首页 > 最新文献

Physica E-low-dimensional Systems & Nanostructures最新文献

英文 中文
Second harmonic generation and electronic properties in the septuple-atomic-layer MA2Z4 family
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-02-07 DOI: 10.1016/j.physe.2025.116202
Yanyan Qian , Yadong Wei , Weiqi Li , Weiquan Tian , Jianqun Yang , XingJi Li , Jinluo Cheng
Two-dimensional (2D) Janus monolayers represent a novel class of materials characterized by their unique structures and exceptional properties. The excitonic characteristics, along with the linear and nonlinear optical responses of the 2D MA2Z4 family, have been systematically investigated through first-principles calculations. The findings indicate that monolayers of MSiGeN4 (M = Mo or W) exhibit a pronounced second harmonic generation (SHG) response and notable infrared transmission capabilities, due to the breaking of mirror symmetry in these materials. A comparative analysis of the SHG response of intrinsic MSi2N4 (M = Mo and W) monolayers demonstrates that Janus MSiGeN4 (M = Mo and W) monolayers significantly enhance the SHG response, with enhancement factors of 5.5 and 3.8 at infrared wavelengths (1064 nm). The Janus monolayers also exhibit an additional out-of-plane response, thus enhancing the efficiency of incident light utilization from all directions. Specifically, the out-of-plane response of Janus WSiGeN4 monolayers is 1.1 pm/V greater than the in-plane response of intrinsic WSi2N4. Furthermore, the dependence of SHG polarizability indicates that the out-of-plane polarizability significantly modifies the SHG response as a function of the incident angle θ. As a derivative of the 2D MA2Z4 family, MSiGeN4 (M = Mo and W) expands the scope of 2D Janus materials, and these findings may inform the design and synthesis of innovative 2D nonlinear optical materials.
{"title":"Second harmonic generation and electronic properties in the septuple-atomic-layer MA2Z4 family","authors":"Yanyan Qian ,&nbsp;Yadong Wei ,&nbsp;Weiqi Li ,&nbsp;Weiquan Tian ,&nbsp;Jianqun Yang ,&nbsp;XingJi Li ,&nbsp;Jinluo Cheng","doi":"10.1016/j.physe.2025.116202","DOIUrl":"10.1016/j.physe.2025.116202","url":null,"abstract":"<div><div>Two-dimensional (2D) Janus monolayers represent a novel class of materials characterized by their unique structures and exceptional properties. The excitonic characteristics, along with the linear and nonlinear optical responses of the 2D MA<sub>2</sub>Z<sub>4</sub> family, have been systematically investigated through first-principles calculations. The findings indicate that monolayers of MSiGeN<sub>4</sub> (M = Mo or W) exhibit a pronounced second harmonic generation (SHG) response and notable infrared transmission capabilities, due to the breaking of mirror symmetry in these materials. A comparative analysis of the SHG response of intrinsic MSi<sub>2</sub>N<sub>4</sub> (M = Mo and W) monolayers demonstrates that Janus MSiGeN<sub>4</sub> (M = Mo and W) monolayers significantly enhance the SHG response, with enhancement factors of 5.5 and 3.8 at infrared wavelengths (1064 nm). The Janus monolayers also exhibit an additional out-of-plane response, thus enhancing the efficiency of incident light utilization from all directions. Specifically, the out-of-plane response of Janus WSiGeN<sub>4</sub> monolayers is 1.1 pm/V greater than the in-plane response of intrinsic WSi<sub>2</sub>N<sub>4</sub>. Furthermore, the dependence of SHG polarizability indicates that the out-of-plane polarizability significantly modifies the SHG response as a function of the incident angle <em>θ</em>. As a derivative of the 2D MA<sub>2</sub>Z<sub>4</sub> family, MSiGeN<sub>4</sub> (M = Mo and W) expands the scope of 2D Janus materials, and these findings may inform the design and synthesis of innovative 2D nonlinear optical materials.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"169 ","pages":"Article 116202"},"PeriodicalIF":2.9,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transport evidence for the quantum Wigner solid formation in two-dimensional electron systems
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-02-04 DOI: 10.1016/j.physe.2025.116192
A.A. Shashkin , M. Yu. Melnikov , S.V. Kravchenko
In this Review, we report compelling transport evidence for the formation of a quantum Wigner solid in two-dimensional (2D) electron systems in silicon metal–oxide–semiconductor field-effect transistors (MOSFETs) and ultra-clean SiGe/Si/SiGe heterostructures. We have observed two-threshold voltage–current characteristics accompanied by a peak of broadband current noise between the two threshold voltages in both 2D systems. The double threshold behavior is very similar to that observed for the collective depinning of the vortex lattice in Type-II superconductors provided the voltage and current axes are interchanged. The observed results can be described by a phenomenological theory of the collective depinning of elastic structures, which naturally generates a peak of a broadband current noise between the dynamic and static thresholds and changes to sliding of the solid over a pinning barrier above the static threshold.
{"title":"Transport evidence for the quantum Wigner solid formation in two-dimensional electron systems","authors":"A.A. Shashkin ,&nbsp;M. Yu. Melnikov ,&nbsp;S.V. Kravchenko","doi":"10.1016/j.physe.2025.116192","DOIUrl":"10.1016/j.physe.2025.116192","url":null,"abstract":"<div><div>In this Review, we report compelling transport evidence for the formation of a quantum Wigner solid in two-dimensional (2D) electron systems in silicon metal–oxide–semiconductor field-effect transistors (MOSFETs) and ultra-clean SiGe/Si/SiGe heterostructures. We have observed two-threshold voltage–current characteristics accompanied by a peak of broadband current noise between the two threshold voltages in both 2D systems. The double threshold behavior is very similar to that observed for the collective depinning of the vortex lattice in Type-II superconductors provided the voltage and current axes are interchanged. The observed results can be described by a phenomenological theory of the collective depinning of elastic structures, which naturally generates a peak of a broadband current noise between the dynamic and static thresholds and changes to sliding of the solid over a pinning barrier above the static threshold.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"168 ","pages":"Article 116192"},"PeriodicalIF":2.9,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143284230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GeO2 – ZnO nanocomposite rosettes for enhancement of performance in energy technologies: Coupling organic templated synthesis with microwave treatment
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-02-04 DOI: 10.1016/j.physe.2025.116198
Shaan Bibi Jaffri , Khuram Shahzad Ahmad , Isaac Abrahams , Wahidah H. Al-Qahtani
Current study introduces first report on the sustainable synthesis of GeO2 – ZnO nano-hetero-system copulated with the microwave treatment. GeO2 – ZnO has been effectively tuned for the band gap causing an alleviation from 4.89 to 2.89 eV upon the nanocomposite formation. With the hexagonal phase, GeO2 – ZnO possessed an average crystallite size of the 62.11 nm. These particles existed as nano-rossettes with the uniform upward projection. The catalytic performance of the synthesized material was more inclined towards pure hydrogen generation with the lower overpotential (ηHER) and Tafel slopes i.e. 128 mV and 121.9 mV dec−1. GeO2 – ZnO nano-rossettes bedecked electrode remained unscathed for a prolonged duration of the 1500 min and demonstrated commendable charge storage with the unit capacity of 384 mAH g−1. As a passivation layer in perovskite solar cells, these nanomaterials improved efficiency up to 15 % by prevention of the charge aggregation.
{"title":"GeO2 – ZnO nanocomposite rosettes for enhancement of performance in energy technologies: Coupling organic templated synthesis with microwave treatment","authors":"Shaan Bibi Jaffri ,&nbsp;Khuram Shahzad Ahmad ,&nbsp;Isaac Abrahams ,&nbsp;Wahidah H. Al-Qahtani","doi":"10.1016/j.physe.2025.116198","DOIUrl":"10.1016/j.physe.2025.116198","url":null,"abstract":"<div><div>Current study introduces first report on the sustainable synthesis of GeO<sub>2</sub> – ZnO nano-hetero-system copulated with the microwave treatment. GeO<sub>2</sub> – ZnO has been effectively tuned for the band gap causing an alleviation from 4.89 to 2.89 eV upon the nanocomposite formation. With the hexagonal phase, GeO<sub>2</sub> – ZnO possessed an average crystallite size of the 62.11 nm. These particles existed as nano-rossettes with the uniform upward projection. The catalytic performance of the synthesized material was more inclined towards pure hydrogen generation with the lower overpotential (<em>η</em><sub><em>HER</em></sub><em>)</em> and Tafel slopes <em>i.e.</em> 128 mV and 121.9 mV dec<sup>−1</sup>. GeO<sub>2</sub> – ZnO nano-rossettes bedecked electrode remained unscathed for a prolonged duration of the 1500 min and demonstrated commendable charge storage with the unit capacity of 384 mAH g<sup>−1</sup>. As a passivation layer in perovskite solar cells, these nanomaterials improved efficiency up to 15 % by prevention of the charge aggregation.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"169 ","pages":"Article 116198"},"PeriodicalIF":2.9,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143351158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving n- and p-type Ohmic contacts in vertical graphene/CrSi2N4 heterostructure: Role of electric field
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-02-04 DOI: 10.1016/j.physe.2025.116201
Meng Chen , Shuo Liu , Mengying Zhao , Hong Li , Fengbin Liu
Single-layer CrSi2N4 belongs to an emerging class of air-stable two-dimensional semiconductors (MA2X4) with excellent electrical properties. We engineered the vertical contact properties between graphene and single-layer CrSi2N4 using first-principles calculations. The vertical graphene/CrSi2N4 contact is n-type Ohmic at ground state, and it transforms to p-type Ohmic contact at over 1 V/Å of the applied electric field. On the other hand, a change in the interlayer spacing has no significant effect on the Schottky barrier. Our study suggests that the vertical graphene/CrSi2N4 heterostructure is a potential material for application in nanoelectronics.
{"title":"Achieving n- and p-type Ohmic contacts in vertical graphene/CrSi2N4 heterostructure: Role of electric field","authors":"Meng Chen ,&nbsp;Shuo Liu ,&nbsp;Mengying Zhao ,&nbsp;Hong Li ,&nbsp;Fengbin Liu","doi":"10.1016/j.physe.2025.116201","DOIUrl":"10.1016/j.physe.2025.116201","url":null,"abstract":"<div><div>Single-layer CrSi<sub>2</sub>N<sub>4</sub> belongs to an emerging class of air-stable two-dimensional semiconductors (MA<sub>2</sub>X<sub>4</sub>) with excellent electrical properties. We engineered the vertical contact properties between graphene and single-layer CrSi<sub>2</sub>N<sub>4</sub> using first-principles calculations. The vertical graphene/CrSi<sub>2</sub>N<sub>4</sub> contact is <em>n</em>-type Ohmic at ground state, and it transforms to <em>p</em>-type Ohmic contact at over 1 V/Å of the applied electric field. On the other hand, a change in the interlayer spacing has no significant effect on the Schottky barrier. Our study suggests that the vertical graphene/CrSi<sub>2</sub>N<sub>4</sub> heterostructure is a potential material for application in nanoelectronics.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"170 ","pages":"Article 116201"},"PeriodicalIF":2.9,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of various schemes to determine the Young’s modulus of disordered carbon nanomembranes compared to crystalline graphene
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-02-01 DOI: 10.1016/j.physe.2024.116170
Levin Mihlan, Julian Ehrens, Jürgen Schnack
The determination of mechanical properties such as the Young’s modulus provides an important means to compare classical molecular dynamics simulations with materials. In this respect, ultra-thin materials hold several challenges: their volume is ambiguous, and different methods to determine a stress–strain relation deliver different results in particular for disordered systems. Using the example of carbon nanomembranes we discuss three common approaches to the problem and show that stress–strain simulations following experimental setups deliver correct results if adjusted carefully. We provide step-by-step instructions how to perform trustworthy simulations.
{"title":"Comparison of various schemes to determine the Young’s modulus of disordered carbon nanomembranes compared to crystalline graphene","authors":"Levin Mihlan,&nbsp;Julian Ehrens,&nbsp;Jürgen Schnack","doi":"10.1016/j.physe.2024.116170","DOIUrl":"10.1016/j.physe.2024.116170","url":null,"abstract":"<div><div>The determination of mechanical properties such as the Young’s modulus provides an important means to compare classical molecular dynamics simulations with materials. In this respect, ultra-thin materials hold several challenges: their volume is ambiguous, and different methods to determine a stress–strain relation deliver different results in particular for disordered systems. Using the example of carbon nanomembranes we discuss three common approaches to the problem and show that stress–strain simulations following experimental setups deliver correct results if adjusted carefully. We provide step-by-step instructions how to perform trustworthy simulations.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"167 ","pages":"Article 116170"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edge effect induce spin-gapless semiconducting and half-metallic properties of N-doped zigzag graphene nanoribbons
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-02-01 DOI: 10.1016/j.physe.2024.116172
Jiewen Min, Xingyuan Ou, Xiong Liu, Wenting Zou, Zhaoting Li, Liqin Deng, Yuanxiang Deng
Graphene nanoribbons with mixed edge structures are promising candidate materials for the next generation of nanoelectronics due to their unique and peculiar physical and chemical properties, as well as their interesting and tunable electronic structures. Here, we designs and calculates a series of periodic edge N-doped ZGNRs using first principles calculations based on density functional theory. The band gap of these ZGNRs can be adjusted from metal to semiconductor, by the periodic length of the nanobands, and the number and interval distance of N atom doping. Among them, 6-ZGNR-(1,3) is a metallic, 6-ZGNR-(1,4) and 6-ZGNR-(2,4) are half-metallic, 6-ZGNR-(2,5) and 6-ZGNR-(3,5) are SGS, and 6-ZGNR-(3,6) is a magnetic semiconductor. We projected band structures into px orbitals of edge C and N atoms separately, and found that the energy near the Fermi level in 6-ZGNR-(1,4) is mainly contributed by edge C atoms, while 6-ZGNR-(3,5) is contributed by edge N atoms. This indicates that N atom doping plays a major role in the transition of spin polarization properties. Our studies suggest that it will have significant theoretical significance and practical value in the application of spintronic devices.
{"title":"Edge effect induce spin-gapless semiconducting and half-metallic properties of N-doped zigzag graphene nanoribbons","authors":"Jiewen Min,&nbsp;Xingyuan Ou,&nbsp;Xiong Liu,&nbsp;Wenting Zou,&nbsp;Zhaoting Li,&nbsp;Liqin Deng,&nbsp;Yuanxiang Deng","doi":"10.1016/j.physe.2024.116172","DOIUrl":"10.1016/j.physe.2024.116172","url":null,"abstract":"<div><div>Graphene nanoribbons with mixed edge structures are promising candidate materials for the next generation of nanoelectronics due to their unique and peculiar physical and chemical properties, as well as their interesting and tunable electronic structures. Here, we designs and calculates a series of periodic edge N-doped ZGNRs using first principles calculations based on density functional theory. The band gap of these ZGNRs can be adjusted from metal to semiconductor, by the periodic length of the nanobands, and the number and interval distance of N atom doping. Among them, 6-ZGNR-(1,3) is a metallic, 6-ZGNR-(1,4) and 6-ZGNR-(2,4) are half-metallic, 6-ZGNR-(2,5) and 6-ZGNR-(3,5) are SGS, and 6-ZGNR-(3,6) is a magnetic semiconductor. We projected band structures into p<sub>x</sub> orbitals of edge C and N atoms separately, and found that the energy near the Fermi level in 6-ZGNR-(1,4) is mainly contributed by edge C atoms, while 6-ZGNR-(3,5) is contributed by edge N atoms. This indicates that N atom doping plays a major role in the transition of spin polarization properties. Our studies suggest that it will have significant theoretical significance and practical value in the application of spintronic devices.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"167 ","pages":"Article 116172"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting BN analogue of 8-16-4 graphyne: In silico insights into its structural, electronic, optical, and thermal transport properties
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-02-01 DOI: 10.1016/j.physe.2024.116163
Isaac M. Felix , Jessé M. Pontes , Djardiel S. Gomes , Thiago B.G. Guerra , Sérgio Azevedo , Leonardo D. Machado , Lídia C. Gomes , Raphael M. Tromer
The boron nitride (BN) analogue of 8-16-4 graphyne, termed SBNyne, is proposed for the first time. Its physical properties were explored using first-principles calculations and classical molecular dynamics (MD) simulations. Phonon dispersion calculations and ab initio molecular dynamics simulations revealed that this system is dynamically stable at room temperature. We found that SBNyne exhibits a wide indirect bandgap of 4.58 eV using HSE06 and 3.20 eV using PBE. It displays strong optical absorption in the ultraviolet region while remaining transparent in the infrared and visible regions. Additionally, SBNyne exhibits significantly lower thermal conductivity compared to h-BN. Phonon spectrum analysis indicates that out-of-plane phonons predominantly contribute to the vibrational density of states only at very low frequencies, explaining its low thermal conductivity. These findings expand the knowledge of two-dimensional (2D) BN materials and open new avenues for their design and advanced technological applications.
{"title":"Predicting BN analogue of 8-16-4 graphyne: In silico insights into its structural, electronic, optical, and thermal transport properties","authors":"Isaac M. Felix ,&nbsp;Jessé M. Pontes ,&nbsp;Djardiel S. Gomes ,&nbsp;Thiago B.G. Guerra ,&nbsp;Sérgio Azevedo ,&nbsp;Leonardo D. Machado ,&nbsp;Lídia C. Gomes ,&nbsp;Raphael M. Tromer","doi":"10.1016/j.physe.2024.116163","DOIUrl":"10.1016/j.physe.2024.116163","url":null,"abstract":"<div><div>The boron nitride (BN) analogue of 8-16-4 graphyne, termed SBNyne, is proposed for the first time. Its physical properties were explored using first-principles calculations and classical molecular dynamics (MD) simulations. Phonon dispersion calculations and <em>ab initio</em> molecular dynamics simulations revealed that this system is dynamically stable at room temperature. We found that SBNyne exhibits a wide indirect bandgap of 4.58 eV using HSE06 and 3.20 eV using PBE. It displays strong optical absorption in the ultraviolet region while remaining transparent in the infrared and visible regions. Additionally, SBNyne exhibits significantly lower thermal conductivity compared to h-BN. Phonon spectrum analysis indicates that out-of-plane phonons predominantly contribute to the vibrational density of states only at very low frequencies, explaining its low thermal conductivity. These findings expand the knowledge of two-dimensional (2D) BN materials and open new avenues for their design and advanced technological applications.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"167 ","pages":"Article 116163"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic spin–orbit interaction in ferromagnet/superconductor hybrid nanostructures: Unveiling the role in triplet generation and critical temperature modulation
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-02-01 DOI: 10.1016/j.physe.2024.116162
Asif Majeed , Harkirat Singh
Recent theoretical advancements propose an innovative approach to induce triplet generation beyond the conventional inhomogeneous magnetic field-driven singlet–triplet conversion. Here, we investigate a hybrid nanostructure comprising a conventional BCS superconductor proximitized with a homogeneous ferromagnet possessing intrinsic spin–orbit coupling arising from broken symmetries due to lattice mismatch at the interface. Through extensive simulations, we explore the impact of spin–orbit interaction on the critical temperature, revealing the pivotal role played by the in-plane component of the magnetic exchange field and the dimensional characteristics of the hybrid system in singlet–triplet conversion. Remarkably, our findings demonstrate that a single homogeneous ferromagnet with intrinsic spin–orbit coupling governs triplet generation and exhibits a spin valve effect. Notably, we quantify our observations through the superconducting critical temperature (Tc), showcasing a spin-valve like functionality dependent on the orientation of magnetization. Moreover, we observe a significant reduction in the critical temperature of the hybrid structure, even reaching zero under specific dimensions, attributed to the controlled generation and regulation of spin-1 triplets. Crucially, our investigation also validates the notion of the mechanism where a π2 rotation of the in-plane magnetic exchange field toggles superconductivity, offering a promising avenue for actively controlling triplet generation—a pivotal step towards high-performance storage devices in emerging superconducting spintronics applications.
{"title":"Intrinsic spin–orbit interaction in ferromagnet/superconductor hybrid nanostructures: Unveiling the role in triplet generation and critical temperature modulation","authors":"Asif Majeed ,&nbsp;Harkirat Singh","doi":"10.1016/j.physe.2024.116162","DOIUrl":"10.1016/j.physe.2024.116162","url":null,"abstract":"<div><div>Recent theoretical advancements propose an innovative approach to induce triplet generation beyond the conventional inhomogeneous magnetic field-driven singlet–triplet conversion. Here, we investigate a hybrid nanostructure comprising a conventional BCS superconductor proximitized with a homogeneous ferromagnet possessing intrinsic spin–orbit coupling arising from broken symmetries due to lattice mismatch at the interface. Through extensive simulations, we explore the impact of spin–orbit interaction on the critical temperature, revealing the pivotal role played by the in-plane component of the magnetic exchange field and the dimensional characteristics of the hybrid system in singlet–triplet conversion. Remarkably, our findings demonstrate that a single homogeneous ferromagnet with intrinsic spin–orbit coupling governs triplet generation and exhibits a spin valve effect. Notably, we quantify our observations through the superconducting critical temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>), showcasing a spin-valve like functionality dependent on the orientation of magnetization. Moreover, we observe a significant reduction in the critical temperature of the hybrid structure, even reaching zero under specific dimensions, attributed to the controlled generation and regulation of spin-1 triplets. Crucially, our investigation also validates the notion of the mechanism where a <span><math><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> rotation of the in-plane magnetic exchange field toggles superconductivity, offering a promising avenue for actively controlling triplet generation—a pivotal step towards high-performance storage devices in emerging superconducting spintronics applications.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"167 ","pages":"Article 116162"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valley-dependent damping of Zitterbewegung in 2D structures based on Dirac crystals
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-02-01 DOI: 10.1016/j.physe.2024.116164
E.I. Kukhar , S.V. Kryuchkov
The theory of increasing of the zitterbewegung duration by controlling of the mutual positions between the electron wave packet center and the valley in the band structure of the Dirac crystal is suggested. The Gaussian type of the electron wave packets is considered. The time of the zitterbewegung damping is shown to be increased by several orders as compared with that of massless Dirac electron if the wave packet is centered at the energy minimum or maximum of the dispersion law. To this end the different kinds of modifications of Dirac crystals such as semi-Dirac crystals, graphene with merging Dirac points and graphene superlattices are suggested to be used. In details the valley-dependent zitterbewegung in ac-driven Dirac crystals is studied. An increase in the duration of the zitterbewegung with the change of the ac-field power is explicitly demonstrated.
{"title":"Valley-dependent damping of Zitterbewegung in 2D structures based on Dirac crystals","authors":"E.I. Kukhar ,&nbsp;S.V. Kryuchkov","doi":"10.1016/j.physe.2024.116164","DOIUrl":"10.1016/j.physe.2024.116164","url":null,"abstract":"<div><div>The theory of increasing of the zitterbewegung duration by controlling of the mutual positions between the electron wave packet center and the valley in the band structure of the Dirac crystal is suggested. The Gaussian type of the electron wave packets is considered. The time of the zitterbewegung damping is shown to be increased by several orders as compared with that of massless Dirac electron if the wave packet is centered at the energy minimum or maximum of the dispersion law. To this end the different kinds of modifications of Dirac crystals such as semi-Dirac crystals, graphene with merging Dirac points and graphene superlattices are suggested to be used. In details the valley-dependent zitterbewegung in ac-driven Dirac crystals is studied. An increase in the duration of the zitterbewegung with the change of the ac-field power is explicitly demonstrated.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"167 ","pages":"Article 116164"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ag/Co3O4 nanocomposites from ZIF-67 MOF for enhanced low-temperature toluene gas sensing
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-02-01 DOI: 10.1016/j.physe.2024.116174
W.J. Wu , Bo Hong , Jingcai Xu , Xiaoling Peng , Jing Li , Hongwei Chen , Shi Qiu , Nan Zhang , Xinqing Wang
Porous Co3O4 nanostructures are synthesized through thermolysis of ZIF-67 MOF, and then Ag nanoparticles are loaded into Co3O4 nanostructures to obtain Ag/Co3O4 nanocomposites. All results indicate that Ag-loading increases the specific surface area and bandgap of Ag/Co3O4 nanocomposites, as the result, the toluene gas sensing performance is also improved greatly. Among them, Ag0.126-Co3O4 sensor exhibits the highest response value of 520.60 to 100 ppm toluene gas at 150 °C, which is 21.28 times than that of Co3O4 sensor. Notably, the optimal operating temperature of Ag/Co3O4 sensors decreases from 230 °C to 150 °C due to the excellent catalytic activity of Ag nanoparticles. Moreover, Ag/Co3O4 sensors display the excellent selectivity and favorable stability to toluene gas. Ag nanoparticles lead to the formation of Schottky heterojunctions, increasing the resistance in toluene gas. Furthermore, Ag nanoparticles provide more oxygen adsorption sites, reducing the resistance in air. Based on the synergistic effect of chemical sensitization, spillover effect, high specific surface area and Schottky heterojunctions, Ag-loading can enhance the toluene gas sensing performance of Ag/Co3O4 sensors.
{"title":"Ag/Co3O4 nanocomposites from ZIF-67 MOF for enhanced low-temperature toluene gas sensing","authors":"W.J. Wu ,&nbsp;Bo Hong ,&nbsp;Jingcai Xu ,&nbsp;Xiaoling Peng ,&nbsp;Jing Li ,&nbsp;Hongwei Chen ,&nbsp;Shi Qiu ,&nbsp;Nan Zhang ,&nbsp;Xinqing Wang","doi":"10.1016/j.physe.2024.116174","DOIUrl":"10.1016/j.physe.2024.116174","url":null,"abstract":"<div><div>Porous Co<sub>3</sub>O<sub>4</sub> nanostructures are synthesized through thermolysis of ZIF-67 MOF, and then Ag nanoparticles are loaded into Co<sub>3</sub>O<sub>4</sub> nanostructures to obtain Ag/Co<sub>3</sub>O<sub>4</sub> nanocomposites. All results indicate that Ag-loading increases the specific surface area and bandgap of Ag/Co<sub>3</sub>O<sub>4</sub> nanocomposites, as the result, the toluene gas sensing performance is also improved greatly. Among them, Ag<sub>0.126</sub>-Co<sub>3</sub>O<sub>4</sub> sensor exhibits the highest response value of 520.60 to 100 ppm toluene gas at 150 °C, which is 21.28 times than that of Co<sub>3</sub>O<sub>4</sub> sensor. Notably, the optimal operating temperature of Ag/Co<sub>3</sub>O<sub>4</sub> sensors decreases from 230 °C to 150 °C due to the excellent catalytic activity of Ag nanoparticles. Moreover, Ag/Co<sub>3</sub>O<sub>4</sub> sensors display the excellent selectivity and favorable stability to toluene gas. Ag nanoparticles lead to the formation of Schottky heterojunctions, increasing the resistance in toluene gas. Furthermore, Ag nanoparticles provide more oxygen adsorption sites, reducing the resistance in air. Based on the synergistic effect of chemical sensitization, spillover effect, high specific surface area and Schottky heterojunctions, Ag-loading can enhance the toluene gas sensing performance of Ag/Co<sub>3</sub>O<sub>4</sub> sensors.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"167 ","pages":"Article 116174"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143158218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physica E-low-dimensional Systems & Nanostructures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1