under normal growth conditions however, <i>hIGF1</i> nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis, indicative of homeostasis. Overall, this study identified changes to the subplacenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that <i>hIGF1</i> nanoparticle treatment acts on to restore or maintain appropriate placenta function.<b>NEW & NOTEWORTHY</b> Placental insufficiency at midpregnancy, established through moderate maternal nutrient restriction, is characterized with fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion, and downregulation of genelists involved in the regulation of cell migration. Treatment of placenta insufficiency with a <i>hIGF1</i> nanoparticle results in marked changes to transporter activity and increases our mechanistic understanding of how therapies designed to improve fetal growth may impact the placenta.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"8-15"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11918312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low carbohydrate availability promotes a distinct circulating microRNA profile 24 h following aerobic exercise. 低碳水化合物可在有氧运动后24小时促进不同的循环microRNA谱。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-12-11 DOI: 10.1152/physiolgenomics.00107.2024
Devin J Drummer, Christopher T Carrigan, Nancy E Murphy, Marques A Wilson, Julia Michalak, Claire C Whitney, Donato A Rivas, Stefan M Pasiakos, Lee M Margolis

Low carbohydrate availability during recovery from aerobic exercise alters skeletal muscle microRNA (miRNA) profiles, which may mechanistically regulate exercise recovery. However, its impact on circulating miRNA (c-miRNA) profiles remains unclear. This study aimed to determine the effects of low versus adequate carbohydrate availability on c-miRNA profiles during recovery from aerobic exercise. Nine males (22 ± 4 yr, 1.81 ± 0.09 m, 83.9 ± 11.9 kg, 25.7 ± 2.3 kg/m2, means ± SD) completed this randomized, crossover study comprising two glycogen depletion trials, followed by 24 h of isocaloric refeeding to induce low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate, 1.0 g/kg fat) carbohydrate availability. Total c-miRNA was extracted from serum 24 h following glycogen depletion exercise. Data were log-transformed and analyzed as fold change relative to AD. Bioinformatics was conducted on significant c-miRNA and associated pathways (miRTarBase/KEGG). Follow-up transfection of miR-375-3p mimic or inhibitor into C2C12 cells assessed metabolic, inflammatory, and catabolic pathways at the gene and protein levels. Of the 84 miRNAs assessed, miR-335-5p (-0.49 ± 0.60; P = 0.04) and miR-375-3p (-1.57 ± 1.25; P = 0.01) were significantly lower, and miR-214-3p (1.76 ± 1.85; P = 0.02) was significantly higher in AD versus LOW. In vitro experiments indicated that miR-375-3p regulates catabolic pathways at the gene and protein level. Low carbohydrate availability alters c-miRNA profiles, particularly miR-375-3p, which targets proteostasis and metabolism 24 h into recovery from aerobic exercise. These findings identify unique c-miRNA targets as potential biomarkers for the mechanistic effects of low carbohydrate availability on exercise recovery.NEW & NOTEWORTHY Low carbohydrate consumption (LOW) 24 h in recovery from aerobic exercise elicits a distinct circulating miRNA profile compared with adequate carbohydrate consumption (AD). MicroRNA 375-3p was the most significantly different between the LOW and AD treatments. Follow-up in vitro experiments suggest that AD carbohydrate availability blunts catabolic signaling during postexercise recovery.

有氧运动恢复过程中的低碳水化合物可用性改变了骨骼肌microRNA (miRNA)谱,这可能是调节运动恢复的机制。然而,其对循环miRNA (c-miRNA)谱的影响尚不清楚。目的:本研究旨在确定低碳水化合物和充足碳水化合物对有氧运动后恢复过程中c-miRNA谱的影响。方法:9名男性(22±4岁,1.81±0.09m, 83.9±11.9kg, 25.7±2.3kg/m2, mean±SD)完成了这项随机交叉研究,包括两个糖原消耗试验,随后24小时等热量再喂养以诱导低(low;1.5 g/kg碳水化合物,3.0 g/kg脂肪)或足够量(AD;6.0 g/kg碳水化合物,1.0 g/kg脂肪)碳水化合物利用率。在糖原消耗运动后24小时从血清中提取总c-miRNA。对数据进行对数变换,并以相对于AD的折线变化进行分析。对重要的c-miRNA及其相关通路(miRTarBase/KEGG)进行生物信息学分析。随后将miR-375-3p模拟物或抑制剂转染到C2C12细胞中,在基因和蛋白质水平上评估代谢、炎症和分解代谢途径。结果:在评估的84个miRNA中,miR-335-5p(-0.49±0.60;P=0.04), miR-375-3p(-1.57±1.25;P=0.01), miR-214-3p(1.76±1.85;P=0.02), AD组明显高于LOW组。体外实验表明,miR-375-3p在基因和蛋白水平调控分解代谢途径。结论:低碳水化合物可改变c-miRNA谱,特别是miR-375-3p,其目标是有氧运动后恢复24小时内的蛋白质静止和代谢。这些发现确定了独特的c-miRNA靶点,作为低碳水化合物可获得性对运动恢复的机制影响的潜在生物标志物。
{"title":"Low carbohydrate availability promotes a distinct circulating microRNA profile 24 h following aerobic exercise.","authors":"Devin J Drummer, Christopher T Carrigan, Nancy E Murphy, Marques A Wilson, Julia Michalak, Claire C Whitney, Donato A Rivas, Stefan M Pasiakos, Lee M Margolis","doi":"10.1152/physiolgenomics.00107.2024","DOIUrl":"10.1152/physiolgenomics.00107.2024","url":null,"abstract":"<p><p>Low carbohydrate availability during recovery from aerobic exercise alters skeletal muscle microRNA (miRNA) profiles, which may mechanistically regulate exercise recovery. However, its impact on circulating miRNA (c-miRNA) profiles remains unclear. This study aimed to determine the effects of low versus adequate carbohydrate availability on c-miRNA profiles during recovery from aerobic exercise. Nine males (22 ± 4 yr, 1.81 ± 0.09 m, 83.9 ± 11.9 kg, 25.7 ± 2.3 kg/m<sup>2</sup>, means ± SD) completed this randomized, crossover study comprising two glycogen depletion trials, followed by 24 h of isocaloric refeeding to induce low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate, 1.0 g/kg fat) carbohydrate availability. Total c-miRNA was extracted from serum 24 h following glycogen depletion exercise. Data were log-transformed and analyzed as fold change relative to AD. Bioinformatics was conducted on significant c-miRNA and associated pathways (miRTarBase/KEGG). Follow-up transfection of miR-375-3p mimic or inhibitor into C2C12 cells assessed metabolic, inflammatory, and catabolic pathways at the gene and protein levels. Of the 84 miRNAs assessed, miR-335-5p (-0.49 ± 0.60; <i>P</i> = 0.04) and miR-375-3p (-1.57 ± 1.25; <i>P</i> = 0.01) were significantly lower, and miR-214-3p (1.76 ± 1.85; <i>P</i> = 0.02) was significantly higher in AD versus LOW. In vitro experiments indicated that miR-375-3p regulates catabolic pathways at the gene and protein level. Low carbohydrate availability alters c-miRNA profiles, particularly miR-375-3p, which targets proteostasis and metabolism 24 h into recovery from aerobic exercise. These findings identify unique c-miRNA targets as potential biomarkers for the mechanistic effects of low carbohydrate availability on exercise recovery.<b>NEW & NOTEWORTHY</b> Low carbohydrate consumption (LOW) 24 h in recovery from aerobic exercise elicits a distinct circulating miRNA profile compared with adequate carbohydrate consumption (AD). MicroRNA 375-3p was the most significantly different between the LOW and AD treatments. Follow-up in vitro experiments suggest that AD carbohydrate availability blunts catabolic signaling during postexercise recovery.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"40-47"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of long- and short-rest periods during high-intensity interval exercise on transcriptomic responses in equine skeletal muscle. 高强度间歇运动中长、短休息时间对马骨骼肌转录组反应的影响。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-12-11 DOI: 10.1152/physiolgenomics.00066.2024
Kenya Takahashi, Kazutaka Mukai, Yuji Takahashi, Yusaku Ebisuda, Hideo Hatta, Yu Kitaoka

The purpose of this study was to elucidate the skeletal muscle transcriptomic response unique to rest duration during high-intensity interval exercise. Thoroughbred horses performed three 1-min bouts of exercise at their maximal oxygen uptake (10.7-12.5 m/s), separated by 15 min (long) or 2 min (short) walking at 1.7 m/s. Gluteus medius muscle was collected before and at 4 h after the exercise and used for RNA sequencing. We identified 1,756 and 1,421 differentially expressed genes in response to the long and short protocols, respectively, using DEseq2 analysis [false discovery rate (FDR) cutoff = 0.05, minimal fold change = 1.5]. The overall transcriptional response was partially aligned, with 43% (n = 949) of genes altered in both protocols, whereas no discordant directional changes were observed. K-means clustering and gene set enrichment analyses based on Gene Ontology biological process terms showed that genes associated with muscle adaptation and development were upregulated regardless of exercise conditions; genes related to immune and cytokine responses were more upregulated following the long protocol, and protein folding and temperature response were highly expressed after the short protocol. We found that 11 genes were upregulated to a greater extent by the short protocol and one was by the long protocol, with GNA13, SPART, PHAF1, and PTX3 identified as potential candidates for skeletal muscle remodeling. Our results suggest that altered metabolic fluctuations dependent on the intermittent pattern of interval exercise modulate skeletal muscle gene expression, and therefore, rest interval length could be an important consideration in optimizing skeletal muscle adaptation.NEW & NOTEWORTHY This is the first study to address the comparison of transcriptional responses to high-intensity interval exercise with two different rest periods in skeletal muscle. The expression of genes related to metabolic adaptations altered in both conditions, while genes associated with immune and cytokine responses and protein folding and temperature response were varied with the length of the rest period. These results provide evidence for rest duration-specific transcriptional response to high-intensity interval training.

本研究的目的是阐明骨骼肌转录组反应独特的休息时间在高强度间歇运动。纯种马以最大摄氧量(10.7-12.5 m/s)进行三次1分钟的运动,以1.7 m/s的速度步行15分钟(长)或2分钟(短)。在运动前和运动后4小时采集臀中肌,用于RNA测序。我们分别使用DEseq2分析(错误发现率(FDR)截止值= 0.05,最小折叠变化值= 1.5)鉴定了1756个和1421个差异表达基因对长和短协议的响应。总的转录反应是部分一致的,在两种方案中有43% (n=949)的基因发生了改变,而没有观察到不一致的方向变化。基于基因本体生物学过程术语的K-means聚类和基因集富集分析表明,与肌肉适应和发育相关的基因在不同运动条件下均上调;与免疫和细胞因子反应相关的基因在较长时间后表达上调,蛋白质折叠和温度反应在较短时间后高表达。我们发现11个基因在短方案中上调幅度较大,1个基因在长方案中上调幅度较大,其中GNA13、SPART、PHAF1和PTX3被确定为骨骼肌重塑的潜在候选基因。我们的研究结果表明,依赖于间歇运动模式的代谢波动改变会调节骨骼肌基因表达,因此休息间隔长度可能是优化骨骼肌适应的重要考虑因素。
{"title":"Comparison of long- and short-rest periods during high-intensity interval exercise on transcriptomic responses in equine skeletal muscle.","authors":"Kenya Takahashi, Kazutaka Mukai, Yuji Takahashi, Yusaku Ebisuda, Hideo Hatta, Yu Kitaoka","doi":"10.1152/physiolgenomics.00066.2024","DOIUrl":"10.1152/physiolgenomics.00066.2024","url":null,"abstract":"<p><p>The purpose of this study was to elucidate the skeletal muscle transcriptomic response unique to rest duration during high-intensity interval exercise. Thoroughbred horses performed three 1-min bouts of exercise at their maximal oxygen uptake (10.7-12.5 m/s), separated by 15 min (long) or 2 min (short) walking at 1.7 m/s. Gluteus medius muscle was collected before and at 4 h after the exercise and used for RNA sequencing. We identified 1,756 and 1,421 differentially expressed genes in response to the long and short protocols, respectively, using DEseq2 analysis [false discovery rate (FDR) cutoff = 0.05, minimal fold change = 1.5]. The overall transcriptional response was partially aligned, with 43% (<i>n</i> = 949) of genes altered in both protocols, whereas no discordant directional changes were observed. K-means clustering and gene set enrichment analyses based on Gene Ontology biological process terms showed that genes associated with muscle adaptation and development were upregulated regardless of exercise conditions; genes related to immune and cytokine responses were more upregulated following the long protocol, and protein folding and temperature response were highly expressed after the short protocol. We found that 11 genes were upregulated to a greater extent by the short protocol and one was by the long protocol, with <i>GNA13</i>, <i>SPART</i>, <i>PHAF1</i>, and <i>PTX3</i> identified as potential candidates for skeletal muscle remodeling. Our results suggest that altered metabolic fluctuations dependent on the intermittent pattern of interval exercise modulate skeletal muscle gene expression, and therefore, rest interval length could be an important consideration in optimizing skeletal muscle adaptation.<b>NEW & NOTEWORTHY</b> This is the first study to address the comparison of transcriptional responses to high-intensity interval exercise with two different rest periods in skeletal muscle. The expression of genes related to metabolic adaptations altered in both conditions, while genes associated with immune and cytokine responses and protein folding and temperature response were varied with the length of the rest period. These results provide evidence for rest duration-specific transcriptional response to high-intensity interval training.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"28-39"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence and omics in malignant gliomas. 恶性胶质瘤中的人工智能和 Omics。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-10-22 DOI: 10.1152/physiolgenomics.00011.2024
Richa Tambi, Binte Zehra, Aswathy Vijayakumar, Dharana Satsangi, Mohammed Uddin, Bakhrom K Berdiev

Glioblastoma multiforme (GBM) is one of the most common and aggressive type of malignant glioma with an average survival time of 12-18 mo. Despite the utilization of extensive surgical resections using cutting-edge neuroimaging, and advanced chemotherapy and radiotherapy, the prognosis remains unfavorable. The heterogeneity of GBM and the presence of the blood-brain barrier further complicate the therapeutic process. It is crucial to adopt a multifaceted approach in GBM research to understand its biology and advance toward effective treatments. In particular, omics research, which primarily includes genomics, transcriptomics, proteomics, and epigenomics, helps us understand how GBM develops, finds biomarkers, and discovers new therapeutic targets. The availability of large-scale multiomics data requires the development of computational models to infer valuable biological insights for the implementation of precision medicine. Artificial intelligence (AI) refers to a host of computational algorithms that is becoming a major tool capable of integrating large omics databases. Although the application of AI tools in GBM-omics is currently in its early stages, a thorough exploration of AI utilization to uncover different aspects of GBM (subtype classification, prognosis, and survival) would have a significant impact on both researchers and clinicians. Here, we aim to review and provide database resources of different AI-based techniques that have been used to study GBM pathogenesis using multiomics data over the past decade. We summarize different types of GBM-related omics resources that can be used to develop AI models. Furthermore, we explore various AI tools that have been developed using either individual or integrated multiomics data, highlighting their applications and limitations in the context of advancing GBM research and treatment.

大规模多组学数据的可用性要求开发计算模型,以推断出有价值的生物学见解,从而实施精准医疗。人工智能(AI)指的是一系列计算算法,这些算法正在成为能够整合大规模基因组学、转录组学、蛋白质组学和代谢组学数据的主要工具。机器学习(ML)是健康科学领域最重要的人工智能算法,特别是由于深度学习最近取得的进展,这种算法已经呈现爆炸式增长。虽然人工智能/ML 工具在 GBM 组学中的应用仍处于早期阶段,但全面讨论如何利用人工智能来揭示 GBM 的各个方面(肿瘤内异质性、生物标记物发现、生存预测和治疗优化)对研究人员和临床医生都非常重要。在此,我们旨在回顾过去十年中利用多组学数据研究 GBM 发病机制的不同人工智能技术。我们首先总结了可用于开发人工智能模型的不同类型的 GBM 相关组学资源。然后,我们讨论了多组学数据的各种人工智能应用,以提高 GBM 精准医疗水平。最后,我们讨论了限制其应用的技术和伦理挑战,以及改进其在临床中实施的方法。
{"title":"Artificial intelligence and omics in malignant gliomas.","authors":"Richa Tambi, Binte Zehra, Aswathy Vijayakumar, Dharana Satsangi, Mohammed Uddin, Bakhrom K Berdiev","doi":"10.1152/physiolgenomics.00011.2024","DOIUrl":"10.1152/physiolgenomics.00011.2024","url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is one of the most common and aggressive type of malignant glioma with an average survival time of 12-18 mo. Despite the utilization of extensive surgical resections using cutting-edge neuroimaging, and advanced chemotherapy and radiotherapy, the prognosis remains unfavorable. The heterogeneity of GBM and the presence of the blood-brain barrier further complicate the therapeutic process. It is crucial to adopt a multifaceted approach in GBM research to understand its biology and advance toward effective treatments. In particular, omics research, which primarily includes genomics, transcriptomics, proteomics, and epigenomics, helps us understand how GBM develops, finds biomarkers, and discovers new therapeutic targets. The availability of large-scale multiomics data requires the development of computational models to infer valuable biological insights for the implementation of precision medicine. Artificial intelligence (AI) refers to a host of computational algorithms that is becoming a major tool capable of integrating large omics databases. Although the application of AI tools in GBM-omics is currently in its early stages, a thorough exploration of AI utilization to uncover different aspects of GBM (subtype classification, prognosis, and survival) would have a significant impact on both researchers and clinicians. Here, we aim to review and provide database resources of different AI-based techniques that have been used to study GBM pathogenesis using multiomics data over the past decade. We summarize different types of GBM-related omics resources that can be used to develop AI models. Furthermore, we explore various AI tools that have been developed using either individual or integrated multiomics data, highlighting their applications and limitations in the context of advancing GBM research and treatment.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"876-895"},"PeriodicalIF":2.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiological genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1