首页 > 最新文献

Planta最新文献

英文 中文
A novel Microbacterium strain SRS2 promotes the growth of Arabidopsis and MicroTom (S. lycopersicum) under normal and salt stress conditions. 在正常和盐胁迫条件下,新型微细菌菌株 SRS2 可促进拟南芥和番茄微囊藻(S. lycopersicum)的生长。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-08-25 DOI: 10.1007/s00425-024-04510-2
Ho Manh Tuong, Sonia García Méndez, Michiel Vandecasteele, Anne Willems, Anelia Iancheva, Pham Bich Ngoc, Do Tien Phat, Chu Hoang Ha, Sofie Goormachtig

Main conclusion: Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.

主要结论微细菌菌株 SRS2 通过诱导 ABA 途径,促进拟南芥和微型瘤在各种生长基质中的生长并诱导其抗盐胁迫能力。土壤盐分会降低植物的生长和发育,从而降低土壤的价值和生产力。植物生长促进根瘤菌(PGPR)已被证明能在盐胁迫等条件下支持植物生长。在此,我们测试了从番茄根部内膜分离出来的微细菌菌株 SRS2 帮助植物应对盐胁迫的能力。在耐盐性试验中,SRS2 在中等浓度的 NaCl 下生长良好,但在高浓度盐下生长受到抑制。在各种生长基质中,无论是有还是没有高浓度 NaCl 的情况下,接种 SRS2 都能增加拟南芥和 MicroTom 番茄的生物量。全基因组分析表明,该菌株含有多个参与渗透调节和活性氧(ROS)清除的基因,这可能是观察到的生长促进作用的潜在原因。此外,我们还通过 qRT-PCR、启动子::GUS 和突变体分析,研究了拟南芥中依赖或不依赖脱落酸(ABA)的耐盐胁迫途径。特别是在盐胁迫条件下,SRS2对植物生长的促进作用在aba1、abi4-102、abi3和abi5-1突变株系中消失。此外,在盐胁迫条件下,SRS2 接种植株中与盐胁迫相关的 ABA 基因比模拟植株瞬时上调。此外,在盐胁迫条件下,SRS2 接种的 ABI4::GUS 和 ABI5::GUS 植株比未接种的对照植株活化程度略高。这些检测结果表明,SRS2 在正常和盐胁迫条件下都能促进生长,后者可能是通过诱导依赖 ABA 和不依赖 ABA 的途径实现的。
{"title":"A novel Microbacterium strain SRS2 promotes the growth of Arabidopsis and MicroTom (S. lycopersicum) under normal and salt stress conditions.","authors":"Ho Manh Tuong, Sonia García Méndez, Michiel Vandecasteele, Anne Willems, Anelia Iancheva, Pham Bich Ngoc, Do Tien Phat, Chu Hoang Ha, Sofie Goormachtig","doi":"10.1007/s00425-024-04510-2","DOIUrl":"https://doi.org/10.1007/s00425-024-04510-2","url":null,"abstract":"<p><strong>Main conclusion: </strong>Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of Orysa;KRP4 drastically reduces grain filling in rice. 过表达 Orysa;KRP4 会大大降低水稻的籽粒灌浆率。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-08-22 DOI: 10.1007/s00425-024-04512-0
Gyanasri Sahu, Sagarika Mishra, Shuvobrata Majumder, Namisha Sharma, Birendra P Shaw

Main conclusion: Excess of KRP4 in the developing kernels in rice causes poor filling of the grains possibly through inhibition of CDKA;2 and CDKB;1 activity mediated by its interaction with CDKF;3. The potential yield of the rice varieties producing compact and heavy panicles bearing numerous spikelets is compromised because a high percentage of spikelets remain poorly filled, reportedly because of a high expression of KRPs that causes suppression of endosperm cell proliferation. To test the stated negative relationship between KRP expression and grain filling, Orysa;KRP4 was overexpressed under the control of seed-specific glutelin promoter in IR-64 rice variety that shows good grain filling. The transgenic lines showed more than 15-fold increase in expression of KRP4 in the spikelets concomitant with nearly 50% reduction in grain filling compared with the wild type without producing any significant changes on the other yield-related parameters like panicle length and the spikelets numbers that were respectively 30.23 ± 0.89 cm and 229.25 ± 33.72 per panicle in the wild type, suggesting a highly organ-targeted effect of the genetic transformation. Yeast two-hybrid test revealed CDKF;3 as the interacting partner of KRP4, and CDKF;3 was found to interact with CDKA;2, CDKB;1 and CDKD;1. Significant decrease in grain filling in the transgenic lines compared with the wild type due to overexpression of KRP4 could be because of suppression of the activity of CDKB;1 and CDKA;2 by inhibition of their phosphorylation directly by CDKF;3, or mediated through inhibition of phosphorylation of CDKD;1 by CDKF;3. The study thus indicated that suppression of expression of KRP(s) by genetic manipulation of their promoters could be an important way of improving the yield of the rice varieties bearing compact and heavy panicles.

主要结论:据报道,由于 KRPs 的高表达抑制了胚乳细胞的增殖,导致很高比例的小穗仍未充实,从而影响了水稻品种的潜在产量。为了验证 KRP 表达与谷粒饱满度之间的负相关关系,在谷粒饱满度较好的 IR-64 水稻品种中,在种子特异性谷蛋白启动子的控制下过表达了 Orysa;KRP4。与野生型相比,转基因品系小穗中 KRP4 的表达量增加了 15 倍以上,但谷粒充实度却降低了近 50%,而其他与产量相关的参数如圆锥花序长度和小穗数(野生型分别为 30.23 ± 0.89 厘米和 229.25 ± 33.72 个/圆锥花序)却没有发生显著变化,这表明基因转化具有高度器官靶向效应。酵母双杂交试验发现 CDKF;3 是 KRP4 的相互作用伙伴,CDKF;3 与 CDKA;2、CDKB;1 和 CDKD;1 也有相互作用。与野生型相比,过量表达 KRP4 导致转基因品系谷粒饱满度显著降低的原因可能是 CDKF;3 直接抑制了 CDKB;1 和 CDKA;2 的磷酸化,或 CDKF;3 通过抑制 CDKD;1 的磷酸化介导了 CDKB;1 和 CDKA;2 的活性。因此,该研究表明,通过对 KRP(s)启动子进行遗传操作来抑制其表达,可能是提高结实和重型圆锥花序水稻品种产量的一个重要途径。
{"title":"Overexpression of Orysa;KRP4 drastically reduces grain filling in rice.","authors":"Gyanasri Sahu, Sagarika Mishra, Shuvobrata Majumder, Namisha Sharma, Birendra P Shaw","doi":"10.1007/s00425-024-04512-0","DOIUrl":"10.1007/s00425-024-04512-0","url":null,"abstract":"<p><strong>Main conclusion: </strong>Excess of KRP4 in the developing kernels in rice causes poor filling of the grains possibly through inhibition of CDKA;2 and CDKB;1 activity mediated by its interaction with CDKF;3. The potential yield of the rice varieties producing compact and heavy panicles bearing numerous spikelets is compromised because a high percentage of spikelets remain poorly filled, reportedly because of a high expression of KRPs that causes suppression of endosperm cell proliferation. To test the stated negative relationship between KRP expression and grain filling, Orysa;KRP4 was overexpressed under the control of seed-specific glutelin promoter in IR-64 rice variety that shows good grain filling. The transgenic lines showed more than 15-fold increase in expression of KRP4 in the spikelets concomitant with nearly 50% reduction in grain filling compared with the wild type without producing any significant changes on the other yield-related parameters like panicle length and the spikelets numbers that were respectively 30.23 ± 0.89 cm and 229.25 ± 33.72 per panicle in the wild type, suggesting a highly organ-targeted effect of the genetic transformation. Yeast two-hybrid test revealed CDKF;3 as the interacting partner of KRP4, and CDKF;3 was found to interact with CDKA;2, CDKB;1 and CDKD;1. Significant decrease in grain filling in the transgenic lines compared with the wild type due to overexpression of KRP4 could be because of suppression of the activity of CDKB;1 and CDKA;2 by inhibition of their phosphorylation directly by CDKF;3, or mediated through inhibition of phosphorylation of CDKD;1 by CDKF;3. The study thus indicated that suppression of expression of KRP(s) by genetic manipulation of their promoters could be an important way of improving the yield of the rice varieties bearing compact and heavy panicles.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic characterization and transcriptional profiling of polyphenols in Cannabis sativa L. inflorescences with different chemical phenotypes. 具有不同化学表型的大麻(Cannabis sativa L.)花序中多酚的代谢特征和转录谱分析。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-08-20 DOI: 10.1007/s00425-024-04505-z
Laura Bassolino, Flavia Fulvio, Andrea Cerrato, Cinzia Citti, Giuseppe Cannazza, Anna Laura Capriotti, Ilaria Alberti, Irma Terracciano, Nicola Pecchioni, Roberta Paris

Main conclusion: After the most comprehensive analysis of the phenolic composition in Cannabis reported to date, a total of 211 compounds were identified, phenolic profiles were able to discriminate cannabis varieties and a complex regulatory network for phenolics accumulation in Cannabis chemovars was highlighted. Female inflorescences of Cannabis sativa L. are plenty of secondary metabolites, of which flavonoids and phenolic acids have been investigated by far less than phytocannabinoids and terpenoids. Understanding the biochemical composition in phenylpropanoids of Cannabis inflorescences, the molecular basis of flavonoid synthesis and how their content can be modulated by specific transcription factors will shed light on the variability of this trait in the germplasm, allowing the identification of biologically active metabolites that can be of interest to diverse industries. In this work, an untargeted metabolomic approach via UHPLC-HRMS was adopted to investigate the composition and variability of phenylpropanoids in thirteen Cannabis genotypes differentiated for their profile in phytocannabinoids, highlighting that phenolic profiles can discriminate varieties, with characteristic, unique genotype-related patterns. Moreover, the transcription profile of candidate phenolics regulatory MYB and bHLH transcription factors, analyzed by RT-qPCR, appeared strongly genotype-related, and specific patterns were found to be correlated between biochemical and transcriptional levels. Results highlight a complex regulatory network for phenolic accumulation in Cannabis chemovars that will need further insights from the functional side.

主要结论:经过对大麻中的酚类成分进行迄今为止最全面的分析,共鉴定出 211 种化合物,酚类成分图谱能够区分大麻品种,并强调了大麻化学变种中酚类物质积累的复杂调控网络。大麻雌花序中含有大量次生代谢物,其中黄酮类和酚酸类化合物的研究远远少于植物大麻素和萜类化合物。了解大麻花序中苯丙酮类化合物的生化组成、黄酮类化合物合成的分子基础以及它们的含量如何受特定转录因子的调控,将有助于揭示种质中这一性状的变异性,从而鉴定出对各行各业有意义的生物活性代谢物。在这项工作中,通过超高效液相色谱-质谱联用仪(UHPLC-HRMS)采用了一种非靶向代谢组学方法,研究了因植物大麻素特征而不同的 13 种大麻基因型中苯丙类化合物的组成和变异性,突出表明酚类特征可以区分品种,并具有与基因型相关的特征性独特模式。此外,通过 RT-qPCR 分析候选酚类调控 MYB 和 bHLH 转录因子的转录谱,发现其与基因型密切相关,并且在生化和转录水平之间发现了相关的特定模式。研究结果凸显了大麻化学变种中酚类物质积累的复杂调控网络,需要从功能方面进一步深入了解。
{"title":"Metabolic characterization and transcriptional profiling of polyphenols in Cannabis sativa L. inflorescences with different chemical phenotypes.","authors":"Laura Bassolino, Flavia Fulvio, Andrea Cerrato, Cinzia Citti, Giuseppe Cannazza, Anna Laura Capriotti, Ilaria Alberti, Irma Terracciano, Nicola Pecchioni, Roberta Paris","doi":"10.1007/s00425-024-04505-z","DOIUrl":"https://doi.org/10.1007/s00425-024-04505-z","url":null,"abstract":"<p><strong>Main conclusion: </strong>After the most comprehensive analysis of the phenolic composition in Cannabis reported to date, a total of 211 compounds were identified, phenolic profiles were able to discriminate cannabis varieties and a complex regulatory network for phenolics accumulation in Cannabis chemovars was highlighted. Female inflorescences of Cannabis sativa L. are plenty of secondary metabolites, of which flavonoids and phenolic acids have been investigated by far less than phytocannabinoids and terpenoids. Understanding the biochemical composition in phenylpropanoids of Cannabis inflorescences, the molecular basis of flavonoid synthesis and how their content can be modulated by specific transcription factors will shed light on the variability of this trait in the germplasm, allowing the identification of biologically active metabolites that can be of interest to diverse industries. In this work, an untargeted metabolomic approach via UHPLC-HRMS was adopted to investigate the composition and variability of phenylpropanoids in thirteen Cannabis genotypes differentiated for their profile in phytocannabinoids, highlighting that phenolic profiles can discriminate varieties, with characteristic, unique genotype-related patterns. Moreover, the transcription profile of candidate phenolics regulatory MYB and bHLH transcription factors, analyzed by RT-qPCR, appeared strongly genotype-related, and specific patterns were found to be correlated between biochemical and transcriptional levels. Results highlight a complex regulatory network for phenolic accumulation in Cannabis chemovars that will need further insights from the functional side.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chlorophyll deficiency in Agave angustifolia Haw.: unveiling the impact on secondary metabolite production. 龙舌兰叶绿素缺乏症:揭示对次生代谢物生产的影响。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-08-20 DOI: 10.1007/s00425-024-04506-y
Edder D Aguilar-Méndez, Juan L Monribot-Villanueva, José A Guerrero-Analco, Clelia De-la-Peña

Main conclusions: The albino phenotype of Agave angustifolia Haw. accumulates higher levels of phenylalanine and phenylpropanoids, while the green phenotype has a greater concentration of phenolic compounds. The metabolic consequences of chlorophyll deficiency in plants continue to be a captivating field of research, especially in relation to production of metabolic compounds. This study conducts a thorough analysis of the metabolome in green (G), variegated (V), and albino (A) phenotypes of Agave angustifolia Haw. Specifically, it examines the differences in the accumulation of compounds related to the phenylpropanoid and flavonoid biosynthesis pathways. Methanol extracts of leaf and meristem tissues from the three phenotypes grown in vitro were analyzed using liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry (UPLC-MS-QTOF) for untargeted metabolomics and triple quadrupole (QqQ) mass spectrometry for targeted metabolomic analyses. By employing these methods, we discovered notable differences in the levels of important metabolites such as L-phenylalanine, 4-hydroxyphenylpyruvic acid, and various flavonoids among the different phenotypes. The results of our study indicate that the A phenotype shows a significant increase in the levels of phenylalanine and phenylpropanoids in both leaf and meristem tissues. This is in contrast to a decrease in flavonoids, suggesting a metabolic reprogramming to compensate for the lack of chlorophyll. Significantly, compounds such as kaempferol-3-O-glucoside and rutin exhibited significant quantitative reduction in the A leaves, suggesting a subtle modification in the production of flavonols and potentially a changed mechanism for antioxidant protection. This study emphasizes the complex metabolic changes in A. angustifolia´s chlorophyll-deficient phenotypes, providing insight into the complex interplay between primary and secondary metabolism in response to chlorophyll deficiency. Our research not only enhances the comprehension of plant metabolism in albino phenotypes but also opens new avenues for exploring the biochemical and genetic basis of such adaptations, with potential biotechnological applications of these distinct plant variants.

主要结论Agave angustifolia Haw.的白化表型积累了较高水平的苯丙氨酸和苯丙酮,而绿色表型则有较高浓度的酚类化合物。植物叶绿素缺乏的代谢后果仍然是一个令人着迷的研究领域,尤其是与代谢化合物的产生有关的方面。本研究对绿色(G)、变色(V)和白化(A)表型龙舌兰鹰嘴豆的代谢组进行了全面分析。具体来说,它研究了与苯丙类和黄酮类生物合成途径相关的化合物积累的差异。我们使用液相色谱-四极杆飞行时间高分辨质谱(UPLC-MS-QTOF)和三重四极杆(QqQ)质谱进行了非靶向代谢组学分析和靶向代谢组学分析。通过采用这些方法,我们发现不同表型的 L-苯丙氨酸、4-羟基苯丙酮酸和各种黄酮类化合物等重要代谢物的含量存在显著差异。我们的研究结果表明,A 表型的叶片和分生组织中苯丙氨酸和苯丙酮类化合物的含量显著增加。这与黄酮类化合物的减少形成鲜明对比,表明叶绿素的缺乏导致了新陈代谢的重新规划。值得注意的是,山奈酚-3-O-葡萄糖苷和芦丁等化合物在 A 叶片中的数量显著减少,这表明黄酮类化合物的生产发生了微妙的变化,可能改变了抗氧化保护机制。这项研究强调了A. angustifolia叶绿素缺乏表型中复杂的新陈代谢变化,为我们深入了解叶绿素缺乏时初级和次级新陈代谢之间复杂的相互作用提供了依据。我们的研究不仅加深了对白化表型中植物新陈代谢的理解,还为探索这种适应性的生化和遗传基础开辟了新途径,并为这些不同植物变体的潜在生物技术应用提供了可能。
{"title":"Chlorophyll deficiency in Agave angustifolia Haw.: unveiling the impact on secondary metabolite production.","authors":"Edder D Aguilar-Méndez, Juan L Monribot-Villanueva, José A Guerrero-Analco, Clelia De-la-Peña","doi":"10.1007/s00425-024-04506-y","DOIUrl":"https://doi.org/10.1007/s00425-024-04506-y","url":null,"abstract":"<p><strong>Main conclusions: </strong>The albino phenotype of Agave angustifolia Haw. accumulates higher levels of phenylalanine and phenylpropanoids, while the green phenotype has a greater concentration of phenolic compounds. The metabolic consequences of chlorophyll deficiency in plants continue to be a captivating field of research, especially in relation to production of metabolic compounds. This study conducts a thorough analysis of the metabolome in green (G), variegated (V), and albino (A) phenotypes of Agave angustifolia Haw. Specifically, it examines the differences in the accumulation of compounds related to the phenylpropanoid and flavonoid biosynthesis pathways. Methanol extracts of leaf and meristem tissues from the three phenotypes grown in vitro were analyzed using liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry (UPLC-MS-QTOF) for untargeted metabolomics and triple quadrupole (QqQ) mass spectrometry for targeted metabolomic analyses. By employing these methods, we discovered notable differences in the levels of important metabolites such as L-phenylalanine, 4-hydroxyphenylpyruvic acid, and various flavonoids among the different phenotypes. The results of our study indicate that the A phenotype shows a significant increase in the levels of phenylalanine and phenylpropanoids in both leaf and meristem tissues. This is in contrast to a decrease in flavonoids, suggesting a metabolic reprogramming to compensate for the lack of chlorophyll. Significantly, compounds such as kaempferol-3-O-glucoside and rutin exhibited significant quantitative reduction in the A leaves, suggesting a subtle modification in the production of flavonols and potentially a changed mechanism for antioxidant protection. This study emphasizes the complex metabolic changes in A. angustifolia´s chlorophyll-deficient phenotypes, providing insight into the complex interplay between primary and secondary metabolism in response to chlorophyll deficiency. Our research not only enhances the comprehension of plant metabolism in albino phenotypes but also opens new avenues for exploring the biochemical and genetic basis of such adaptations, with potential biotechnological applications of these distinct plant variants.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finger millet (Eleusine coracana L.): from staple to superfood-a comprehensive review on nutritional, bioactive, industrial, and climate resilience potential. 小米(Eleusine coracana L.):从主食到超级食品--营养、生物活性、工业和气候适应潜力综合评述。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-08-17 DOI: 10.1007/s00425-024-04502-2
Simardeep Kaur, Arti Kumari, Karishma Seem, Gurkanwal Kaur, Deepesh Kumar, Surbhi Verma, Naseeb Singh, Amit Kumar, Manish Kumar, Sandeep Jaiswal, Rakesh Bhardwaj, Binay Kumar Singh, Amritbir Riar

Main conclusion: This review discusses the Finger millet's rich nutritional profile, bioactive potential, and industrial applications, combined with its climate resilience, which make it a promising crop for enhancing food security and promoting sustainable agriculture. This review also highlights its significant potential to address malnutrition and mitigate climate change impacts. The emergence of Finger millet from "poor man's staple food" to "a nutrient rich cereal" has encouraged the need to explore this crop at a wider scale. It is a highly significant crop due to its rich nutritional and bioactive profile, diverse biological activities, and promising industrial applications, along with the high climate resilience. This comprehensive review evaluates its nutritional composition by comparing favorably with other cereals and millets and emphasizing its potential to address malnutrition and enhance food security. Furthermore, it explores the phytochemical/bioactive potential and strategies to enhance their bioavailability followed biological activities of Finger millet by highlighting its various health-promoting properties. The review also discusses industrial potential of finger millet including its role in nutraceutical and functional food production, as well as bioenergy generation. In addition, role of Finger millet as a climate-resilient crop; specifically, the available genetic resources and identification of genes and quantitative trait loci (QTLs) associated with major stress tolerance traits have also been discussed. By providing a comprehensive synthesis of existing knowledge, this study offers valuable insights for researchers, policymakers, and stakeholders engaged in efforts to promote sustainable agriculture, enhance food and nutrition security, and mitigate the impacts of climate change.

主要结论:本综述讨论了指天粟丰富的营养成分、生物活性潜力、工业应用及其气候适应能力,这些都使其成为提高粮食安全和促进可持续农业发展的前景广阔的作物。本综述还强调了它在解决营养不良问题和减轻气候变化影响方面的巨大潜力。从 "穷人的主食 "到 "营养丰富的谷物",纤黍的出现促使人们需要在更大范围内探索这种作物。由于其丰富的营养和生物活性、多样的生物活性、有前景的工业应用以及较强的气候适应能力,它是一种非常重要的作物。本综述通过与其他谷物和黍子的比较,对其营养成分进行了评估,并强调了它在解决营养不良问题和提高粮食安全方面的潜力。此外,本综述还探讨了纤黍的植物化学/生物活性潜力以及提高其生物利用率和生物活性的策略,强调了纤黍的各种促进健康的特性。综述还讨论了小米的工业潜力,包括其在营养保健品和功能食品生产以及生物能源生产中的作用。此外,还讨论了黍作为一种气候适应性作物的作用,特别是可用的遗传资源以及与主要抗逆性相关的基因和数量性状位点(QTL)的鉴定。通过对现有知识的全面综合,本研究为研究人员、政策制定者和利益相关者提供了宝贵的见解,帮助他们努力促进可持续农业、加强粮食和营养安全并减轻气候变化的影响。
{"title":"Finger millet (Eleusine coracana L.): from staple to superfood-a comprehensive review on nutritional, bioactive, industrial, and climate resilience potential.","authors":"Simardeep Kaur, Arti Kumari, Karishma Seem, Gurkanwal Kaur, Deepesh Kumar, Surbhi Verma, Naseeb Singh, Amit Kumar, Manish Kumar, Sandeep Jaiswal, Rakesh Bhardwaj, Binay Kumar Singh, Amritbir Riar","doi":"10.1007/s00425-024-04502-2","DOIUrl":"10.1007/s00425-024-04502-2","url":null,"abstract":"<p><strong>Main conclusion: </strong>This review discusses the Finger millet's rich nutritional profile, bioactive potential, and industrial applications, combined with its climate resilience, which make it a promising crop for enhancing food security and promoting sustainable agriculture. This review also highlights its significant potential to address malnutrition and mitigate climate change impacts. The emergence of Finger millet from \"poor man's staple food\" to \"a nutrient rich cereal\" has encouraged the need to explore this crop at a wider scale. It is a highly significant crop due to its rich nutritional and bioactive profile, diverse biological activities, and promising industrial applications, along with the high climate resilience. This comprehensive review evaluates its nutritional composition by comparing favorably with other cereals and millets and emphasizing its potential to address malnutrition and enhance food security. Furthermore, it explores the phytochemical/bioactive potential and strategies to enhance their bioavailability followed biological activities of Finger millet by highlighting its various health-promoting properties. The review also discusses industrial potential of finger millet including its role in nutraceutical and functional food production, as well as bioenergy generation. In addition, role of Finger millet as a climate-resilient crop; specifically, the available genetic resources and identification of genes and quantitative trait loci (QTLs) associated with major stress tolerance traits have also been discussed. By providing a comprehensive synthesis of existing knowledge, this study offers valuable insights for researchers, policymakers, and stakeholders engaged in efforts to promote sustainable agriculture, enhance food and nutrition security, and mitigate the impacts of climate change.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11330411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenotypic and transcriptomics characterization uncovers genes underlying tuber yield traits and gene expression marker development in potato under aeroponics. 表型和转录组学特征分析揭示了气生栽培下马铃薯块茎产量性状和基因表达标记发展的基础基因。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-08-17 DOI: 10.1007/s00425-024-04507-x
Rasna Zinta, Jagesh Kumar Tiwari, Tanuja Buckseth, Umesh Goutam, Rajesh Kumar Singh, Ajay Kumar Thakur, Shwetank Singh, Vinod Kumar, Manoj Kumar

Main conclusion: Transcriptome analysis in potato varieties revealed genes associated with tuber yield-related traits and developed gene expression markers. This study aimed to identify genes involved in high tuber yield and its component traits in test potato varieties (Kufri Frysona, Kufri Khyati, and Kufri Mohan) compared to control (Kufri Sutlej). The aeroponic evaluation showed significant differences in yield-related traits in the varieties. Total RNA sequencing was performed using tuber and leaf tissues on the Illumina platform. The high-quality reads (QV > 25) mapping with the reference potato genomes revealed statistically significant (P < 0.05) differentially expressed genes (DEGs) into two categories: up-regulated (> 2 Log2 fold change) and down-regulated (< -2 Log2 fold change). DEGs were characterized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Collectively, we identified genes participating in sugar metabolism, stress response, transcription factors, phytohormones, kinase proteins, and other genes greatly affecting tuber yield and its related traits. A few selected genes were UDP-glucose glucosyltransferase, glutathion S-transferase, GDSL esterase/lipase, transcription factors (MYB, WRKY, bHLH63, and BURP), phytohormones (auxin-induced protein X10A, and GA20 oxidase), kinase proteins (Kunitz-type tuber invertase inhibitor, BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1) and laccase. Based on the selected 17 peptide sequences representing 13 genes, a phylogeny tree and motifs were analyzed. Real time-quantitative polymerase chain reaction (RT-qPCR) analysis was used to validate the RNA-seq results. RT-qPCR based gene expression markers were developed for the genes such as 101 kDa heat shock protein, catechol oxidase B chloroplastic, cysteine protease inhibitor 1, Kunitz-type tuber invertase inhibitor, and laccase to identify high yielding potato genotypes. Thus, our study paved the path for potential genes associated with tuber yield traits in potato under aeroponics.

主要结论马铃薯品种的转录组分析揭示了与块茎产量相关性状有关的基因,并开发了基因表达标记。本研究旨在确定与对照(Kufri Sutlej)相比,试验马铃薯品种(Kufri Frysona、Kufri Khyati 和 Kufri Mohan)中涉及块茎高产及其组成性状的基因。气培评价显示,各品种在产量相关性状方面存在显著差异。在 Illumina 平台上利用块茎和叶片组织进行了总 RNA 测序。与参考马铃薯基因组映射的高质量读数(QV > 25)显示了显著的统计意义(P 2 Log2 倍变化)和下调(2 倍变化)。通过基因本体(GO)和京都基因组百科全书(KEGG)途径对 DEGs 进行了表征。总之,我们发现了参与糖代谢、胁迫反应、转录因子、植物激素、激酶蛋白以及其他对块茎产量及其相关性状有重大影响的基因。入选的几个基因包括:UDP-葡萄糖葡萄糖基转移酶、谷胱甘肽 S-转移酶、GDSL酯酶/脂肪酶、转录因子(MYB、WRKY、bHLH63和BURP)、植物激素(辅助素诱导蛋白X10A和GA20氧化酶)、激酶蛋白(Kunitz型块茎转化酶抑制剂、BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1)和漆酶。根据所选的代表 13 个基因的 17 个肽序列,分析了系统发生树和主题。实时定量聚合酶链反应(RT-qPCR)分析用于验证 RNA-seq 结果。针对 101 kDa 热休克蛋白、儿茶酚氧化酶 B 叶绿体、半胱氨酸蛋白酶抑制剂 1、Kunitz 型块茎转化酶抑制剂和漆酶等基因开发了基于 RT-qPCR 的基因表达标记,以鉴定马铃薯高产基因型。因此,我们的研究为寻找与气生栽培下马铃薯块茎产量性状相关的潜在基因铺平了道路。
{"title":"Phenotypic and transcriptomics characterization uncovers genes underlying tuber yield traits and gene expression marker development in potato under aeroponics.","authors":"Rasna Zinta, Jagesh Kumar Tiwari, Tanuja Buckseth, Umesh Goutam, Rajesh Kumar Singh, Ajay Kumar Thakur, Shwetank Singh, Vinod Kumar, Manoj Kumar","doi":"10.1007/s00425-024-04507-x","DOIUrl":"10.1007/s00425-024-04507-x","url":null,"abstract":"<p><strong>Main conclusion: </strong>Transcriptome analysis in potato varieties revealed genes associated with tuber yield-related traits and developed gene expression markers. This study aimed to identify genes involved in high tuber yield and its component traits in test potato varieties (Kufri Frysona, Kufri Khyati, and Kufri Mohan) compared to control (Kufri Sutlej). The aeroponic evaluation showed significant differences in yield-related traits in the varieties. Total RNA sequencing was performed using tuber and leaf tissues on the Illumina platform. The high-quality reads (QV > 25) mapping with the reference potato genomes revealed statistically significant (P < 0.05) differentially expressed genes (DEGs) into two categories: up-regulated (> 2 Log<sub>2</sub> fold change) and down-regulated (< -2 Log<sub>2</sub> fold change). DEGs were characterized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Collectively, we identified genes participating in sugar metabolism, stress response, transcription factors, phytohormones, kinase proteins, and other genes greatly affecting tuber yield and its related traits. A few selected genes were UDP-glucose glucosyltransferase, glutathion S-transferase, GDSL esterase/lipase, transcription factors (MYB, WRKY, bHLH63, and BURP), phytohormones (auxin-induced protein X10A, and GA20 oxidase), kinase proteins (Kunitz-type tuber invertase inhibitor, BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1) and laccase. Based on the selected 17 peptide sequences representing 13 genes, a phylogeny tree and motifs were analyzed. Real time-quantitative polymerase chain reaction (RT-qPCR) analysis was used to validate the RNA-seq results. RT-qPCR based gene expression markers were developed for the genes such as 101 kDa heat shock protein, catechol oxidase B chloroplastic, cysteine protease inhibitor 1, Kunitz-type tuber invertase inhibitor, and laccase to identify high yielding potato genotypes. Thus, our study paved the path for potential genes associated with tuber yield traits in potato under aeroponics.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structural organization of the outer tissues in the gametophytic stem of the umbrella moss Hypnodendron menziesii optimizes load bearing. 伞形藓配子体茎外层组织的结构组织优化了承重能力。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-08-16 DOI: 10.1007/s00425-024-04503-1
Ramesh R Chavan, Adya P Singh

Main conclusion: The ultrastructural design and biochemical organization of the significantly thickened outer tissues of the gametophytic stem of Hypnodendron menziesii optimizes load bearing of the stem. Hypnodendron menziesii is a bryoid umbrella moss growing in high humid conditions on the forest floors of New Zealand. The erect gametophyte bears up to eight whorls of branches in succession, spreading across the stem that bears the heavy weight of branches with highly hydrated leaves. Our investigation using a combination of light microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and TEM-immunolabeling techniques provided novel information on the structural design and biochemical organization of greatly thickened cell walls of epidermal, hypodermal, and outermost cortical tissues, comparing underlying thin-walled cortical tissues in the gametophytic stem. Probing into the ultrastructure of the cell wall architecture of these target tissues by TEM and SEM revealed the cell walls to display a multilamellar organization, in addition to demonstrating the presence of an electron-dense substance in the cell wall, presumably flavonoids. The pattern of distribution and concentration of rhamnogalacturonan, homogalacturonan, and heteromannan, as determined by immunogold labeling, suggests that it is the combination of structural and molecular design of the cell wall that may optimize the mechanical function of the epidermal, hypodermal, and outer cortical tissues. Statistical relationships between the overall thickness of epidermal, hypodermal, and outer cortical cell walls, the lumen area of cells and the percentage area of cell wall occupied in these tissues at different heights of the stem, and thickness of secondary cell wall layers (L1-L4/5) were explored. The results of these analyses unequivocally support the contribution of outer tissues to the mechanical strength of the resilient stem.

主要结论男人草(Hypnodendron menziesii)配子体茎部明显增厚的外部组织的超微结构设计和生化组织优化了茎部的承重能力。Hypnodendron menziesii 是一种生长在新西兰森林地面高湿度条件下的白蜡伞苔。直立的配子体可连续生出多达八轮分枝,在茎干上蔓延,而茎干则承受着带有高水合叶片的分枝的重压。我们采用光镜、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和 TEM 免疫标记技术进行了综合研究,为配子体茎中表皮、下表皮和最外层皮层组织的细胞壁大幅增厚的结构设计和生化组织提供了新的信息,并对配子体茎中薄壁皮层组织的底层进行了比较。利用 TEM 和 SEM 对这些目标组织的细胞壁结构的超微结构进行了探测,发现细胞壁呈现多层组织结构,此外还显示细胞壁中存在电子致密物质,可能是黄酮类化合物。通过免疫金标记确定的鼠李糖、同源半乳糖醛酸和杂甘露聚糖的分布和浓度模式表明,细胞壁的结构和分子设计相结合,可能会优化表皮、下表皮和外皮层组织的机械功能。研究人员探讨了表皮、下胚层和外皮层细胞壁的总体厚度、细胞腔面积和这些组织在茎的不同高度所占细胞壁面积的百分比以及次生细胞壁层(L1-L4/5)厚度之间的统计关系。这些分析结果明确支持外层组织对弹性茎机械强度的贡献。
{"title":"The structural organization of the outer tissues in the gametophytic stem of the umbrella moss Hypnodendron menziesii optimizes load bearing.","authors":"Ramesh R Chavan, Adya P Singh","doi":"10.1007/s00425-024-04503-1","DOIUrl":"10.1007/s00425-024-04503-1","url":null,"abstract":"<p><strong>Main conclusion: </strong>The ultrastructural design and biochemical organization of the significantly thickened outer tissues of the gametophytic stem of Hypnodendron menziesii optimizes load bearing of the stem. Hypnodendron menziesii is a bryoid umbrella moss growing in high humid conditions on the forest floors of New Zealand. The erect gametophyte bears up to eight whorls of branches in succession, spreading across the stem that bears the heavy weight of branches with highly hydrated leaves. Our investigation using a combination of light microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and TEM-immunolabeling techniques provided novel information on the structural design and biochemical organization of greatly thickened cell walls of epidermal, hypodermal, and outermost cortical tissues, comparing underlying thin-walled cortical tissues in the gametophytic stem. Probing into the ultrastructure of the cell wall architecture of these target tissues by TEM and SEM revealed the cell walls to display a multilamellar organization, in addition to demonstrating the presence of an electron-dense substance in the cell wall, presumably flavonoids. The pattern of distribution and concentration of rhamnogalacturonan, homogalacturonan, and heteromannan, as determined by immunogold labeling, suggests that it is the combination of structural and molecular design of the cell wall that may optimize the mechanical function of the epidermal, hypodermal, and outer cortical tissues. Statistical relationships between the overall thickness of epidermal, hypodermal, and outer cortical cell walls, the lumen area of cells and the percentage area of cell wall occupied in these tissues at different heights of the stem, and thickness of secondary cell wall layers (L1-L4/5) were explored. The results of these analyses unequivocally support the contribution of outer tissues to the mechanical strength of the resilient stem.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interaction between miR165/166 and miR160 regulates Arabidopsis thaliana seed size, weight, and number in a ROS-dependent manner. miR165/166 与 miR160 之间的相互作用以 ROS 依赖性方式调控拟南芥种子的大小、重量和数量。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-08-13 DOI: 10.1007/s00425-024-04499-8
Natalia Pawłasek, Anna Sokołowska, Marek Koter, Krystyna Oracz

Main conclusion: Our data link the miR165/166- and miR160-mediated regulatory modules to ROS and seed formation. Trade-offs of seed size, weight, and number probably require control of the expression of miR165/166 by miR160, modulation of ROS metabolism by miR165/166, and miR160 abundance by ROS-induced oxidative modifications The cycle of plant life and its yield productivity depends fundamentally on the establishment of the trade-offs of seed size, weight, and number. For annual plants, seed number should simply be a positive function of vegetative biomass and a negative function of seed size and/or weight. However, extensive natural variation within species is observed for these traits, for which an optimal solution is environmentally dependent. Understanding the miRNA-mediated post-transcriptional regulation of gene expression determining seed phenotype and number is crucial from both an evolutionary and applied perspective. Although extensive research has concentrated on the individual roles of miRNAs in plant life, fewer studies have centred on their functional interactions, hence this study aimed to examine whether the module of miR165/miR166 and/or miR160 interactions is involved in forming Arabidopsis thaliana seeds, and/or has an impact on their features. Considering that reactive oxygen species (ROS) are among key players in seed-related processes, it was also intriguing to verify if the mechanism of action of these miRNAs is associated with the ROS pathway. The plant material used in this study consisted of flower buds, green siliques, and freshly harvested seeds, of wild type (WT), and STTM165/166 and STTM160 × 165/166 mutants of A. thaliana plants which are powerful tools for functional analysis of miRNAs in plants. The novel results obtained during physiological phenotyping together with two-tailed qRT-PCR analysis of mature miR165, miR166, miR160, and spectrofluorimetric measurement of apoplastic hydrogen peroxide (H2O2) for the first time revealed that interaction between miR165/miR166 and miR160 may regulate seed size, weight and number in ROS-dependent manner.

主要结论:我们的数据将 miR165/166 和 miR160 介导的调控模块与 ROS 和种子形成联系起来。种子大小、重量和数量的权衡可能需要通过 miR160 控制 miR165/166 的表达,通过 miR165/166 调节 ROS 代谢,以及通过 ROS 诱导的氧化修饰调节 miR160 的丰度 植物的生命周期及其产量生产率从根本上取决于种子大小、重量和数量权衡的建立。对于一年生植物来说,种子数量应该只是无性生物量的正函数,而种子大小和/或重量的负函数。然而,这些性状在物种内部存在广泛的自然差异,因此最佳解决方案取决于环境。从进化和应用的角度来看,了解 miRNA 介导的转录后基因表达调控对种子表型和数量的决定作用至关重要。尽管大量研究集中于 miRNA 在植物生命中的个体作用,但以它们的功能相互作用为中心的研究较少,因此本研究旨在考察 miR165/miR166 和/或 miR160 的相互作用模块是否参与拟南芥种子的形成,以及/或对其特征产生影响。考虑到活性氧(ROS)是种子相关过程的关键因素之一,验证这些 miRNA 的作用机制是否与 ROS 途径有关也很有意义。本研究使用的植物材料包括野生型(WT)、STM165/166 和 STTM160 × 165/166 突变体的花蕾、绿色韧皮部和新鲜收获的种子。生理表型分析和成熟 miR165、miR166、miR160 的双尾 qRT-PCR 分析以及凋亡体过氧化氢(H2O2)的光谱荧光测定首次揭示了 miR165/miR166 和 miR160 之间的相互作用可能以 ROS 依赖性方式调控种子大小、重量和数量。
{"title":"The interaction between miR165/166 and miR160 regulates Arabidopsis thaliana seed size, weight, and number in a ROS-dependent manner.","authors":"Natalia Pawłasek, Anna Sokołowska, Marek Koter, Krystyna Oracz","doi":"10.1007/s00425-024-04499-8","DOIUrl":"10.1007/s00425-024-04499-8","url":null,"abstract":"<p><strong>Main conclusion: </strong>Our data link the miR165/166- and miR160-mediated regulatory modules to ROS and seed formation. Trade-offs of seed size, weight, and number probably require control of the expression of miR165/166 by miR160, modulation of ROS metabolism by miR165/166, and miR160 abundance by ROS-induced oxidative modifications The cycle of plant life and its yield productivity depends fundamentally on the establishment of the trade-offs of seed size, weight, and number. For annual plants, seed number should simply be a positive function of vegetative biomass and a negative function of seed size and/or weight. However, extensive natural variation within species is observed for these traits, for which an optimal solution is environmentally dependent. Understanding the miRNA-mediated post-transcriptional regulation of gene expression determining seed phenotype and number is crucial from both an evolutionary and applied perspective. Although extensive research has concentrated on the individual roles of miRNAs in plant life, fewer studies have centred on their functional interactions, hence this study aimed to examine whether the module of miR165/miR166 and/or miR160 interactions is involved in forming Arabidopsis thaliana seeds, and/or has an impact on their features. Considering that reactive oxygen species (ROS) are among key players in seed-related processes, it was also intriguing to verify if the mechanism of action of these miRNAs is associated with the ROS pathway. The plant material used in this study consisted of flower buds, green siliques, and freshly harvested seeds, of wild type (WT), and STTM165/166 and STTM160 × 165/166 mutants of A. thaliana plants which are powerful tools for functional analysis of miRNAs in plants. The novel results obtained during physiological phenotyping together with two-tailed qRT-PCR analysis of mature miR165, miR166, miR160, and spectrofluorimetric measurement of apoplastic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) for the first time revealed that interaction between miR165/miR166 and miR160 may regulate seed size, weight and number in ROS-dependent manner.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on endophytic bacteria of orchids: functional roles toward synthesis of bioactive metabolites for plant growth promotion and disease biocontrol. 兰花内生细菌综述:合成生物活性代谢物促进植物生长和疾病生物防治的功能作用。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-08-13 DOI: 10.1007/s00425-024-04501-3
Juri Saikia, Debajit Thakur

Main conclusion: In this review, we have discussed the untapped potential of orchid endophytic bacteria as a valuable reservoir of bioactive metabolites, offering significant contributions to plant growth promotion and disease protection in the context of sustainable agriculture. Orchidaceae is one of the broadest and most diverse flowering plant families on Earth. Although the relationship between orchids and fungi is well documented, bacterial endophytes have recently gained attention for their roles in host development, vigor, and as sources of novel bioactive compounds. These endophytes establish mutualistic relationships with orchids, influencing plant growth, mineral solubilization, nitrogen fixation, and protection from environmental stress and phytopathogens. Current research on orchid-associated bacterial endophytes is limited, presenting significant opportunities to discover new species or genetic variants that improve host fitness and stress tolerance. The potential for extracting bioactive compounds from these bacteria is considerable, and optimization strategies for their sustainable production could significantly enhance their commercial utility. This review discusses the methods used in isolating and identifying endophytic bacteria from orchids, their diversity and significance in promoting orchid growth, and the production of bioactive compounds, with an emphasis on their potential applications in sustainable agriculture and other sectors.

主要结论在这篇综述中,我们讨论了兰花内生细菌作为生物活性代谢产物的宝贵宝库尚未开发的潜力,在可持续农业的背景下为促进植物生长和保护疾病做出了重大贡献。兰科是地球上最广泛、最多样化的开花植物科之一。虽然兰花与真菌之间的关系已经有了很好的记载,但细菌内生菌因其在宿主发育、活力以及作为新型生物活性化合物来源方面的作用而在最近获得了关注。这些内生菌与兰花建立了互惠关系,影响植物生长、矿物质溶解、固氮以及抵御环境压力和植物病原体。目前对兰花相关细菌内生菌的研究还很有限,这为发现能提高宿主适应性和抗逆性的新品种或基因变体提供了重要机会。从这些细菌中提取生物活性化合物的潜力巨大,可持续生产这些化合物的优化策略可大大提高其商业用途。本综述讨论了从兰花中分离和鉴定内生细菌的方法、这些细菌的多样性及其在促进兰花生长和生产生物活性化合物方面的意义,重点是它们在可持续农业和其他领域的潜在应用。
{"title":"A review on endophytic bacteria of orchids: functional roles toward synthesis of bioactive metabolites for plant growth promotion and disease biocontrol.","authors":"Juri Saikia, Debajit Thakur","doi":"10.1007/s00425-024-04501-3","DOIUrl":"10.1007/s00425-024-04501-3","url":null,"abstract":"<p><strong>Main conclusion: </strong>In this review, we have discussed the untapped potential of orchid endophytic bacteria as a valuable reservoir of bioactive metabolites, offering significant contributions to plant growth promotion and disease protection in the context of sustainable agriculture. Orchidaceae is one of the broadest and most diverse flowering plant families on Earth. Although the relationship between orchids and fungi is well documented, bacterial endophytes have recently gained attention for their roles in host development, vigor, and as sources of novel bioactive compounds. These endophytes establish mutualistic relationships with orchids, influencing plant growth, mineral solubilization, nitrogen fixation, and protection from environmental stress and phytopathogens. Current research on orchid-associated bacterial endophytes is limited, presenting significant opportunities to discover new species or genetic variants that improve host fitness and stress tolerance. The potential for extracting bioactive compounds from these bacteria is considerable, and optimization strategies for their sustainable production could significantly enhance their commercial utility. This review discusses the methods used in isolating and identifying endophytic bacteria from orchids, their diversity and significance in promoting orchid growth, and the production of bioactive compounds, with an emphasis on their potential applications in sustainable agriculture and other sectors.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic diversification of allohexaploid Brassica hybrids (AABBCC) using a fertile octoploid with excessive C genome set (AABBCCCC). 利用具有过量 C 基因组的可育八倍体(AABBCCCC)实现异源六倍体芸薹属杂交种(AABBCC)的遗传多样化。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-08-13 DOI: 10.1007/s00425-024-04497-w
Teppei Shinke, Akira Yamazaki, Soraha Nakamura, Hiroshi Kudoh, Munetaka Hosokawa

Main conclusion: Using octoploid somatic hybrids with excessive C genome sets, AABBCCCC, a diverse allohexaploid, AABBCC, was produced by C genome reduction through subsequent crossing with various AABB cultivars. Even when somatic hybrids are produced, the plants that are produced are rarely in themselves an innovative crop. In this study, we used somatic hybrids of Brassica juncea (AABB) and B. oleracea (CC) as model cases for the genetic diversification of the somatic hybrids. One cell of 'Akaoba Takana' (B. juncea) and two cells of 'Snow Crown' (B. oleracea) were fused to create several somatic hybrids with excessive C genomes, AABBCCCC. Using AABBCCCC somatic hybrids as mother plants and crossing with 'Akaoba Takana', the AABBCC progenies were generated. When these AABBCC plants were self-fertilized, and flow cytometric (FCM) analysis was performed on the next generations, differences in the relative amount of genome size variation were observed, depending on the different AABBCCCC parents used for AABBCC creation. Further self-progeny was obtained for AABBCC plants with a theoretical allohexaploid DNA index by FCM. However, as the DNA indices of the progeny populations varied between plants used and aneuploid individuals still occurred in the progeny populations, it was difficult to say that the allohexaploid genome was fully stabilized. Next, to obtain genetic diversification of the allohexaploid, different cultivars of B. juncea were crossed with AABBCCCC, resulting in diverse AABBCC plants. Genetic diversity can be further expanded by crossbreeding plants with different AABBCC genome sets. Although genetic stability is necessary to ensure in the later generations, the results obtained in this study show that the use of somatic hybrids with excess genomes is an effective strategy for creating innovative crops.

主要结论:利用具有过多 C 基因组的八倍体体细胞杂交种 AABBCCCC,通过减少 C 基因组,随后与各种 AABB 栽培品种杂交,产生了多样化的异源六倍体 AABBCC。即使产生了体细胞杂交种,所培育出的植株本身也很少能成为创新作物。在本研究中,我们以芥蓝的体细胞杂交种(AABB)和甘蓝的体细胞杂交种(CC)作为体细胞杂交种遗传多样化的示范案例。将'Akaoba Takana'(芥蓝)的一个细胞和'Snow Crown'(油菜)的两个细胞融合,产生了多个C基因组过多的体细胞杂交种,即AABBCCCC。以 AABBCCCC 体细胞杂交种为母本,与'Akaoba Takana'杂交,产生了 AABBCC 后代。对这些 AABBCC 植物进行自交,并对下一代进行流式细胞仪(FCM)分析时,发现基因组大小的相对变异量存在差异,这取决于创建 AABBCC 时使用的不同 AABBCC 亲本。通过 FCM 分析,AABBCC 植物进一步获得了自交后代,其 DNA 指数理论上为异源六倍体。然而,由于不同植株的后代群体 DNA 指数不同,而且后代群体中仍有非整倍体个体,因此很难说异源六倍体基因组已完全稳定。接下来,为了获得异源六倍体的遗传多样性,将不同的君子兰栽培品种与 AABBCCCC 进行杂交,得到了多样性的 AABBCC 植株。通过杂交具有不同 AABBCC 基因组的植物,可以进一步扩大遗传多样性。虽然必须确保后代的遗传稳定性,但本研究的结果表明,使用基因组过剩的体细胞杂交种是创造创新作物的有效策略。
{"title":"Genetic diversification of allohexaploid Brassica hybrids (AABBCC) using a fertile octoploid with excessive C genome set (AABBCCCC).","authors":"Teppei Shinke, Akira Yamazaki, Soraha Nakamura, Hiroshi Kudoh, Munetaka Hosokawa","doi":"10.1007/s00425-024-04497-w","DOIUrl":"10.1007/s00425-024-04497-w","url":null,"abstract":"<p><strong>Main conclusion: </strong>Using octoploid somatic hybrids with excessive C genome sets, AABBCCCC, a diverse allohexaploid, AABBCC, was produced by C genome reduction through subsequent crossing with various AABB cultivars. Even when somatic hybrids are produced, the plants that are produced are rarely in themselves an innovative crop. In this study, we used somatic hybrids of Brassica juncea (AABB) and B. oleracea (CC) as model cases for the genetic diversification of the somatic hybrids. One cell of 'Akaoba Takana' (B. juncea) and two cells of 'Snow Crown' (B. oleracea) were fused to create several somatic hybrids with excessive C genomes, AABBCCCC. Using AABBCCCC somatic hybrids as mother plants and crossing with 'Akaoba Takana', the AABBCC progenies were generated. When these AABBCC plants were self-fertilized, and flow cytometric (FCM) analysis was performed on the next generations, differences in the relative amount of genome size variation were observed, depending on the different AABBCCCC parents used for AABBCC creation. Further self-progeny was obtained for AABBCC plants with a theoretical allohexaploid DNA index by FCM. However, as the DNA indices of the progeny populations varied between plants used and aneuploid individuals still occurred in the progeny populations, it was difficult to say that the allohexaploid genome was fully stabilized. Next, to obtain genetic diversification of the allohexaploid, different cultivars of B. juncea were crossed with AABBCCCC, resulting in diverse AABBCC plants. Genetic diversity can be further expanded by crossbreeding plants with different AABBCC genome sets. Although genetic stability is necessary to ensure in the later generations, the results obtained in this study show that the use of somatic hybrids with excess genomes is an effective strategy for creating innovative crops.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Planta
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1