Key message
Naringenin based nanocomposite alleviate the harmful effects of drought stress in Cuminum cyminum and enhance carefully the plant tolerance against drought condition with different mechanisms.
Abstract
In the recent years, drought stress is considered as one of the most important stressful conditions for agricultural plants. Reducing the effects of drought on plants is a crucial need nowadays, which calls for innovative methods. Naringenin is one of the most known plant flavonoids with antioxidant properties. In the present work, a naringenin based nanocomposite containing carboxymethylcellulose (CMC) as carrier (CMC-Nar) with an average size of 65 nm were synthesized by coacervation method. In order to investigate the effect of CMC nanocomposites containing naringenin (CMC-Nar) and pure naringenin in modulating the effects of drought stress, cultivation of Cuminum cyminum (varieties: Isfahan and Kashan) was carried out in greenhouse conditions. Drought stress was imposed as 30% of the field capacity. Various physiological, biochemical, and phytochemical assays were performed after treating the plants in drought conditions (30%). The results indicated that treatment of nanocomposites (CMC-Nar) and pure naringenin at drought conditions increased growth and photosynthetic parameters such as germination, shoot and root fresh weight, shoot dry weight, and chlorophyll content of the Cumin. Stress markers such as malondialdehyde, H2O2, and electrolyte leakage decreased under the treatment of narinjenin and especially nanocomposites (CMC-Nar) under drought conditions. Moreover, under same condition and treatments, some biochemical parameters including soluble sugar and total protein increased but the activity of antioxidant enzymes and the level of free amino acids has gone down. Compatible Solutes (Proline and glycine betaine) also increased. There was an increase in phytochemical parameters such as total phenols, flavonoids, anthocyanin, and tannins under naringenin and nanocomposites (CMC-Nar) treatment in drought conditions. In general, nanocomposites and pure naringenin reduced the harmful effects of drought stress, and the ameliorating impacts of nanocomposites (CMC-Nar) are more than pure naringenin. According to the results: In most cases, the impact of drought stress was modulated to a greater extent by (CMC-Nar) nanocomposites in the Isfahan variety compared to the Kashan variety. This research tries to propose a new method to reduce the effects of drought stress on Cuminum cyminum.