Pub Date : 2024-09-01Epub Date: 2024-01-12DOI: 10.1111/php.13906
Wenqi Fu, Guo Liu, Sun-Hun Kim, Byunggook Kim, Ok-Su Kim, Guowu Ma, Ying Yang, Danyang Liu, Siyu Zhu, Jae-Seok Kang, Okjoon Kim
Prolonged endoplasmic reticulum (ER) stress contributes to cell apoptosis and interferes with bone homeostasis. Although photobiomodulation (PBM) might be used for ER stress-induced diseases, the role of PBM in relieving cell apoptosis remains unknown. During ER stress, glycogen synthase kinase-3β (GSK-3β) is critical; however, its functions in PBM remain uncertain. Thus, this study aimed to investigate the role of GSK-3β in 625 nm light-emitting diode irradiation (LEDI) relieving tunicamycin (TM)-induced apoptosis. Based on the results, pre-625 nm LEDI (Pre-IR) phosphorylated GSK-3β via ROS production. Compared with the TM group, Pre-IR + TM group reduced the phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 (eIF-2α) and B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax)/Bcl-2 ratio through regulating GSK-3β. Furthermore, a similar tendency was observed between Pre-IR + TM and Pre-LiCl+TM groups in preventing TM-induced early and late apoptosis. In summary, this study suggests that the Pre-IR treatment in TM-induced ER stress is beneficial for preventing cell apoptosis via GSK-3β phosphorylation.
{"title":"Effects of 625 nm light-emitting diode irradiation on preventing ER stress-induced apoptosis via GSK-3β phosphorylation in MC3T3-E1.","authors":"Wenqi Fu, Guo Liu, Sun-Hun Kim, Byunggook Kim, Ok-Su Kim, Guowu Ma, Ying Yang, Danyang Liu, Siyu Zhu, Jae-Seok Kang, Okjoon Kim","doi":"10.1111/php.13906","DOIUrl":"10.1111/php.13906","url":null,"abstract":"<p><p>Prolonged endoplasmic reticulum (ER) stress contributes to cell apoptosis and interferes with bone homeostasis. Although photobiomodulation (PBM) might be used for ER stress-induced diseases, the role of PBM in relieving cell apoptosis remains unknown. During ER stress, glycogen synthase kinase-3β (GSK-3β) is critical; however, its functions in PBM remain uncertain. Thus, this study aimed to investigate the role of GSK-3β in 625 nm light-emitting diode irradiation (LEDI) relieving tunicamycin (TM)-induced apoptosis. Based on the results, pre-625 nm LEDI (Pre-IR) phosphorylated GSK-3β via ROS production. Compared with the TM group, Pre-IR + TM group reduced the phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 (eIF-2α) and B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax)/Bcl-2 ratio through regulating GSK-3β. Furthermore, a similar tendency was observed between Pre-IR + TM and Pre-LiCl+TM groups in preventing TM-induced early and late apoptosis. In summary, this study suggests that the Pre-IR treatment in TM-induced ER stress is beneficial for preventing cell apoptosis via GSK-3β phosphorylation.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"1408-1418"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139425296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-11-14DOI: 10.1111/php.13881
Muhammad Adnan Khalid, Muhammad Mubeen, Maria Mukhtar, Poshmal Sumreen, Bushra Naz, Firdevs Aydın, Demet Asil, Azhar Iqbal
Apart from biocompatibility, ZnO quantum dots (QDs) are considered to be an efficient luminescence material due to their low cost and high redox potential. Here, we report the synthesis of ZnO QDs by using five different functionalizing ligands like mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), octadecene (ODE), ethylene glycol (EG), and oleyl amine (OLA) and fabricate their assemblies with graphene oxide (GO). We investigate the role of functionalizing ligands as a surface modifier of ZnO QDs for their attachment to GO. The steady-state photoluminescence (SSPL) and time-resolved photoluminescence (TRPL) analyses demonstrate the photoluminescence (PL) quenching of ZnO QDs in ZnO QDs-GO assembly. The highest reduction in PL intensity is observed with ZnO QDs-GO assembly with EG as a surface functionalizing ligand. Cyclic voltammetry (CV) analysis confirms the feasibility of charge transfer from ZnO QDs to the GO. The maximum (79.43%) charge transfer efficiency (ECT) is observed in the case of ZnO-MAA-GO as compared to other assemblies. This means the thiol group-containing ligands facilitate charge transfer as compared to hydroxyl and amine group ligands. This leads to the conclusion that charge transfer in ZnO QDs-GO assemblies depends strongly on the nature of surface ligands.
{"title":"Effect of surface ligands on the photoinduced electron transfer rate and efficiency in ZnO quantum dots and graphene oxide assemblies.","authors":"Muhammad Adnan Khalid, Muhammad Mubeen, Maria Mukhtar, Poshmal Sumreen, Bushra Naz, Firdevs Aydın, Demet Asil, Azhar Iqbal","doi":"10.1111/php.13881","DOIUrl":"10.1111/php.13881","url":null,"abstract":"<p><p>Apart from biocompatibility, ZnO quantum dots (QDs) are considered to be an efficient luminescence material due to their low cost and high redox potential. Here, we report the synthesis of ZnO QDs by using five different functionalizing ligands like mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), octadecene (ODE), ethylene glycol (EG), and oleyl amine (OLA) and fabricate their assemblies with graphene oxide (GO). We investigate the role of functionalizing ligands as a surface modifier of ZnO QDs for their attachment to GO. The steady-state photoluminescence (SSPL) and time-resolved photoluminescence (TRPL) analyses demonstrate the photoluminescence (PL) quenching of ZnO QDs in ZnO QDs-GO assembly. The highest reduction in PL intensity is observed with ZnO QDs-GO assembly with EG as a surface functionalizing ligand. Cyclic voltammetry (CV) analysis confirms the feasibility of charge transfer from ZnO QDs to the GO. The maximum (79.43%) charge transfer efficiency (E<sub>CT</sub>) is observed in the case of ZnO-MAA-GO as compared to other assemblies. This means the thiol group-containing ligands facilitate charge transfer as compared to hydroxyl and amine group ligands. This leads to the conclusion that charge transfer in ZnO QDs-GO assemblies depends strongly on the nature of surface ligands.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"1204-1213"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92156002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-03-25DOI: 10.1111/php.13924
Ting-Ting Li, Bing-Bing Shou, Lu Yang, Hai-Tao Ren, Xian-Jin Hu, Jia-Horng Lin, Tao Cai, Ching-Wen Lou
Combining photodynamic antimicrobials with nonwovens is prospective. However, common photosensitizers still have drawbacks such as poor photoactivity and the inability to charge. In this study, a photodynamic and high-efficiency antimicrobial protective material was prepared by grafting bis benzophenone-structured 4,4-terephthaloyl diphthalic anhydride (TDPA) photosensitizer, and antimicrobial agent chlorogenic acid (CA) onto spunbond-meltblown-spunbond (SMS) membranes. The charging rates for ·OH and H2O2 were 6377.89 and 913.52 μg/g/h. The light absorption transients structural storage remained above 69% for 1 month. High electrical capacity remained after seven cycles indicating its rechargeability and recyclability. The SMS/TDPA/CA membrane has excellent bactericidal performance when under illumination or lightless conditions, and the bactericidal efficiency of Escherichia coli and Staphylococcus aureus reached over 99%. The construction of self-disinfection textiles based on the photodynamic strategies proposed in this paper is constructive for expanding and promoting the application of textile materials in the medical field.
{"title":"Modification of traditional composite nonwovens with stable storage of light absorption transients and photodynamic antibacterial effect.","authors":"Ting-Ting Li, Bing-Bing Shou, Lu Yang, Hai-Tao Ren, Xian-Jin Hu, Jia-Horng Lin, Tao Cai, Ching-Wen Lou","doi":"10.1111/php.13924","DOIUrl":"10.1111/php.13924","url":null,"abstract":"<p><p>Combining photodynamic antimicrobials with nonwovens is prospective. However, common photosensitizers still have drawbacks such as poor photoactivity and the inability to charge. In this study, a photodynamic and high-efficiency antimicrobial protective material was prepared by grafting bis benzophenone-structured 4,4-terephthaloyl diphthalic anhydride (TDPA) photosensitizer, and antimicrobial agent chlorogenic acid (CA) onto spunbond-meltblown-spunbond (SMS) membranes. The charging rates for <sup>·</sup>OH and H<sub>2</sub>O<sub>2</sub> were 6377.89 and 913.52 μg/g/h. The light absorption transients structural storage remained above 69% for 1 month. High electrical capacity remained after seven cycles indicating its rechargeability and recyclability. The SMS/TDPA/CA membrane has excellent bactericidal performance when under illumination or lightless conditions, and the bactericidal efficiency of Escherichia coli and Staphylococcus aureus reached over 99%. The construction of self-disinfection textiles based on the photodynamic strategies proposed in this paper is constructive for expanding and promoting the application of textile materials in the medical field.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"1328-1338"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-06-03DOI: 10.1111/php.13979
Paulo Newton Tonolli, Mauricio S Baptista
The field of sun protection is quickly changing and the research article by Douki et al., published in the current issue of Photochemistry and Photobiology, reported key experimental data that will certainly help the development of better sun care products. Mutagenic photoproducts (CPDs, cyclobutane pyrimidine dimers and 6-4PPs, pyrimidine-6-4-pyrimidone photoproducts) were formed in the reconstructed human epidermis (RHE) by UVB (312 nm) irradiation, and their concentrations were detected by HPLC-MS/MS as a function of time after the UVB treatment. RHE had been previously exposed or not (control) to blue light (427 nm). Both CPDs and 6-4PPs were shown to last longer in blue-light irradiated RHE, proving the inhibition of the DNA repair by blue light exposure. This is a highly relevant information because sunscreens allow people to enjoy longer periods under the sun and consequently, to endure very high doses of blue light. The work also reported results obtained with RHEs previously treated with a sunscreen formulation containing a broadband filter that offers blue-light protection. Interestingly, authors observed that the DNA repair was not significantly inhibited in RHE previously treated with the sunscreen offering broadband protection. Readers will find a scientifically sound proof of the importance of blue-light protection in sun care products.
{"title":"An important step towards the comprehensive sun protection: Blue-light exposure inhibits DNA repair in reconstituted human skin and a broadband sunscreen avoids this inhibition.","authors":"Paulo Newton Tonolli, Mauricio S Baptista","doi":"10.1111/php.13979","DOIUrl":"10.1111/php.13979","url":null,"abstract":"<p><p>The field of sun protection is quickly changing and the research article by Douki et al., published in the current issue of Photochemistry and Photobiology, reported key experimental data that will certainly help the development of better sun care products. Mutagenic photoproducts (CPDs, cyclobutane pyrimidine dimers and 6-4PPs, pyrimidine-6-4-pyrimidone photoproducts) were formed in the reconstructed human epidermis (RHE) by UVB (312 nm) irradiation, and their concentrations were detected by HPLC-MS/MS as a function of time after the UVB treatment. RHE had been previously exposed or not (control) to blue light (427 nm). Both CPDs and 6-4PPs were shown to last longer in blue-light irradiated RHE, proving the inhibition of the DNA repair by blue light exposure. This is a highly relevant information because sunscreens allow people to enjoy longer periods under the sun and consequently, to endure very high doses of blue light. The work also reported results obtained with RHEs previously treated with a sunscreen formulation containing a broadband filter that offers blue-light protection. Interestingly, authors observed that the DNA repair was not significantly inhibited in RHE previously treated with the sunscreen offering broadband protection. Readers will find a scientifically sound proof of the importance of blue-light protection in sun care products.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"1527-1530"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-11-20DOI: 10.1111/php.13885
Peng Yi, Yan Huang, Xin Zhao, Zhengshan Qin, Danli Zhu, Li Liu, Yuxi Zheng, Jianguo Feng, Menghong Long
Alternative splicing of precursor messenger RNA (pre-mRNA), including linear splicing and back splicing, produces multiple isoforms that lead to diverse cell fates in response to stimuli including ultraviolet radiation (UVR). Although UVR-induced linear gene splicing has been extensively studied in skin cells, the UVR-induced gene back-splicing events that lead to the production of circular RNAs (circRNAs) have not been thoroughly investigated. The present study used circRNA transcriptome sequencing to screen the differentially expressed circRNAs in human keratinocytes (HaCaT) after UVA irradiation. A total of 312 differentially expressed circRNAs were found in HaCaT cells post-UVR. Among the UVA-induced differentially expressed circRNAs, circUBE2I-a novel circRNA formed by exons 2-6 of the UBE2I gene-was the most significantly upregulated circRNA. RT-qPCR assay further confirmed the increase of circUBE2I level in HaCaT cells after UVA irradiation or H2O2 treatment. RNase R digestion experiment revealed the stability of circUBE2I. Overexpression of circUBE2I in keratinocytes induced ferroptosis after UVA or H2O2, preventable by the ferroptosis inhibitor ferrostatin-1. Our study provides new insights into the role of circular RNAs in UVA-induced skin cell damage and suggests that circUBE2I could be a therapeutic target in UVR-aroused ferroptosis in skin cells.
{"title":"A novel UVA-associated circUBE2I mediates ferroptosis in HaCaT cells.","authors":"Peng Yi, Yan Huang, Xin Zhao, Zhengshan Qin, Danli Zhu, Li Liu, Yuxi Zheng, Jianguo Feng, Menghong Long","doi":"10.1111/php.13885","DOIUrl":"10.1111/php.13885","url":null,"abstract":"<p><p>Alternative splicing of precursor messenger RNA (pre-mRNA), including linear splicing and back splicing, produces multiple isoforms that lead to diverse cell fates in response to stimuli including ultraviolet radiation (UVR). Although UVR-induced linear gene splicing has been extensively studied in skin cells, the UVR-induced gene back-splicing events that lead to the production of circular RNAs (circRNAs) have not been thoroughly investigated. The present study used circRNA transcriptome sequencing to screen the differentially expressed circRNAs in human keratinocytes (HaCaT) after UVA irradiation. A total of 312 differentially expressed circRNAs were found in HaCaT cells post-UVR. Among the UVA-induced differentially expressed circRNAs, circUBE2I-a novel circRNA formed by exons 2-6 of the UBE2I gene-was the most significantly upregulated circRNA. RT-qPCR assay further confirmed the increase of circUBE2I level in HaCaT cells after UVA irradiation or H<sub>2</sub>O<sub>2</sub> treatment. RNase R digestion experiment revealed the stability of circUBE2I. Overexpression of circUBE2I in keratinocytes induced ferroptosis after UVA or H<sub>2</sub>O<sub>2</sub>, preventable by the ferroptosis inhibitor ferrostatin-1. Our study provides new insights into the role of circular RNAs in UVA-induced skin cell damage and suggests that circUBE2I could be a therapeutic target in UVR-aroused ferroptosis in skin cells.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"1365-1377"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138177079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-11-30DOI: 10.1111/php.13892
David J Brenner
There has been much recent interest in whole-room far-UVC (wavelength around 222 nm) to markedly and safely reduce overall levels of airborne pathogens in occupied indoor locations. Far-UVC light produces very low levels of ozone-in real-world scenarios induced ozone levels of less than 10 ppb, and much less in moderately or well-ventilated rooms compliant with US far-UVC dose recommendations, and very much less in rooms compliant with international far-UVC dose standards. At these very low ozone levels, there is no epidemiological evidence of increased health risks from any of the very large outdoor ozone studies, whether from ozone alone or from ozone plus associated pollutants. Indoors, at the low ozone concentrations of relevance here, ozone does not react rapidly enough with preexisting airborne volatile organic compounds to compete with even extremely low levels of room ventilation, so significant ozone-induced ultrafine particle production is very unlikely. Direct measurements in real-life room scenarios are consistent with these conclusions. A potential exception is the cleaning material limonene, which has an unusually high ozone interaction cross-section; in the far-UVC context, turning off far-UVC lights during cleaning with limonene products would be reasonable.
{"title":"The public-health significance of far-UVC-induced indoor ozone and its associated secondary chemistry.","authors":"David J Brenner","doi":"10.1111/php.13892","DOIUrl":"10.1111/php.13892","url":null,"abstract":"<p><p>There has been much recent interest in whole-room far-UVC (wavelength around 222 nm) to markedly and safely reduce overall levels of airborne pathogens in occupied indoor locations. Far-UVC light produces very low levels of ozone-in real-world scenarios induced ozone levels of less than 10 ppb, and much less in moderately or well-ventilated rooms compliant with US far-UVC dose recommendations, and very much less in rooms compliant with international far-UVC dose standards. At these very low ozone levels, there is no epidemiological evidence of increased health risks from any of the very large outdoor ozone studies, whether from ozone alone or from ozone plus associated pollutants. Indoors, at the low ozone concentrations of relevance here, ozone does not react rapidly enough with preexisting airborne volatile organic compounds to compete with even extremely low levels of room ventilation, so significant ozone-induced ultrafine particle production is very unlikely. Direct measurements in real-life room scenarios are consistent with these conclusions. A potential exception is the cleaning material limonene, which has an unusually high ozone interaction cross-section; in the far-UVC context, turning off far-UVC lights during cleaning with limonene products would be reasonable.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"1186-1190"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138461795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Little is known about how sun exposure may affect the maternal skin barrier during pregnancy when many hormonal and physiological changes occur. In this longitudinal observational study, 50 pregnant women were recruited at 18-24 weeks' gestation, 25 in summer-autumn, and 25 in winter-spring. At three time points in pregnancy at 18-24, 28-30, and 36-38 weeks' gestation, participants completed a validated sun exposure questionnaire and had skin permeability and surface pH measured on the volar forearm. We identified an association between increased sun exposure and increased skin permeability at 18-24 weeks' gestation (β = 0.85, p = 0.01). Lower transepidermal water loss (decreased skin permeability), mean = 12.1 (SD = 5.1) at 28-30 weeks' gestation was observed, compared to mean = 12.6 (SD = 4.0) at 18-24 weeks' and mean = 13.7 (SD = 8.5) at 36-38 weeks' gestation (n = 27, β = -1.83, p = 0.007). Higher skin pH readings, mean = 5.80 (SD = 0.58) were found at 28-30 weeks' gestation, compared to mean = 5.25 (SD = 0.62) at 18-24 weeks' and mean = 5.47 (SD = 0.57) at 36-38 weeks' gestation (n = 27, β = 0.40, p = 0.004). These gestational fluctuations remained after adjusting for Fitzpatrick skin type, season, and sun exposure. We observed gestational fluctuations in both skin permeability and skin pH, with 28-30 weeks' gestation being a significant point of difference compared to mid- and late-pregnancy periods.
{"title":"Associations between sun exposure, skin pH, and epidermal permeability in pregnancy: A longitudinal observational study.","authors":"Rachel Stevens, Shelley Gorman, Diana Arabiat, Claus T Christophersen, Debra J Palmer","doi":"10.1111/php.13920","DOIUrl":"10.1111/php.13920","url":null,"abstract":"<p><p>Little is known about how sun exposure may affect the maternal skin barrier during pregnancy when many hormonal and physiological changes occur. In this longitudinal observational study, 50 pregnant women were recruited at 18-24 weeks' gestation, 25 in summer-autumn, and 25 in winter-spring. At three time points in pregnancy at 18-24, 28-30, and 36-38 weeks' gestation, participants completed a validated sun exposure questionnaire and had skin permeability and surface pH measured on the volar forearm. We identified an association between increased sun exposure and increased skin permeability at 18-24 weeks' gestation (β = 0.85, p = 0.01). Lower transepidermal water loss (decreased skin permeability), mean = 12.1 (SD = 5.1) at 28-30 weeks' gestation was observed, compared to mean = 12.6 (SD = 4.0) at 18-24 weeks' and mean = 13.7 (SD = 8.5) at 36-38 weeks' gestation (n = 27, β = -1.83, p = 0.007). Higher skin pH readings, mean = 5.80 (SD = 0.58) were found at 28-30 weeks' gestation, compared to mean = 5.25 (SD = 0.62) at 18-24 weeks' and mean = 5.47 (SD = 0.57) at 36-38 weeks' gestation (n = 27, β = 0.40, p = 0.004). These gestational fluctuations remained after adjusting for Fitzpatrick skin type, season, and sun exposure. We observed gestational fluctuations in both skin permeability and skin pH, with 28-30 weeks' gestation being a significant point of difference compared to mid- and late-pregnancy periods.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"1519-1526"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139712845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natural products are favored in the study of skin photodamage protection recently. Isoquercetin, namely 3-O-glucoside of quercetin, can be isolated from various plant species. In present research, the protective effect of isoquercitrin on UVB-induced injury in cells and mice skin were investigated. Our study reveals that 400 μM of isoquercitrin exhibits the best viability on UVB-irradiated HaCaT cells, and beneficial effects against oxidative stress UVB-induced in skin tissue by decreasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and simultaneously enhancing the activity of superoxide dismutase (SOD). Additionally, isoquercitrin was identified as an anti-inflammatory agent by reducing the level of COX-2 by Western blot analysis, and inflammatory cytokines such as IL-6, IL-1β, and TNF-α by ELISA, and UVB-induced epidermal thickening evidenced by H&E staining. It also effectively prevented UVB-induced collagen fibers from degradation identified by Masson staining. Isoquercitrin significantly inhibited MAPK pathway by downregulating the levels of AP-1, MMP-1, MMP-3, phospho-p38, phospho-JNK, phospho-ERK, cleaved caspase-9, cleaved caspase-3, and JAK2-STAT3 pathway by western blot analysis. In conclusion, isoquercitrin pretreatment protected mice skin from UVB irradiation-induced injury effectively, and the underlying mechanism may involve MAPK and JAK2-STAT3 signaling pathways.
{"title":"Protective effect of isoquercitrin on UVB-induced injury in HaCaT cells and mice skin through anti-inflammatory, antioxidant, and regulation of MAPK and JAK2-STAT3 pathways.","authors":"Yingyan Li, Yunge Ma, Yike Yao, Guohua Ru, Chong Lan, Liyan Li, Tao Huang","doi":"10.1111/php.13919","DOIUrl":"10.1111/php.13919","url":null,"abstract":"<p><p>Natural products are favored in the study of skin photodamage protection recently. Isoquercetin, namely 3-O-glucoside of quercetin, can be isolated from various plant species. In present research, the protective effect of isoquercitrin on UVB-induced injury in cells and mice skin were investigated. Our study reveals that 400 μM of isoquercitrin exhibits the best viability on UVB-irradiated HaCaT cells, and beneficial effects against oxidative stress UVB-induced in skin tissue by decreasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and simultaneously enhancing the activity of superoxide dismutase (SOD). Additionally, isoquercitrin was identified as an anti-inflammatory agent by reducing the level of COX-2 by Western blot analysis, and inflammatory cytokines such as IL-6, IL-1β, and TNF-α by ELISA, and UVB-induced epidermal thickening evidenced by H&E staining. It also effectively prevented UVB-induced collagen fibers from degradation identified by Masson staining. Isoquercitrin significantly inhibited MAPK pathway by downregulating the levels of AP-1, MMP-1, MMP-3, phospho-p38, phospho-JNK, phospho-ERK, cleaved caspase-9, cleaved caspase-3, and JAK2-STAT3 pathway by western blot analysis. In conclusion, isoquercitrin pretreatment protected mice skin from UVB irradiation-induced injury effectively, and the underlying mechanism may involve MAPK and JAK2-STAT3 signaling pathways.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"1507-1518"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139712846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-12-06DOI: 10.1111/php.13890
Ravindra K Shukla, Rajesh K Yadav, Vittal L Gole, Satyam Singh, Navneet Kumar Gupta, Jin-Ook Baeg
Sulfur-doped Eosin-B (SDE-B) photocatalysts were synthesized for the first time utilizing sublimed sulfur (S8) as a dopant in an in situ thermal copolymerization technique. Sulfur doping not only increased Eosin-B (E-B) absorption range for solar radiation but also improved fixation and oxygenation capabilities. The doped sulfur bridges the S-S bond by substituting for the edge bromine of the E-B bond. The improved photocatalytic activity of SDE-B in the fixation and oxygenation of NAD+/NADP+ and sulfides using solar light is attributed to the photo-induced hole of SDE-B's high fixation and oxygenation capacity, as well as an efficient suppression of electron and hole recombination. The powerful light-harvesting bridge system created using SDE-B as a photocatalyst works extremely well, resulting in high NADH/NADPH regeneration (79.58/76.36%) and good sulfoxide yields (98.9%) under solar light. This study focuses on the creation and implementation of a sulfur-doped photocatalyst for direct fine chemical regeneration and organic transformation.
{"title":"Photocatalytic fixation and oxygenation of NAD<sup>+</sup>/NADP<sup>+</sup> and sulfides using solar light: Exploring mechanistic investigations and their impact on synthetic applications.","authors":"Ravindra K Shukla, Rajesh K Yadav, Vittal L Gole, Satyam Singh, Navneet Kumar Gupta, Jin-Ook Baeg","doi":"10.1111/php.13890","DOIUrl":"10.1111/php.13890","url":null,"abstract":"<p><p>Sulfur-doped Eosin-B (SDE-B) photocatalysts were synthesized for the first time utilizing sublimed sulfur (S<sub>8</sub>) as a dopant in an in situ thermal copolymerization technique. Sulfur doping not only increased Eosin-B (E-B) absorption range for solar radiation but also improved fixation and oxygenation capabilities. The doped sulfur bridges the S-S bond by substituting for the edge bromine of the E-B bond. The improved photocatalytic activity of SDE-B in the fixation and oxygenation of NAD<sup>+</sup>/NADP<sup>+</sup> and sulfides using solar light is attributed to the photo-induced hole of SDE-B's high fixation and oxygenation capacity, as well as an efficient suppression of electron and hole recombination. The powerful light-harvesting bridge system created using SDE-B as a photocatalyst works extremely well, resulting in high NADH/NADPH regeneration (79.58/76.36%) and good sulfoxide yields (98.9%) under solar light. This study focuses on the creation and implementation of a sulfur-doped photocatalyst for direct fine chemical regeneration and organic transformation.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"1235-1246"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138488275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-08-28DOI: 10.1111/php.14013
{"title":"Correction to \"A new method to easily assess bacteriostatic and bactericidal activity of ultraviolet radiation using quantitative image analysis\".","authors":"","doi":"10.1111/php.14013","DOIUrl":"10.1111/php.14013","url":null,"abstract":"","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"1531"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}