首页 > 最新文献

Planta最新文献

英文 中文
Genome-wide identification, phylogenetic, structural and functional evolution of the core components of ABA signaling in plant species: a focus on rice. 植物物种中 ABA 信号核心成分的全基因组鉴定、系统发育、结构和功能进化:聚焦水稻。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-22 DOI: 10.1007/s00425-024-04475-2
Yanhong Lan, Yao Song, Mengjia Liu, Dening Luo

Main conclusion: A genome-wide analysis had identified 642 ABA core component genes from 20 plant species, which were further categorized into three distinct subfamilies. The gene structures and evolutionary relationships of these genes had been characterized. PP2C_1, PP2C_2, and SnRK2_1 had emerged as key players in mediating the ABA signaling transduction pathway, specifically in rice, in response to abiotic stresses. The plant hormone abscisic acid (ABA) is essential for growth, development, and stress response, relying on its core components, pyrabactin resistance, pyrabactin resistance-like, and the regulatory component of ABA receptor (PYR/PYL/RCAR), 2C protein phosphatase (PP2C), sucrose non-fermenting-1-related protein kinase 2 (SnRK2). However, there's a lack of research on their structural evolution and functional differentiation across plants. Our study analyzed the phylogenetic, gene structure, homology, and duplication evolution of this complex in 20 plant species. We found conserved patterns in copy number and homology across subfamilies. Segmental and tandem duplications drove the evolution of these genes, while whole-genome duplication (WGD) expanded PYR/PYL/RCAR and PP2C subfamilies, enhancing environmental adaptation. In rice and Arabidopsis, the PYR/PYL/RCAR, PP2C, and SnRK2 genes showed distinct tissue-specific expression and responded to various stresses. Notably, PP2C_1 and PP2C_2 interacted with SnRK2_1 and were crucial for ABA signaling in rice. These findings offered new insights into ABA signaling evolution, interactions, and integration in green plants, benefiting future research in agriculture, evolutionary biology, ecology, and environmental science.

主要结论通过全基因组分析,从 20 种植物中发现了 642 个 ABA 核心成分基因,并进一步将其分为三个不同的亚家族。对这些基因的基因结构和进化关系进行了表征。PP2C_1、PP2C_2和SnRK2_1已成为介导ABA信号转导通路的关键角色,特别是在水稻应对非生物胁迫的过程中。植物激素脱落酸(ABA)对生长、发育和胁迫响应至关重要,它依赖于其核心成分--抗性吡拉菌素、类抗性吡拉菌素和 ABA 受体(PYR/PYL/RCAR)的调节成分、2C 蛋白磷酸酶(PP2C)、蔗糖不发酵-1 相关蛋白激酶 2(SnRK2)。然而,关于它们在不同植物中的结构演化和功能分化的研究还很缺乏。我们的研究分析了这一复合体在20种植物中的系统发育、基因结构、同源性和复制进化。我们发现各亚科在拷贝数和同源性方面的模式是一致的。片段复制和串联复制推动了这些基因的进化,而全基因组复制(WGD)扩大了PYR/PYL/RCAR和PP2C亚家族,增强了环境适应能力。在水稻和拟南芥中,PYR/PYL/RCAR、PP2C和SnRK2基因表现出不同的组织特异性表达,并对各种胁迫做出反应。值得注意的是,PP2C_1和PP2C_2与SnRK2_1相互作用,对水稻的ABA信号转导至关重要。这些发现为绿色植物中 ABA 信号的进化、相互作用和整合提供了新的视角,对未来农业、进化生物学、生态学和环境科学的研究大有裨益。
{"title":"Genome-wide identification, phylogenetic, structural and functional evolution of the core components of ABA signaling in plant species: a focus on rice.","authors":"Yanhong Lan, Yao Song, Mengjia Liu, Dening Luo","doi":"10.1007/s00425-024-04475-2","DOIUrl":"10.1007/s00425-024-04475-2","url":null,"abstract":"<p><strong>Main conclusion: </strong>A genome-wide analysis had identified 642 ABA core component genes from 20 plant species, which were further categorized into three distinct subfamilies. The gene structures and evolutionary relationships of these genes had been characterized. PP2C_1, PP2C_2, and SnRK2_1 had emerged as key players in mediating the ABA signaling transduction pathway, specifically in rice, in response to abiotic stresses. The plant hormone abscisic acid (ABA) is essential for growth, development, and stress response, relying on its core components, pyrabactin resistance, pyrabactin resistance-like, and the regulatory component of ABA receptor (PYR/PYL/RCAR), 2C protein phosphatase (PP2C), sucrose non-fermenting-1-related protein kinase 2 (SnRK2). However, there's a lack of research on their structural evolution and functional differentiation across plants. Our study analyzed the phylogenetic, gene structure, homology, and duplication evolution of this complex in 20 plant species. We found conserved patterns in copy number and homology across subfamilies. Segmental and tandem duplications drove the evolution of these genes, while whole-genome duplication (WGD) expanded PYR/PYL/RCAR and PP2C subfamilies, enhancing environmental adaptation. In rice and Arabidopsis, the PYR/PYL/RCAR, PP2C, and SnRK2 genes showed distinct tissue-specific expression and responded to various stresses. Notably, PP2C_1 and PP2C_2 interacted with SnRK2_1 and were crucial for ABA signaling in rice. These findings offered new insights into ABA signaling evolution, interactions, and integration in green plants, benefiting future research in agriculture, evolutionary biology, ecology, and environmental science.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding stomatal characteristics regulating water use efficiency at leaf and plant scales in rice genotypes. 解码水稻基因型在叶片和植株尺度上调节水分利用效率的气孔特征。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-22 DOI: 10.1007/s00425-024-04488-x
Abhishree Ramachandra, Preethi Vijayaraghavareddy, Chaitanya Purushothama, Spoorthi Nagaraju, Sheshshayee Sreeman

Main conclusion: Stomatal traits in rice genotypes affect water use efficiency. Low-frequency small-size stomata correlate with whole plant efficiency, while low-frequency large-size stomata show intrinsic efficiency and responsiveness to vapour pressure deficit. Leaf surface and the patterning of the epidermal layer play a vital role in determining plant growth. While the surface helps in determining radiation interception, epidermal pattern of stomatal factors strongly regulate gas exchange and water use efficiency (WUE). This study focuses on identifying distinct stomatal traits among rice genotypes to comprehend their influence on WUE. Stomatal frequency ranged from 353 to 687 per mm2 and the size varied between 128.31 and 339.01 μm2 among 150 rice germplasm with significant variability in abaxial and adaxial surfaces. The cumulative water transpired and WUE determined at the outdoor phenomics platform, over the entire crop growth period as well as during specific hours of a 24 h-day did not correlate with stomatal frequency nor size. However, genotypes with low-frequency and large-size stomata recorded higher intrinsic water use efficiency (67.04 μmol CO2 mol-1 H2O) and showed a quicker response to varying vapour pressure deficit that diurnally ranged between 0.03 and 2.17 kPa. The study demonstrated the role of stomatal factors in determining physiological subcomponents of WUE both at single leaf and whole plant levels. Differential expression patterns of stomatal regulatory genes among the contrasting groups explained variations in the epidermal patterning. Increased expression of ERECTA, TMM and YODA genes appear to contribute to decreased stomatal frequency in low stomatal frequency genotypes. These findings underscore the significance of stomatal traits in breeding programs and strongly support the importance of these genes that govern variability in stomatal architecture in future crop improvement programs.

主要结论水稻基因型的气孔特征影响水分利用效率。低频小尺寸气孔与整个植株的效率相关,而低频大尺寸气孔则表现出内在效率和对蒸汽压力不足的响应性。叶片表面和表皮层的形态对植物生长起着至关重要的作用。叶面有助于决定辐射截获,而气孔因子的表皮模式则强烈调节气体交换和水分利用效率(WUE)。本研究的重点是识别水稻基因型的不同气孔特征,以了解它们对水分利用效率的影响。在 150 个水稻种质中,气孔频率在每平方毫米 353 到 687 个之间,大小在 128.31 到 339.01 μm2 之间,背面和正面的差异显著。在室外表型组学平台上测定的作物整个生长期以及一天 24 小时中特定时段的累积蒸腾水分和 WUE 与气孔频率和大小无关。然而,气孔频率低、尺寸大的基因型的内在水分利用效率更高(67.04 μmol CO2 mol-1 H2O),并且对昼夜范围在 0.03 至 2.17 kPa 之间的不同蒸汽压力损失的反应更快。该研究表明,在单叶和整株水平上,气孔因子在决定 WUE 的生理亚组分中都发挥了作用。对比组间气孔调控基因表达模式的差异解释了表皮形态的变化。在低气孔频率基因型中,ERECTA、TMM 和 YODA 基因表达的增加似乎导致了气孔频率的降低。这些发现强调了气孔性状在育种计划中的重要性,并有力地支持了这些控制气孔结构变异的基因在未来作物改良计划中的重要性。
{"title":"Decoding stomatal characteristics regulating water use efficiency at leaf and plant scales in rice genotypes.","authors":"Abhishree Ramachandra, Preethi Vijayaraghavareddy, Chaitanya Purushothama, Spoorthi Nagaraju, Sheshshayee Sreeman","doi":"10.1007/s00425-024-04488-x","DOIUrl":"10.1007/s00425-024-04488-x","url":null,"abstract":"<p><strong>Main conclusion: </strong>Stomatal traits in rice genotypes affect water use efficiency. Low-frequency small-size stomata correlate with whole plant efficiency, while low-frequency large-size stomata show intrinsic efficiency and responsiveness to vapour pressure deficit. Leaf surface and the patterning of the epidermal layer play a vital role in determining plant growth. While the surface helps in determining radiation interception, epidermal pattern of stomatal factors strongly regulate gas exchange and water use efficiency (WUE). This study focuses on identifying distinct stomatal traits among rice genotypes to comprehend their influence on WUE. Stomatal frequency ranged from 353 to 687 per mm<sup>2</sup> and the size varied between 128.31 and 339.01 μm<sup>2</sup> among 150 rice germplasm with significant variability in abaxial and adaxial surfaces. The cumulative water transpired and WUE determined at the outdoor phenomics platform, over the entire crop growth period as well as during specific hours of a 24 h-day did not correlate with stomatal frequency nor size. However, genotypes with low-frequency and large-size stomata recorded higher intrinsic water use efficiency (67.04 μmol CO<sub>2</sub> mol<sup>-1</sup> H<sub>2</sub>O) and showed a quicker response to varying vapour pressure deficit that diurnally ranged between 0.03 and 2.17 kPa. The study demonstrated the role of stomatal factors in determining physiological subcomponents of WUE both at single leaf and whole plant levels. Differential expression patterns of stomatal regulatory genes among the contrasting groups explained variations in the epidermal patterning. Increased expression of ERECTA, TMM and YODA genes appear to contribute to decreased stomatal frequency in low stomatal frequency genotypes. These findings underscore the significance of stomatal traits in breeding programs and strongly support the importance of these genes that govern variability in stomatal architecture in future crop improvement programs.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological, transcriptomic and metabolomic insights of three extremophyte woody species living in the multi-stress environment of the Atacama Desert. 生活在阿塔卡马沙漠多重压力环境中的三种极端木本植物的生理学、转录组学和代谢组学研究。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-17 DOI: 10.1007/s00425-024-04484-1
Humberto A Gajardo, Melanie Morales, Giovanni Larama, Ana Luengo-Escobar, Dariel López, Mariana Machado, Adriano Nunes-Nesi, Marjorie Reyes-Díaz, Séverine Planchais, Arnould Savouré, Jorge Gago, León A Bravo

Main conclusions: In contrast to Neltuma species, S. tamarugo exhibited higher stress tolerance, maintaining photosynthetic performance through enhanced gene expression and metabolites. Differentially accumulated metabolites include chlorophyll and carotenoids and accumulation of non-nitrogen osmoprotectants. Plant species have developed different adaptive strategies to live under extreme environmental conditions. Hypothetically, extremophyte species present a unique configuration of physiological functions that prioritize stress-tolerance mechanisms while carefully managing resource allocation for photosynthesis. This could be particularly challenging under a multi-stress environment, where the synthesis of multiple and sequential molecular mechanisms is induced. We explored this hypothesis in three phylogenetically related woody species co-occurring in the Atacama Desert, Strombocarpa tamarugo, Neltuma alba, and Neltuma chilensis, by analyzing their leaf dehydration and freezing tolerance and by characterizing their photosynthetic performance under natural growth conditions. Besides, the transcriptomic profiling, biochemical analyses of leaf pigments, and metabolite analysis by untargeted metabolomics were conducted to study gene expression and metabolomic landscape within this challenging multi-stress environment. S. tamarugo showed a higher photosynthetic capacity and leaf stress tolerance than the other species. In this species, a multifactorial response was observed, which involves high photochemical activity associated with a higher content of chlorophylls and β-carotene. The oxidative damage of the photosynthetic apparatus is probably attenuated by the synthesis of complex antioxidant molecules in the three species, but S. tamarugo showed the highest antioxidant capacity. Comparative transcriptomic and metabolomic analyses among the species showed the differential expression of genes involved in the biosynthetic pathways of key stress-related metabolites. Moreover, the synthesis of non-nitrogen osmoprotectant molecules, such as ciceritol and mannitol in S. tamarugo, would allow the nitrogen allocation to support its high photosynthetic capacity without compromising leaf dehydration tolerance and freezing stress avoidance.

主要结论:与 Neltuma 物种相比,S. tamarugo 表现出更高的胁迫耐受性,通过增强基因表达和代谢物来维持光合作用。不同积累的代谢物包括叶绿素和类胡萝卜素,以及非氮渗透保护剂的积累。植物物种发展出不同的适应策略,以便在极端环境条件下生存。根据假设,极端植物物种具有独特的生理功能配置,它们优先考虑压力耐受机制,同时谨慎管理光合作用的资源分配。在多重压力环境下,这可能尤其具有挑战性,因为在这种环境下会诱导多种和连续分子机制的合成。我们在阿塔卡马沙漠中共生的三个系统发育相关的木本物种--Strombocarpa tamarugo、Neltuma alba 和 Neltuma chilensis--中探索了这一假设,分析了它们的叶片脱水和冷冻耐受性,以及它们在自然生长条件下的光合作用表现。此外,还进行了转录组分析、叶片色素的生化分析以及非靶向代谢组学的代谢物分析,以研究具有挑战性的多重胁迫环境下的基因表达和代谢组学景观。与其他物种相比,S. tamarugo表现出更高的光合能力和叶片胁迫耐受性。在该物种中,观察到了一种多因素反应,其中包括与叶绿素和β-胡萝卜素含量较高有关的高光化学活性。光合作用装置的氧化损伤可能通过这三个物种中复杂的抗氧化分子的合成而减轻,但柽柳属的抗氧化能力最高。物种间的转录组和代谢组比较分析表明,参与胁迫相关关键代谢物生物合成途径的基因表达存在差异。此外,非氮渗透保护剂分子的合成,如玉茭中的ciceritol和甘露醇,可使氮分配支持其较高的光合能力,而不影响叶片的耐脱水性和避免冷冻胁迫的能力。
{"title":"Physiological, transcriptomic and metabolomic insights of three extremophyte woody species living in the multi-stress environment of the Atacama Desert.","authors":"Humberto A Gajardo, Melanie Morales, Giovanni Larama, Ana Luengo-Escobar, Dariel López, Mariana Machado, Adriano Nunes-Nesi, Marjorie Reyes-Díaz, Séverine Planchais, Arnould Savouré, Jorge Gago, León A Bravo","doi":"10.1007/s00425-024-04484-1","DOIUrl":"10.1007/s00425-024-04484-1","url":null,"abstract":"<p><strong>Main conclusions: </strong>In contrast to Neltuma species, S. tamarugo exhibited higher stress tolerance, maintaining photosynthetic performance through enhanced gene expression and metabolites. Differentially accumulated metabolites include chlorophyll and carotenoids and accumulation of non-nitrogen osmoprotectants. Plant species have developed different adaptive strategies to live under extreme environmental conditions. Hypothetically, extremophyte species present a unique configuration of physiological functions that prioritize stress-tolerance mechanisms while carefully managing resource allocation for photosynthesis. This could be particularly challenging under a multi-stress environment, where the synthesis of multiple and sequential molecular mechanisms is induced. We explored this hypothesis in three phylogenetically related woody species co-occurring in the Atacama Desert, Strombocarpa tamarugo, Neltuma alba, and Neltuma chilensis, by analyzing their leaf dehydration and freezing tolerance and by characterizing their photosynthetic performance under natural growth conditions. Besides, the transcriptomic profiling, biochemical analyses of leaf pigments, and metabolite analysis by untargeted metabolomics were conducted to study gene expression and metabolomic landscape within this challenging multi-stress environment. S. tamarugo showed a higher photosynthetic capacity and leaf stress tolerance than the other species. In this species, a multifactorial response was observed, which involves high photochemical activity associated with a higher content of chlorophylls and β-carotene. The oxidative damage of the photosynthetic apparatus is probably attenuated by the synthesis of complex antioxidant molecules in the three species, but S. tamarugo showed the highest antioxidant capacity. Comparative transcriptomic and metabolomic analyses among the species showed the differential expression of genes involved in the biosynthetic pathways of key stress-related metabolites. Moreover, the synthesis of non-nitrogen osmoprotectant molecules, such as ciceritol and mannitol in S. tamarugo, would allow the nitrogen allocation to support its high photosynthetic capacity without compromising leaf dehydration tolerance and freezing stress avoidance.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-oxygen-induced root bending is altered by phytoglobin1 through mediation of ethylene response factors (ERFs) and auxin signaling. 植物血红蛋白1通过乙烯反应因子(ERFs)和辅素信号转导改变低氧诱导的根弯曲。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-16 DOI: 10.1007/s00425-024-04482-3
Mohammed M Mira, Robert D Hill, Claudio Stasolla

Main conclusion: phytoglobin1 positively regulates root bending in hypoxic Arabidopsis roots through regulation of ethylene response factors and auxin transport. Hypoxia-induced root bending is known to be mediated by the redundant activity of the group VII ethylene response factors (ERFVII) RAP2.12 and HRE2, causing changes in polar auxin transport (PAT). Here, we show that phytoglobin1 (Pgb1), implicated in hypoxic adaptation through scavenging of nitric oxide (NO), can alter root direction under low oxygen. Hypoxia-induced bending is exaggerated in roots over-expressing Pgb1 and attenuated in those where the gene is suppressed. These effects were attributed to Pgb1 repressing both RAP2.12 and HRE2. Expression, immunological and genetic data place Pgb1 upstream of RAP2.12 and HRE2 in the regulation of root bending in oxygen-limiting environments. The attenuation of slanting in Pgb1-suppressing roots was associated with depletion of auxin activity at the root tip because of depression in PAT, while exaggeration of root bending in Pgb1-over-expressing roots with the retention of auxin activity. Changes in PIN2 distribution patterns, suggestive of redirection of auxin movement during hypoxia, might contribute to the differential root bending responses of the transgenic lines. In the end, Pgb1, by regulating NO levels, controls the expression of 2 ERFVIIs which, in a cascade, modulate PAT and, therefore, root bending.

主要结论:植物血红蛋白1通过调控乙烯响应因子和辅素运输积极调节缺氧拟南芥根弯曲。已知缺氧诱导的根弯曲是由第七组乙烯响应因子(ERFVII)RAP2.12 和 HRE2 的冗余活性介导的,从而引起极性辅素运输(PAT)的变化。在这里,我们发现植物血红蛋白1(Pgb1)通过清除一氧化氮(NO)与缺氧适应有关,它能改变根在低氧条件下的方向。缺氧诱导的弯曲在过度表达 Pgb1 的根中会加剧,而在基因被抑制的根中则会减弱。这些效应归因于 Pgb1 同时抑制了 RAP2.12 和 HRE2。表达、免疫学和遗传学数据表明,Pgb1 在限氧环境中调节根弯曲的过程中处于 RAP2.12 和 HRE2 的上游。抑制 Pgb1 的根的倾斜度减弱与 PAT 的抑制导致根尖的辅素活性耗竭有关,而过量表达 Pgb1 的根的根弯曲加剧与辅素活性的保留有关。PIN2 分布模式的变化表明缺氧时辅助素运动方向发生了改变,这可能是转基因品系根弯曲反应不同的原因之一。最后,Pgb1 通过调节氮氧化物水平,控制了 2 个 ERFVII 的表达,这 2 个 ERFVII 以级联的方式调节了 PAT,从而调节了根弯曲。
{"title":"Low-oxygen-induced root bending is altered by phytoglobin1 through mediation of ethylene response factors (ERFs) and auxin signaling.","authors":"Mohammed M Mira, Robert D Hill, Claudio Stasolla","doi":"10.1007/s00425-024-04482-3","DOIUrl":"10.1007/s00425-024-04482-3","url":null,"abstract":"<p><strong>Main conclusion: </strong>phytoglobin1 positively regulates root bending in hypoxic Arabidopsis roots through regulation of ethylene response factors and auxin transport. Hypoxia-induced root bending is known to be mediated by the redundant activity of the group VII ethylene response factors (ERFVII) RAP2.12 and HRE2, causing changes in polar auxin transport (PAT). Here, we show that phytoglobin1 (Pgb1), implicated in hypoxic adaptation through scavenging of nitric oxide (NO), can alter root direction under low oxygen. Hypoxia-induced bending is exaggerated in roots over-expressing Pgb1 and attenuated in those where the gene is suppressed. These effects were attributed to Pgb1 repressing both RAP2.12 and HRE2. Expression, immunological and genetic data place Pgb1 upstream of RAP2.12 and HRE2 in the regulation of root bending in oxygen-limiting environments. The attenuation of slanting in Pgb1-suppressing roots was associated with depletion of auxin activity at the root tip because of depression in PAT, while exaggeration of root bending in Pgb1-over-expressing roots with the retention of auxin activity. Changes in PIN2 distribution patterns, suggestive of redirection of auxin movement during hypoxia, might contribute to the differential root bending responses of the transgenic lines. In the end, Pgb1, by regulating NO levels, controls the expression of 2 ERFVIIs which, in a cascade, modulate PAT and, therefore, root bending.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signaling function of NH4+ in the activation of Fe-deficiency response in cucumber (Cucumis sativus L.). NH4+ 在激活黄瓜(Cucumis sativus L.)缺铁反应中的信号功能。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-15 DOI: 10.1007/s00425-024-04480-5
Fatemeh Tavakoli, Roghieh Hajiboland, Dragana Bosnic, Predrag Bosnic, Miroslav Nikolic, Roser Tolra, Charlotte Poschenrieder

Main conclusion: NH4+ is necessary for full functionality of reduction-based Fe deficiency response in plants. Nitrogen (N) is present in soil mainly as nitrate (NO3-) or ammonium (NH4+). Although the significance of a balanced supply of NO3- and NH4+ for optimal growth has been generally accepted, its importance for iron (Fe) acquisition has not been sufficiently investigated. In this work, hydroponically grown cucumber (Cucumis sativus L. cv. Maximus) plants were supplied with NO3- as the sole N source under -Fe conditions. Upon the appearance of chlorosis, plants were supplemented with 2 mM NH4Cl by roots or leaves. The NH4+ treatment increased leaf SPAD and the HCl-extractable Fe concentration while decreased root apoplastic Fe. A concomitant increase in the root concentration of nitric oxide and activity of FRO and its abolishment by an ethylene action inhibitor, indicated activation of the components of Strategy I in NH4+-treated plants. Ammonium-pretreated plants showed higher utilization capacity of sparingly soluble Fe(OH)3 and higher root release of H+, phenolics, and organic acids. The expression of the master regulator of Fe deficiency response (FIT) and its downstream genes (AHA1, FRO2, and IRT1) along with EIN3 and STOP1 was increased by NH4+ application. Temporal analyses and the employment of a split-root system enabled us to suggest that a permanent presence of NH4+ at concentrations lower than 2 mM is adequate to produce an unknown signal and causes a sustained upregulation of Fe deficiency-related genes, thus augmenting the Fe-acquisition machinery. The results indicate that NH4+ appears to be a widespread and previously underappreciated component of plant reduction-based Fe deficiency response.

主要结论NH4+ 是植物充分发挥基于还原的缺铁反应功能的必要条件。氮(N)在土壤中主要以硝酸盐(NO3-)或铵(NH4+)的形式存在。虽然平衡供应 NO3- 和 NH4+ 对植物最佳生长的重要性已被普遍接受,但其对铁(Fe)获取的重要性尚未得到充分研究。在这项研究中,水培黄瓜(Cucumis sativus L. cv. Maximus)植株在-铁条件下以 NO3- 作为唯一的氮源。当出现萎黄病时,植株根部或叶片补充 2 mM NH4Cl。NH4+ 处理增加了叶片 SPAD 和 HCl 可提取铁的浓度,同时降低了根凋亡体铁的浓度。根部一氧化氮浓度和 FRO 活性的增加以及乙烯作用抑制剂对 FRO 活性的抑制表明,NH4+ 处理的植物激活了策略 I 的成分。铵处理植物对稀溶的 Fe(OH)3 的利用率更高,根部释放的 H+、酚类和有机酸也更多。施用 NH4+ 增加了缺铁反应主调控因子(FIT)及其下游基因(AHA1、FRO2 和 IRT1)以及 EIN3 和 STOP1 的表达。通过时间分析和使用分根系统,我们认为浓度低于 2 mM 的 NH4+ 的永久存在足以产生未知信号,并导致铁缺乏相关基因的持续上调,从而增强铁获取机制。研究结果表明,NH4+ 似乎是植物基于还原作用的缺铁反应中一个广泛存在且以前未被重视的组成部分。
{"title":"Signaling function of NH<sub>4</sub><sup>+</sup> in the activation of Fe-deficiency response in cucumber (Cucumis sativus L.).","authors":"Fatemeh Tavakoli, Roghieh Hajiboland, Dragana Bosnic, Predrag Bosnic, Miroslav Nikolic, Roser Tolra, Charlotte Poschenrieder","doi":"10.1007/s00425-024-04480-5","DOIUrl":"10.1007/s00425-024-04480-5","url":null,"abstract":"<p><strong>Main conclusion: </strong>NH<sub>4</sub><sup>+</sup> is necessary for full functionality of reduction-based Fe deficiency response in plants. Nitrogen (N) is present in soil mainly as nitrate (NO<sub>3</sub><sup>-</sup>) or ammonium (NH<sub>4</sub><sup>+</sup>). Although the significance of a balanced supply of NO<sub>3</sub><sup>-</sup> and NH<sub>4</sub><sup>+</sup> for optimal growth has been generally accepted, its importance for iron (Fe) acquisition has not been sufficiently investigated. In this work, hydroponically grown cucumber (Cucumis sativus L. cv. Maximus) plants were supplied with NO<sub>3</sub><sup>-</sup> as the sole N source under -Fe conditions. Upon the appearance of chlorosis, plants were supplemented with 2 mM NH<sub>4</sub>Cl by roots or leaves. The NH<sub>4</sub><sup>+</sup> treatment increased leaf SPAD and the HCl-extractable Fe concentration while decreased root apoplastic Fe. A concomitant increase in the root concentration of nitric oxide and activity of FRO and its abolishment by an ethylene action inhibitor, indicated activation of the components of Strategy I in NH<sub>4</sub><sup>+</sup>-treated plants. Ammonium-pretreated plants showed higher utilization capacity of sparingly soluble Fe(OH)<sub>3</sub> and higher root release of H<sup>+</sup>, phenolics, and organic acids. The expression of the master regulator of Fe deficiency response (FIT) and its downstream genes (AHA1, FRO2, and IRT1) along with EIN3 and STOP1 was increased by NH<sub>4</sub><sup>+</sup> application. Temporal analyses and the employment of a split-root system enabled us to suggest that a permanent presence of NH<sub>4</sub><sup>+</sup> at concentrations lower than 2 mM is adequate to produce an unknown signal and causes a sustained upregulation of Fe deficiency-related genes, thus augmenting the Fe-acquisition machinery. The results indicate that NH<sub>4</sub><sup>+</sup> appears to be a widespread and previously underappreciated component of plant reduction-based Fe deficiency response.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TaMYB44-5A reduces drought tolerance by repressing transcription of TaRD22-3A in the abscisic acid signaling pathway. TaMYB44-5A 通过抑制脱落酸信号通路中 TaRD22-3A 的转录来降低耐旱性。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-13 DOI: 10.1007/s00425-024-04485-0
De Peng, Liqun Li, Aosong Wei, Ling Zhou, Bingxin Wang, Mingliu Liu, Yanhong Lei, Yanzhou Xie, Xuejun Li

Main conclusion: TaMYB44-5A identified as a transcription factor negatively regulates drought tolerance in transgenic Arabidopsis. Drought can severely reduce yields throughout the wheat-growing season. Many studies have shown that R2R3-MYB transcription factors are involved in drought stress responses. In this study, the R2R3-MYB transcription factor MYB44-5A was identified in wheat (Triticum aestivum L.) and functionally analyzed. Three homologs of TaMYB44 were isolated, all of which localized to the nucleus. Overexpression of TaMYB44-5A reduced drought tolerance in Arabidopsis thaliana. Further analysis showed that TaMYB44-5A reduced the sensitivity of transgenic Arabidopsis to ABA. Genetic and transcriptional regulation analyses demonstrated that the expression levels of drought- and ABA-responsive genes were downregulated by TaMYB44-5A, and TaMYB44-5A directly bound to the MYB-binding site on the promoter to repress the transcription level of TaRD22-3A. Our results provide insights into a novel molecular pathway in which the R2R3-MYB transcription factor negatively regulates ABA signaling in response to drought stress.

主要结论:在转基因拟南芥中,TaMYB44-5A 被鉴定为负调控抗旱性的转录因子。干旱会使整个小麦生长季节的产量严重下降。许多研究表明,R2R3-MYB 转录因子参与了干旱胁迫反应。本研究鉴定了小麦(Triticum aestivum L.)中的 R2R3-MYB 转录因子 MYB44-5A,并对其进行了功能分析。分离出了 TaMYB44 的三个同源物,它们都定位于细胞核。过表达 TaMYB44-5A 会降低拟南芥的耐旱性。进一步的分析表明,TaMYB44-5A 降低了转基因拟南芥对 ABA 的敏感性。遗传和转录调控分析表明,TaMYB44-5A 下调了干旱和 ABA 响应基因的表达水平,TaMYB44-5A 直接与启动子上的 MYB 结合位点结合,抑制了 TaRD22-3A 的转录水平。我们的研究结果揭示了 R2R3-MYB 转录因子在干旱胁迫下负向调控 ABA 信号转导的新分子途径。
{"title":"TaMYB44-5A reduces drought tolerance by repressing transcription of TaRD22-3A in the abscisic acid signaling pathway.","authors":"De Peng, Liqun Li, Aosong Wei, Ling Zhou, Bingxin Wang, Mingliu Liu, Yanhong Lei, Yanzhou Xie, Xuejun Li","doi":"10.1007/s00425-024-04485-0","DOIUrl":"10.1007/s00425-024-04485-0","url":null,"abstract":"<p><strong>Main conclusion: </strong>TaMYB44-5A identified as a transcription factor negatively regulates drought tolerance in transgenic Arabidopsis. Drought can severely reduce yields throughout the wheat-growing season. Many studies have shown that R2R3-MYB transcription factors are involved in drought stress responses. In this study, the R2R3-MYB transcription factor MYB44-5A was identified in wheat (Triticum aestivum L.) and functionally analyzed. Three homologs of TaMYB44 were isolated, all of which localized to the nucleus. Overexpression of TaMYB44-5A reduced drought tolerance in Arabidopsis thaliana. Further analysis showed that TaMYB44-5A reduced the sensitivity of transgenic Arabidopsis to ABA. Genetic and transcriptional regulation analyses demonstrated that the expression levels of drought- and ABA-responsive genes were downregulated by TaMYB44-5A, and TaMYB44-5A directly bound to the MYB-binding site on the promoter to repress the transcription level of TaRD22-3A. Our results provide insights into a novel molecular pathway in which the R2R3-MYB transcription factor negatively regulates ABA signaling in response to drought stress.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactive nitrogen species act as the enhancers of glutathione pool in embryonic axes of apple seeds subjected to accelerated ageing. 活性氧是加速老化的苹果种子胚轴中谷胱甘肽池的增强剂。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-12 DOI: 10.1007/s00425-024-04472-5
Tyminski Marcin, Ciacka Katarzyna, Krasuska Urszula

Main conclusion: Reactive nitrogen species mitigate the deteriorative effect of accelerated seed ageing by affecting the glutathione concentration and activities of GR and GPX-like. The treatment of apple (Malus domestica Borkh.) embryos isolated from accelerated aged seeds with nitric oxide-derived compounds increases their vigour and is linked to the alleviation of the negative effect of excessive oxidation processes. Reduced form of glutathione (GSH) is involved in the maintenance of redox potential. Glutathione peroxidase-like (GPX-like) uses GSH and converts it to oxidised form (GSSG), while glutathione reductase (GR) reduces GSSG into GSH. The aim of this work was to investigate the impact of the short-time NOx treatment of embryos isolated from apple seeds subjected to accelerated ageing on glutathione-related parameters. Apple seeds were subjected to accelerated ageing for 7, 14 or 21 days. Isolated embryos were shortly treated with NOx and cultured for 48 h. During ageing, in the axes of apple embryos, GSH and GSSG levels as well as half-cell reduction potential remained stable, while GR and GPX-like activities decreased. However, the positive effect of NOx in the vigour preservation of embryos isolated from prolonged aged seeds is linked to the increased total glutathione pool, and above all, higher GSH content. Moreover, NOx increased the level of transcripts encoding GPX-like and stimulated enzymatic activity. The obtained results indicate that high seed vigour related to the mode of action of NO and its derivatives is closely linked to the maintenance of higher GSH levels.

主要结论活性氮物种通过影响谷胱甘肽的浓度以及 GR 和 GPX-like 的活性来减轻种子加速老化的恶化效应。用一氧化氮衍生化合物处理从加速老化种子中分离出来的苹果(Malus domestica Borkh.)胚,可提高其活力,这与减轻过度氧化过程的负面影响有关。还原型谷胱甘肽(GSH)参与维持氧化还原电位。类谷胱甘肽过氧化物酶(GPX-like)使用 GSH 并将其转化为氧化形式(GSSG),而谷胱甘肽还原酶(GR)则将 GSSG 还原成 GSH。这项工作的目的是研究对从加速老化的苹果种子中分离出来的胚进行短时间氮氧化物处理对谷胱甘肽相关参数的影响。苹果种子经过 7、14 或 21 天的加速老化。在老化过程中,苹果胚轴中的 GSH 和 GSSG 水平以及半细胞还原电位保持稳定,而 GR 和 GPX 样活性降低。然而,氮氧化物对从长期老化的种子中分离出来的胚的活力保持有积极作用,这与谷胱甘肽池总量的增加有关,尤其是 GSH 含量的增加。此外,氮氧化物还能提高 GPX 类编码转录本的水平并刺激酶的活性。研究结果表明,与氮氧化物及其衍生物的作用模式有关的高种子活力与维持较高的 GSH 水平密切相关。
{"title":"Reactive nitrogen species act as the enhancers of glutathione pool in embryonic axes of apple seeds subjected to accelerated ageing.","authors":"Tyminski Marcin, Ciacka Katarzyna, Krasuska Urszula","doi":"10.1007/s00425-024-04472-5","DOIUrl":"10.1007/s00425-024-04472-5","url":null,"abstract":"<p><strong>Main conclusion: </strong>Reactive nitrogen species mitigate the deteriorative effect of accelerated seed ageing by affecting the glutathione concentration and activities of GR and GPX-like. The treatment of apple (Malus domestica Borkh.) embryos isolated from accelerated aged seeds with nitric oxide-derived compounds increases their vigour and is linked to the alleviation of the negative effect of excessive oxidation processes. Reduced form of glutathione (GSH) is involved in the maintenance of redox potential. Glutathione peroxidase-like (GPX-like) uses GSH and converts it to oxidised form (GSSG), while glutathione reductase (GR) reduces GSSG into GSH. The aim of this work was to investigate the impact of the short-time NOx treatment of embryos isolated from apple seeds subjected to accelerated ageing on glutathione-related parameters. Apple seeds were subjected to accelerated ageing for 7, 14 or 21 days. Isolated embryos were shortly treated with NOx and cultured for 48 h. During ageing, in the axes of apple embryos, GSH and GSSG levels as well as half-cell reduction potential remained stable, while GR and GPX-like activities decreased. However, the positive effect of NOx in the vigour preservation of embryos isolated from prolonged aged seeds is linked to the increased total glutathione pool, and above all, higher GSH content. Moreover, NOx increased the level of transcripts encoding GPX-like and stimulated enzymatic activity. The obtained results indicate that high seed vigour related to the mode of action of NO and its derivatives is closely linked to the maintenance of higher GSH levels.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High expression of ethylene response factor BcERF98 delays the flowering time of non-heading Chinese cabbage. 乙烯响应因子 BcERF98 的高表达会延迟不抽头大白菜的开花时间。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-11 DOI: 10.1007/s00425-024-04479-y
Yan Li, Yu Tao, Aimei Bai, Zhanghong Yu, Shuilin Yuan, Haibin Wang, Tongkun Liu, Xilin Hou, Ying Li

Main conclusion: BcERF98 is induced by ethylene signaling and inhibits the expression of BcFT by interacting with BcNF-YA2 and BcEIP9, thereby inhibiting plant flowering. Several stresses trigger the accumulation of ethylene, which then transmits the signal to ethylene response factors (ERFs) to participate in the regulation of plant development to adapt to the environment. This study clarifies the function of BcERF98, a homolog of AtERF98, in the regulation of plant flowering time mediated by high concentrations of ethylene. Results indicate that BcERF98 is a nuclear and the cell membrane-localized transcription factor and highly responsive to ethylene signaling. BcERF98 inhibits the expression of BcFT by interacting with BcEIP9 and BcNF-YA2, which are related to flowering time regulation, thereby participating in ethylene-mediated plant late flowering regulation. The results have enriched the theoretical knowledge of flowering regulation in non-heading Chinese cabbage (NHCC), providing the scientific basis and gene reserves for cultivating new varieties of NHCC with different flowering times.

主要结论BcERF98受乙烯信号诱导,通过与BcNF-YA2和BcEIP9相互作用抑制BcFT的表达,从而抑制植物开花。几种胁迫会引发乙烯积累,然后将信号传递给乙烯响应因子(ERFs),参与调控植物发育以适应环境。本研究阐明了 AtERF98 的同源物 BcERF98 在高浓度乙烯介导的植物花期调控中的功能。研究结果表明,BcERF98是一种定位在细胞核和细胞膜上的转录因子,对乙烯信号具有高度响应性。BcERF98通过与花期调控相关的BcEIP9和BcNF-YA2相互作用,抑制BcFT的表达,从而参与乙烯介导的植物晚花调控。该研究结果丰富了不发头大白菜花期调控的理论知识,为培育不同花期的不发头大白菜新品种提供了科学依据和基因储备。
{"title":"High expression of ethylene response factor BcERF98 delays the flowering time of non-heading Chinese cabbage.","authors":"Yan Li, Yu Tao, Aimei Bai, Zhanghong Yu, Shuilin Yuan, Haibin Wang, Tongkun Liu, Xilin Hou, Ying Li","doi":"10.1007/s00425-024-04479-y","DOIUrl":"10.1007/s00425-024-04479-y","url":null,"abstract":"<p><strong>Main conclusion: </strong>BcERF98 is induced by ethylene signaling and inhibits the expression of BcFT by interacting with BcNF-YA2 and BcEIP9, thereby inhibiting plant flowering. Several stresses trigger the accumulation of ethylene, which then transmits the signal to ethylene response factors (ERFs) to participate in the regulation of plant development to adapt to the environment. This study clarifies the function of BcERF98, a homolog of AtERF98, in the regulation of plant flowering time mediated by high concentrations of ethylene. Results indicate that BcERF98 is a nuclear and the cell membrane-localized transcription factor and highly responsive to ethylene signaling. BcERF98 inhibits the expression of BcFT by interacting with BcEIP9 and BcNF-YA2, which are related to flowering time regulation, thereby participating in ethylene-mediated plant late flowering regulation. The results have enriched the theoretical knowledge of flowering regulation in non-heading Chinese cabbage (NHCC), providing the scientific basis and gene reserves for cultivating new varieties of NHCC with different flowering times.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive genome-wide identification of Snf2 gene family and their expression profile under salt stress in six Brassica species of U's triangle model. 全基因组范围内全面鉴定 U's triangle 模型中 6 种芸薹属植物的 Snf2 基因家族及其在盐胁迫下的表达谱。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-10 DOI: 10.1007/s00425-024-04473-4
Fang Qian, Dan Zuo, Yujun Xue, Wenjie Guan, Naseeb Ullah, Jiarong Zhu, Guangqin Cai, Bin Zhu, Xiaoming Wu

Main conclusion: We comprehensively identified and analyzed the Snf2 gene family. Some Snf2 genes were involved in responding to salt stress based on the RNA-seq and qRT-PCR analysis. Sucrose nonfermenting 2 (Snf2) proteins are core components of chromatin remodeling complexes that not only alter DNA accessibility using the energy of ATP hydrolysis, but also play a critical regulatory role in growth, development, and stress response in eukaryotes. However, the comparative study of Snf2 gene family in the six Brassica species in U's triangle model remains unclear. Here, a total of 405 Snf2 genes were identified, comprising 53, 50, and 46 in the diploid progenitors: Brassica rapa (AA, 2n = 20), Brassica nigra (BB, 2n = 16), and Brassica oleracea (CC, 2n = 18), and 93, 91, and 72 in the allotetraploid: Brassica juncea (AABB, 2n = 36), Brassica napus (AACC, 2n = 38), and Brassica carinata (BBCC, 2n = 34), respectively. These genes were classified into six clades and further divided into 18 subfamilies based on their conserved motifs and domains. Intriguingly, these genes showed highly conserved chromosomal distributions and gene structures, indicating that few dynamic changes occurred during the polyploidization. The duplication modes of the six Brassica species were diverse, and the expansion of most Snf2 in Brassica occurred primarily through dispersed duplication (DSD) events. Additionally, the majority of Snf2 genes were under purifying selection during polyploidization, and some Snf2 genes were associated with various abiotic stresses. Both RNA-seq and qRT-PCR analysis showed that the expression of BnaSnf2 genes was significantly induced under salt stress, implying their involvement in salt tolerance response in Brassica species. The results provide a comprehensive understanding of the Snf2 genes in U's triangle model species, which will facilitate further functional analysis of the Snf2 genes in Brassica plants.

主要结论我们对Snf2基因家族进行了全面鉴定和分析。根据 RNA-seq 和 qRT-PCR 分析,一些 Snf2 基因参与了对盐胁迫的响应。蔗糖不发酵2(Snf2)蛋白是染色质重塑复合物的核心成分,它不仅利用ATP水解的能量改变DNA的可及性,而且在真核生物的生长、发育和应激反应中起着重要的调控作用。然而,乌氏三角模型中六种芸薹属植物 Snf2 基因家族的比较研究仍不清楚。本文共鉴定出 405 个 Snf2 基因,其中二倍体原基中分别有 53 个、50 个和 46 个:芸苔属(AA,2n = 20)、黑芸苔属(BB,2n = 16)和油甘蓝属(CC,2n = 18)的二倍体中分别有 53、50 和 46 个 Snf2 基因,异源四倍体中分别有 93、91 和 72 个 Snf2 基因:芸苔属(AABB,2n = 36)、油菜属(AACC,2n = 38)和甘蓝属(BBCC,2n = 34)分别有 93、91 和 72 个基因。这些基因被分为 6 个支系,并根据其保守基序和结构域进一步分为 18 个亚科。耐人寻味的是,这些基因的染色体分布和基因结构高度保守,表明在多倍体化过程中几乎没有发生动态变化。六个芸苔属物种的复制模式多种多样,大多数 Snf2 在芸苔属中的扩展主要是通过分散复制(DSD)事件实现的。此外,大多数Snf2基因在多倍体化过程中受到纯化选择,一些Snf2基因与各种非生物胁迫有关。RNA-seq和qRT-PCR分析表明,BnaSnf2基因的表达在盐胁迫下被显著诱导,这意味着它们参与了芸苔属植物的耐盐反应。这些研究结果为全面了解乌江三角洲模式物种中的Snf2基因提供了依据,有助于进一步对芸薹属植物中的Snf2基因进行功能分析。
{"title":"Comprehensive genome-wide identification of Snf2 gene family and their expression profile under salt stress in six Brassica species of U's triangle model.","authors":"Fang Qian, Dan Zuo, Yujun Xue, Wenjie Guan, Naseeb Ullah, Jiarong Zhu, Guangqin Cai, Bin Zhu, Xiaoming Wu","doi":"10.1007/s00425-024-04473-4","DOIUrl":"10.1007/s00425-024-04473-4","url":null,"abstract":"<p><strong>Main conclusion: </strong>We comprehensively identified and analyzed the Snf2 gene family. Some Snf2 genes were involved in responding to salt stress based on the RNA-seq and qRT-PCR analysis. Sucrose nonfermenting 2 (Snf2) proteins are core components of chromatin remodeling complexes that not only alter DNA accessibility using the energy of ATP hydrolysis, but also play a critical regulatory role in growth, development, and stress response in eukaryotes. However, the comparative study of Snf2 gene family in the six Brassica species in U's triangle model remains unclear. Here, a total of 405 Snf2 genes were identified, comprising 53, 50, and 46 in the diploid progenitors: Brassica rapa (AA, 2n = 20), Brassica nigra (BB, 2n = 16), and Brassica oleracea (CC, 2n = 18), and 93, 91, and 72 in the allotetraploid: Brassica juncea (AABB, 2n = 36), Brassica napus (AACC, 2n = 38), and Brassica carinata (BBCC, 2n = 34), respectively. These genes were classified into six clades and further divided into 18 subfamilies based on their conserved motifs and domains. Intriguingly, these genes showed highly conserved chromosomal distributions and gene structures, indicating that few dynamic changes occurred during the polyploidization. The duplication modes of the six Brassica species were diverse, and the expansion of most Snf2 in Brassica occurred primarily through dispersed duplication (DSD) events. Additionally, the majority of Snf2 genes were under purifying selection during polyploidization, and some Snf2 genes were associated with various abiotic stresses. Both RNA-seq and qRT-PCR analysis showed that the expression of BnaSnf2 genes was significantly induced under salt stress, implying their involvement in salt tolerance response in Brassica species. The results provide a comprehensive understanding of the Snf2 genes in U's triangle model species, which will facilitate further functional analysis of the Snf2 genes in Brassica plants.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of D3-type cyclins is related to cytokinin and the bHLH transcription factor SPATULA in Arabidopsis gynoecium development. D3 型细胞周期蛋白在拟南芥雌蕊发育过程中的作用与细胞分裂素和 bHLH 转录因子 SPATULA 有关。
IF 3.6 3区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-09 DOI: 10.1007/s00425-024-04481-4
Vincent E Cerbantez-Bueno, Joanna Serwatowska, Carolina Rodríguez-Ramos, J Erik Cruz-Valderrama, Stefan de Folter

Main conclusion: We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.

主要结论我们研究了拟南芥雌蕊发育过程中 D3 型细胞周期蛋白的功能,以及它们与细胞分裂素激素和转录因子 SPATULA 的关系。植物一生的生长都是通过分生组织的细胞分裂和分化过程来维持的。在拟南芥中,雌蕊群的发育意味着授粉、受精和种子发育所需组织形成的多相过程。心皮边缘分生组织(CMM)是一团未分化的细胞,它产生了雌蕊群内部组织,如隔膜、胚珠、胎座、菌丝、输导道、花柱和柱头。不同的遗传和激素因子(包括细胞分裂素)控制着 CMM 的功能。细胞分裂素通过激活细胞周期调节因子(如细胞周期蛋白基因)来调节细胞周期的转换。D3 型细胞周期蛋白在增殖组织中表达,有利于有丝分裂细胞周期而不是内复制。尽管细胞分裂素在 CMM 和雌蕊发育过程中的作用已得到深入研究,但其在调节该组织细胞周期中的具体作用仍不清楚。此外,尽管对 CYCD3 基因和细胞分裂素之间的关系进行了广泛研究,但它们之间的调控机制仍未确定。在这里,我们发现 D3 型细胞周期蛋白在增殖的内侧和外侧组织中表达。相反,三个 CYCD3 基因的缺失表明,它们对雌蕊群的发育并不重要。然而,外源细胞分裂素的添加表明,它们可以控制雌蕊群内部组织和外植体的分裂/分化平衡。最后,我们发现 SPATULA 可以成为细胞分裂素和 D3 型细胞周期蛋白之间的机制纽带。这些数据表明,D3型细胞周期蛋白在雌蕊发育过程中的作用与细胞分裂素反应有关,它们可能被转录因子SPATULA激活。
{"title":"The role of D3-type cyclins is related to cytokinin and the bHLH transcription factor SPATULA in Arabidopsis gynoecium development.","authors":"Vincent E Cerbantez-Bueno, Joanna Serwatowska, Carolina Rodríguez-Ramos, J Erik Cruz-Valderrama, Stefan de Folter","doi":"10.1007/s00425-024-04481-4","DOIUrl":"10.1007/s00425-024-04481-4","url":null,"abstract":"<p><strong>Main conclusion: </strong>We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Planta
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1