首页 > 最新文献

Physica E-low-dimensional Systems & Nanostructures最新文献

英文 中文
High-performance photodetector based on hybrid 2D WSe2/Ag-in-Ga-S QDs heterojunction 基于混合二维WSe2/Ag-in-Ga-S量子点异质结的高性能光电探测器
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-10-12 DOI: 10.1016/j.physe.2025.116391
Jiahao Yang, Banqin Ruan, Zhentao Ke, Jiahao Zhang, Yiyang An, Zixuan Guo, Zhi Li, Xiufeng Song, Haibo Zeng
Two-dimensional (2D) materials have emerged as a prominent research focus due to their excellent properties and broad application. Among these, tungsten diselenide (WSe2), a representative transition-metal dichalcogenide (TMDC), exhibits high carrier mobility and a tunable band gap when reduced to a 2D structure, making it particularly attractive for electronic and optoelectronic applications. However, the inherent weak absorption in 2D materials remains a fundamental limitation. To address this challenge, we developed a heterojunction photodetector by integrating Ag-In-Ga-S (AIGS) quantum dots (QDs) with 2D WSe2. The device combines the superior high carrier mobility of 2D materials with the strong light-harvesting capability of quantum dots, facilitating efficient photogenerated carrier separation and enhanced photocurrents, thereby improving photoresponse performance. The obtained heterojunction demonstrates extraordinary optoelectronic performance, achieving a responsivity of 1.81 × 104 A/W, a detectivity of 1.3 × 1013 Jones and an external quantum efficiency of 4.27 × 105 %. These results indicate the significant potential of 2D materials/QDs hybrid systems for advanced photodetector applications.
二维(2D)材料由于其优异的性能和广泛的应用而成为一个突出的研究热点。其中,二硒化钨(WSe2)是一种代表性的过渡金属二硫族化合物(TMDC),当还原为二维结构时,具有高载流子迁移率和可调带隙,使其在电子和光电子应用中特别具有吸引力。然而,二维材料固有的弱吸收仍然是一个基本的限制。为了解决这一挑战,我们通过将Ag-In-Ga-S (AIGS)量子点(QDs)与2D WSe2集成开发了一种异质结光电探测器。该器件结合了二维材料优越的高载流子迁移率和量子点强大的光捕获能力,促进了高效的光生载流子分离和增强的光电流,从而提高了光响应性能。得到的异质结具有优异的光电性能,响应率为1.81 × 104 a /W,探测率为1.3 × 1013 Jones,外量子效率为4.27 × 105%。这些结果表明了二维材料/量子点混合系统在先进光电探测器应用中的巨大潜力。
{"title":"High-performance photodetector based on hybrid 2D WSe2/Ag-in-Ga-S QDs heterojunction","authors":"Jiahao Yang,&nbsp;Banqin Ruan,&nbsp;Zhentao Ke,&nbsp;Jiahao Zhang,&nbsp;Yiyang An,&nbsp;Zixuan Guo,&nbsp;Zhi Li,&nbsp;Xiufeng Song,&nbsp;Haibo Zeng","doi":"10.1016/j.physe.2025.116391","DOIUrl":"10.1016/j.physe.2025.116391","url":null,"abstract":"<div><div>Two-dimensional (2D) materials have emerged as a prominent research focus due to their excellent properties and broad application. Among these, tungsten diselenide (WSe<sub>2</sub>), a representative transition-metal dichalcogenide (TMDC), exhibits high carrier mobility and a tunable band gap when reduced to a 2D structure, making it particularly attractive for electronic and optoelectronic applications. However, the inherent weak absorption in 2D materials remains a fundamental limitation. To address this challenge, we developed a heterojunction photodetector by integrating Ag-In-Ga-S (AIGS) quantum dots (QDs) with 2D WSe<sub>2</sub>. The device combines the superior high carrier mobility of 2D materials with the strong light-harvesting capability of quantum dots, facilitating efficient photogenerated carrier separation and enhanced photocurrents, thereby improving photoresponse performance. The obtained heterojunction demonstrates extraordinary optoelectronic performance, achieving a responsivity of 1.81 × 10<sup>4</sup> A/W, a detectivity of 1.3 × 10<sup>13</sup> Jones and an external quantum efficiency of 4.27 × 10<sup>5</sup> %. These results indicate the significant potential of 2D materials/QDs hybrid systems for advanced photodetector applications.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116391"},"PeriodicalIF":2.9,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145324745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensional high-temperature magnetic MoNX2 (X = F, Cl, Br, I) with piezoelectricity, ferroelectricity, and optical anisotropy 具有压电性、铁电性和光学各向异性的二维高温磁性MoNX2 (X = F, Cl, Br, I)
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-10-10 DOI: 10.1016/j.physe.2025.116389
Wen-Zhi Xiao, Gang Xiao, Hai-Qing Xu, Xin-Hua Gao, Jun He
Two-dimensional (2D) multifunctional materials with distinctive features such as magnetic, ferroelectric, piezoelectric, and optical property are in high demand due to their potential applications in novel nanoscale devices. Herein, based on first-principles calculations, we present a family of 2D multiferroic MoNX2 (X = F, Cl, Br, I) materials. Among them, MoNF2 is an anti-ferroelectric (AFE) ferromagnetic (FM) semiconductor with Curie temperature (TC) of 497 K. MoNX2 (X = Cl, Br) are ferroelectric (FE) antiferromagnetic (AFM) semiconductors. All of them exhibit an in-plane spontaneous electric polarization of up to 260 pC m−1 and piezoelectric response. The FE switching energy barrier is no more than 0.1 eV per atom for them. Additionally, they exhibit strong linear optical dichroism and hyperbolicity in the visible light region. The alignments of the band edges of MoNX2 (X = Cl, Br, I) with the redox potentials of water show that these materials are suitable for use as photocatalysts for water splitting. Their intriguing magnetic, electronic, ferroelectric, piezoelectric and optical properties render them ideal for use in high-performance, multifunctional applications.
二维(2D)多功能材料具有磁性、铁电性、压电性和光学性等独特的特征,由于其在新型纳米级器件中的潜在应用,因此需求量很大。在此,基于第一性原理计算,我们提出了一类二维多铁性MoNX2 (X = F, Cl, Br, I)材料。其中MoNF2是一种反铁电(AFE)铁磁(FM)半导体,居里温度(TC)为497 K。MoNX2 (X = Cl, Br)是铁电(FE)反铁磁(AFM)半导体。它们都表现出高达260 pC m−1的面内自发电极化和压电响应。它们的FE开关能垒不大于0.1 eV /原子。此外,它们在可见光区表现出强烈的线性光学二色性和双曲性。MoNX2 (X = Cl, Br, I)的带边与水的氧化还原电位的排列表明,这些材料适合作为水裂解的光催化剂。它们迷人的磁性、电子性、铁电性、压电性和光学性使其成为高性能、多功能应用的理想选择。
{"title":"Two-dimensional high-temperature magnetic MoNX2 (X = F, Cl, Br, I) with piezoelectricity, ferroelectricity, and optical anisotropy","authors":"Wen-Zhi Xiao,&nbsp;Gang Xiao,&nbsp;Hai-Qing Xu,&nbsp;Xin-Hua Gao,&nbsp;Jun He","doi":"10.1016/j.physe.2025.116389","DOIUrl":"10.1016/j.physe.2025.116389","url":null,"abstract":"<div><div>Two-dimensional (2D) multifunctional materials with distinctive features such as magnetic, ferroelectric, piezoelectric, and optical property are in high demand due to their potential applications in novel nanoscale devices. Herein, based on first-principles calculations, we present a family of 2D multiferroic MoNX<sub>2</sub> (X = F, Cl, Br, I) materials. Among them, MoNF<sub>2</sub> is an anti-ferroelectric (AFE) ferromagnetic (FM) semiconductor with Curie temperature (T<sub>C</sub>) of 497 K. MoNX<sub>2</sub> (X = Cl, Br) are ferroelectric (FE) antiferromagnetic (AFM) semiconductors. All of them exhibit an in-plane spontaneous electric polarization of up to 260 pC m<sup>−1</sup> and piezoelectric response. The FE switching energy barrier is no more than 0.1 eV per atom for them. Additionally, they exhibit strong linear optical dichroism and hyperbolicity in the visible light region. The alignments of the band edges of MoNX<sub>2</sub> (X = Cl, Br, I) with the redox potentials of water show that these materials are suitable for use as photocatalysts for water splitting. Their intriguing magnetic, electronic, ferroelectric, piezoelectric and optical properties render them ideal for use in high-performance, multifunctional applications.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116389"},"PeriodicalIF":2.9,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145324744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulation of valley polarization and anomalous valley Hall effect in monolayer ferrovalley AgMoP2S6 单层铁谷AgMoP2S6中谷极化和异常谷霍尔效应的操纵
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-10-09 DOI: 10.1016/j.physe.2025.116387
Lan Luo , Xianjuan He , Wenzhe Zhou , Qinglin Xia , Fangping Ouyang
Due to the role of the valley as an information carriers, two-dimensional valleytronics materials have broad prospects in information storage in the future. However, materials with intrinsic valley polarization are rare. In our work, using first-principles calculations, we propose a valleytronics material monolayer (ML) AgMoP2S6 with a ferromagnetic(FM) ground state. The ferromagnetic exchange interaction breaks the time-reversal symmetry, which results in a spontaneous valley polarization of 78 meV at the K/-K points on the valence band under the action of strong SOC. The valley polarization can be tuned by biaxial strain and Hubbard U, and when the tensile strain exceeds 4 % and U exceeds 2 eV, valley polarization also appears in the conduction band. Under the action of an in-plane electric field, the breaking of valley degeneracy makes the appearance of anomalous valley Hall effect (AVHE) effect a possibility. ML AgMoP2S6 is an ideal valleytronics material.
由于谷作为信息载体的作用,二维谷电子材料在未来的信息存储方面具有广阔的前景。然而,具有本征谷极化的材料是罕见的。在我们的工作中,使用第一性原理计算,我们提出了一种具有铁磁基态的谷电子材料单层(ML) AgMoP2S6。铁磁交换作用打破了时间反转对称性,在强荷电性作用下,在价带K/-K点产生了78 meV的自发谷极化。双轴应变和Hubbard U可以调节谷极化,当拉伸应变超过4%,U超过2 eV时,导带也出现谷极化。在面内电场作用下,谷简并的破缺使反常谷霍尔效应(AVHE)的出现成为可能。AgMoP2S6是一种理想的谷电子材料。
{"title":"Manipulation of valley polarization and anomalous valley Hall effect in monolayer ferrovalley AgMoP2S6","authors":"Lan Luo ,&nbsp;Xianjuan He ,&nbsp;Wenzhe Zhou ,&nbsp;Qinglin Xia ,&nbsp;Fangping Ouyang","doi":"10.1016/j.physe.2025.116387","DOIUrl":"10.1016/j.physe.2025.116387","url":null,"abstract":"<div><div>Due to the role of the valley as an information carriers, two-dimensional valleytronics materials have broad prospects in information storage in the future. However, materials with intrinsic valley polarization are rare. In our work, using first-principles calculations, we propose a valleytronics material monolayer (ML) AgMoP<sub>2</sub>S<sub>6</sub> with a ferromagnetic(FM) ground state. The ferromagnetic exchange interaction breaks the time-reversal symmetry, which results in a spontaneous valley polarization of 78 meV at the K/-K points on the valence band under the action of strong SOC. The valley polarization can be tuned by biaxial strain and Hubbard U, and when the tensile strain exceeds 4 % and U exceeds 2 eV, valley polarization also appears in the conduction band. Under the action of an in-plane electric field, the breaking of valley degeneracy makes the appearance of anomalous valley Hall effect (AVHE) effect a possibility. ML AgMoP<sub>2</sub>S<sub>6</sub> is an ideal valleytronics material.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116387"},"PeriodicalIF":2.9,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145267669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous Seebeck effect in non-Hermitian double quantum dots 非厄米双量子点中的反常塞贝克效应
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-10-09 DOI: 10.1016/j.physe.2025.116385
Pengbin Niu , Li Xu , Hui Yao , Hong-Gang Luo
We investigate the thermoelectrical transport in a system of non-Hermitian double quantum dots. For that purpose, we set up a model where two quantum dots are experiencing gain and loss of energy and in proximity to two superconductors. By applying Keldysh Green’s function technique, we study the transmission function, conductance as well as the Seebeck coefficient. We calculate the thermoelectric quantities both analytically and numerically and show that a sign change of the Seebeck coefficient can occur when electrons transport through the Andreev bound states forming on the quantum dots. The sign change is induced by the competition of superconducting pairing potential and PT-symmetric complex potential, when the system passes through the exceptional point. These findings may be attractive for the study of quantum thermoelectric effects.
研究了非厄米双量子点系统中的热电输运。为此,我们建立了一个模型,其中两个量子点正在经历能量的增益和损失,并且靠近两个超导体。应用Keldysh Green函数技术,研究了传输函数、电导和塞贝克系数。我们用解析法和数值法计算了热电量,并表明当电子通过量子点上形成的Andreev束缚态传输时,Seebeck系数会发生符号变化。当系统通过异常点时,符号变化是由超导偶势和pt对称复势的竞争引起的。这些发现对量子热电效应的研究具有重要意义。
{"title":"Anomalous Seebeck effect in non-Hermitian double quantum dots","authors":"Pengbin Niu ,&nbsp;Li Xu ,&nbsp;Hui Yao ,&nbsp;Hong-Gang Luo","doi":"10.1016/j.physe.2025.116385","DOIUrl":"10.1016/j.physe.2025.116385","url":null,"abstract":"<div><div>We investigate the thermoelectrical transport in a system of non-Hermitian double quantum dots. For that purpose, we set up a model where two quantum dots are experiencing gain and loss of energy and in proximity to two superconductors. By applying Keldysh Green’s function technique, we study the transmission function, conductance as well as the Seebeck coefficient. We calculate the thermoelectric quantities both analytically and numerically and show that a sign change of the Seebeck coefficient can occur when electrons transport through the Andreev bound states forming on the quantum dots. The sign change is induced by the competition of superconducting pairing potential and PT-symmetric complex potential, when the system passes through the exceptional point. These findings may be attractive for the study of quantum thermoelectric effects.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116385"},"PeriodicalIF":2.9,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145267670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear corrections to the thermoelectric efficiency of a nanoscale device 纳米器件热电效率的非线性修正
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-10-08 DOI: 10.1016/j.physe.2025.116383
Raymond J. Hartig , Ioan Grosu , Ionel Ţifrea
<div><div>We investigate the nonlinear thermoelectric transport in a generic nanoscale device connected to two side reservoirs at different temperatures (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>) and chemical potentials (<span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>). We derive equations for the charge (electric) and heat (thermal) currents. These equations allow for the estimation of the second order contributions to the system’s thermoelectric response and the <em>analytical</em> derivation of the first nonlinear contributions to the system’s electric conductance <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup></math></span>, Seebeck coefficient <span><math><msup><mrow><mi>S</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msup></math></span>, and electronic thermal conductance <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>e</mi><mi>l</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msubsup></math></span>. In the generation mode, when the system’s output power is positive (<span><math><mrow><mi>P</mi><mo>></mo><mn>0</mn></mrow></math></span>), we estimate the maximum output power and efficiency of the system. The results are general and rely on generic dimensionless kinetic transport coefficients <span><math><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>μ</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> that depends on the system’s characteristic electronic transmission function <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>. To outline the differences between the linear and nonlinear approximations we consider the particular case of a generalized Fano line-shape electronic transmission function and exactly calculate the dimensionless kinetic transport coefficients in terms of Hurwitz zeta functions and Bernoulli numbers. The output power efficiency of the system is estimated as function of the energy <span><math><mrow><mi>ɛ</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>−</mo><mi>μ</mi><mo>)</mo></mrow><mo>/</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi></mrow></math></span> and broadening <span><math><mrow><mi>γ</mi><mo>=</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>/</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi></mrow></math></span> parameters. These results support the need for higher order terms in the theoretical analysis of the thermoelectric transport in nanoscale devices and allow for the optimization of the system’s propert
我们研究了在不同温度(TL和TR)和化学势(μL和μR)下连接两个侧储层的通用纳米器件的非线性热电输运。我们推导出电荷(电)流和热(热)流的方程。这些方程允许对系统热电响应的二阶贡献进行估计,并对系统电导σ(2)、塞贝克系数S(2)和电子热导κel(2)的一阶非线性贡献进行解析推导。在发电模式下,当系统的输出功率为正(P>0)时,我们估计系统的最大输出功率和效率。结果具有普遍性,依赖于依赖于系统特征电子传输函数τ(E)的一般无因次动力学输运系数Knp(μ,T)。为了概述线性近似和非线性近似的区别,我们考虑了广义法诺线形电子传输函数的特殊情况,并精确计算了基于Hurwitz zeta函数和伯努利数的无因次动力学传输系数。系统的输出功率效率估计为能量=(Ed−μ)/kBT和展宽γ=Γd/kBT参数的函数。这些结果支持在纳米级器件热电输运的理论分析中需要高阶项,并允许优化系统特性以获得有效的热电响应。
{"title":"Nonlinear corrections to the thermoelectric efficiency of a nanoscale device","authors":"Raymond J. Hartig ,&nbsp;Ioan Grosu ,&nbsp;Ionel Ţifrea","doi":"10.1016/j.physe.2025.116383","DOIUrl":"10.1016/j.physe.2025.116383","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We investigate the nonlinear thermoelectric transport in a generic nanoscale device connected to two side reservoirs at different temperatures (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) and chemical potentials (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;). We derive equations for the charge (electric) and heat (thermal) currents. These equations allow for the estimation of the second order contributions to the system’s thermoelectric response and the &lt;em&gt;analytical&lt;/em&gt; derivation of the first nonlinear contributions to the system’s electric conductance &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, Seebeck coefficient &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, and electronic thermal conductance &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;. In the generation mode, when the system’s output power is positive (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;), we estimate the maximum output power and efficiency of the system. The results are general and rely on generic dimensionless kinetic transport coefficients &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; that depends on the system’s characteristic electronic transmission function &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. To outline the differences between the linear and nonlinear approximations we consider the particular case of a generalized Fano line-shape electronic transmission function and exactly calculate the dimensionless kinetic transport coefficients in terms of Hurwitz zeta functions and Bernoulli numbers. The output power efficiency of the system is estimated as function of the energy &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ɛ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and broadening &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; parameters. These results support the need for higher order terms in the theoretical analysis of the thermoelectric transport in nanoscale devices and allow for the optimization of the system’s propert","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116383"},"PeriodicalIF":2.9,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145267668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Voltage fluctuations in a four-terminal quantum device with orthogonal, unitary or symplectic symmetry 正交对称、酉对称或辛对称的四端量子器件中的电压波动
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-10-08 DOI: 10.1016/j.physe.2025.116386
F. Castañeda-Ramírez , M. Martínez-Mares , A.M. Martínez-Argüello
The statistical fluctuations of the voltage across a quantum wire in a four-terminal arrangement, where two of the terminals are used as probes while the other two are used to establish a flux current, is studied in the single channel case. The quantum wire to be measured consists of a chaotic microcavity or a disordered conductor in the presence of one of the three symmetry classes: orthogonal, unitary, or symplectic. Using the circular ensembles of random matrix theory or the Dorokov–Mello–Pereyra–Kumar (DMPK) equation, the statistical distribution of the voltage is reduced to quadratures for noninvasive probes which is solved numerically. Numerical simulations from random matrix theory or for the DMPK equation are performed for any coupling strength of the probes. For the chaotic cavity the effect of the symmetry class is clearly manifested through the weak and weak anti-localization phenomena for the orthogonal and symplectic symmetry classes, respectively. A similar effect is found, but with respect to the degree of disorder in a quantum wire as it evolves from strong to weak disorder: a simple correspondence between the label of the symmetry class and the degree of disorder, is found.
在单通道情况下,研究了四端排列中电压的统计波动,其中两个终端用作探针,而另外两个用于建立磁通电流。要测量的量子线由一个混沌微腔或无序导体组成,其中存在三种对称类:正交、酉或辛。利用随机矩阵理论的圆系综或Dorokov-Mello-Pereyra-Kumar (DMPK)方程,将无创探头的电压统计分布简化为正交分布,并进行数值求解。利用随机矩阵理论或DMPK方程对任意耦合强度的探针进行了数值模拟。对于混沌腔,对称类的影响通过正交对称类和辛对称类的弱和弱反局域化现象清晰地表现出来。发现了类似的效应,但是是关于量子线从强无序到弱无序的程度:发现了对称类的标签和无序程度之间的简单对应关系。
{"title":"Voltage fluctuations in a four-terminal quantum device with orthogonal, unitary or symplectic symmetry","authors":"F. Castañeda-Ramírez ,&nbsp;M. Martínez-Mares ,&nbsp;A.M. Martínez-Argüello","doi":"10.1016/j.physe.2025.116386","DOIUrl":"10.1016/j.physe.2025.116386","url":null,"abstract":"<div><div>The statistical fluctuations of the voltage across a quantum wire in a four-terminal arrangement, where two of the terminals are used as probes while the other two are used to establish a flux current, is studied in the single channel case. The quantum wire to be measured consists of a chaotic microcavity or a disordered conductor in the presence of one of the three symmetry classes: orthogonal, unitary, or symplectic. Using the circular ensembles of random matrix theory or the Dorokov–Mello–Pereyra–Kumar (DMPK) equation, the statistical distribution of the voltage is reduced to quadratures for noninvasive probes which is solved numerically. Numerical simulations from random matrix theory or for the DMPK equation are performed for any coupling strength of the probes. For the chaotic cavity the effect of the symmetry class is clearly manifested through the weak and weak anti-localization phenomena for the orthogonal and symplectic symmetry classes, respectively. A similar effect is found, but with respect to the degree of disorder in a quantum wire as it evolves from strong to weak disorder: a simple correspondence between the label of the symmetry class and the degree of disorder, is found.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116386"},"PeriodicalIF":2.9,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145267671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Hall-like effect for neutral particles with magnetic dipole moments in a quantum dot 量子点中具有磁偶极矩的中性粒子的量子霍尔效应
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-09-30 DOI: 10.1016/j.physe.2025.116381
Carlos Magno O. Pereira, Edilberto O. Silva
We predict a new class of quantum Hall phenomena in completely neutral systems, demonstrating that the interplay between radial electric fields and dipole moments induces exact e2/h quantization without Landau levels or external magnetic fields. Contrary to conventional wisdom, our theory reveals that: (i) the singularity of line charges does not destroy topological protection, (ii) spin control of quantization emerges from boundary conditions alone, and (iii) the effect persists up to 25 K, surpassing typical neutral systems. These findings establish electric field engineering as a viable route to topological matter beyond magnetic paradigms.
我们在完全中性系统中预测了一类新的量子霍尔现象,证明了径向电场和偶极矩之间的相互作用在没有朗道能级或外部磁场的情况下诱导了精确的e2/h量子化。与传统观点相反,我们的理论揭示:(i)线电荷的奇点不会破坏拓扑保护,(ii)量子化的自旋控制仅来自边界条件,以及(iii)效应持续到25 K,超过典型的中性系统。这些发现确立了电场工程作为超越磁范式的拓扑物质的可行途径。
{"title":"Quantum Hall-like effect for neutral particles with magnetic dipole moments in a quantum dot","authors":"Carlos Magno O. Pereira,&nbsp;Edilberto O. Silva","doi":"10.1016/j.physe.2025.116381","DOIUrl":"10.1016/j.physe.2025.116381","url":null,"abstract":"<div><div>We predict a new class of quantum Hall phenomena in completely neutral systems, demonstrating that the interplay between radial electric fields and dipole moments induces exact <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>h</mi></mrow></math></span> quantization without Landau levels or external magnetic fields. Contrary to conventional wisdom, our theory reveals that: (i) the singularity of line charges does not destroy topological protection, (ii) spin control of quantization emerges from boundary conditions alone, and (iii) the effect persists up to 25 K, surpassing typical neutral systems. These findings establish electric field engineering as a viable route to topological matter beyond magnetic paradigms.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116381"},"PeriodicalIF":2.9,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145220919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain-engineered electronic and thermoelectric properties of ZrX2 (X=S, Se) monolayers: A first-principles study ZrX2 (X=S, Se)单层的应变工程电子和热电性质:第一性原理研究
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-09-30 DOI: 10.1016/j.physe.2025.116384
Khatir Ouail, Samia Ferahtia, Salima Saib, Nadir Bouarissa
Through comprehensive first-principles calculations coupled with Boltzmann transport theory, we systematically investigate the strain-dependent structural, mechanical, electronic, and thermoelectric properties of monolayer ZrX2 (X = S, Se). Our mechanical analysis reveals both materials maintain exceptional stability under biaxial strains ranging from −10 % to +10 %, with ZrS2 exhibiting superior mechanical robustness as evidenced by its higher Young's modulus (73.95 N/m) compared to ZrSe2 (63.70 N/m). Detailed electronic structure calculations employing the TB-mBJ potential demonstrate these monolayers are indirect band gap semiconductors, with fundamental gaps of 1.8 eV for ZrS2 and 1.16 eV for ZrSe2. Notably, compressive strain induces dramatic electronic transitions, reducing the band gap progressively until ZrSe2 undergoes a complete semiconductor-to-metal transition at −10 % strain. The thermoelectric transport properties show remarkable strain sensitivity. Applied biaxial strain enhances the power factor by an order of magnitude, reaching exceptional values of 2.4 × 1011 W/mK2s for ZrSe2 at −6 % strain. Comparative analysis reveals n-type doping consistently outperforms p-type configurations in thermoelectric efficiency across all strain conditions. These enhancements originate from strain-induced modifications to both electronic band structures and carrier scattering mechanisms. Our combined mechanical, electronic, and thermoelectric characterization provides fundamental insights into the strain-response of ZrX2 monolayers, demonstrating their exceptional tunability for next-generation flexible electronics, strain sensors, and high-efficiency energy conversion devices. The comprehensive dataset presented here establishes a foundation for future experimental investigations and device applications of these promising 2D materials.
通过综合第一性原理计算和玻尔兹曼输运理论,我们系统地研究了单层ZrX2 (X = S, Se)的应变相关结构、力学、电子和热电性质。我们的力学分析表明,两种材料在- 10%至+ 10%的双轴应变范围内都保持了出色的稳定性,ZrS2表现出优异的机械鲁棒性,与ZrSe2 (63.70 N/m)相比,ZrSe2的杨氏模量(73.95 N/m)更高。利用TB-mBJ电位的详细电子结构计算表明,这些单层是间接带隙半导体,ZrS2的基本隙为1.8 eV, ZrSe2的基本隙为1.16 eV。值得注意的是,压缩应变引起了剧烈的电子跃迁,逐渐减小了带隙,直到ZrSe2在- 10%应变下经历了完全的半导体到金属的跃迁。热电输运性能表现出显著的应变敏感性。施加双轴应变使功率因数提高了一个数量级,ZrSe2在- 6%应变下达到2.4 × 1011 W/mK2s的异常值。对比分析表明,在所有应变条件下,n型掺杂的热电效率始终优于p型掺杂。这些增强源于应变诱导的电子能带结构和载流子散射机制的修改。我们结合了机械、电子和热电特性,为ZrX2单层的应变响应提供了基本的见解,展示了它们在下一代柔性电子、应变传感器和高效能量转换设备上的卓越可调性。这里提出的综合数据集为这些有前途的二维材料的未来实验研究和设备应用奠定了基础。
{"title":"Strain-engineered electronic and thermoelectric properties of ZrX2 (X=S, Se) monolayers: A first-principles study","authors":"Khatir Ouail,&nbsp;Samia Ferahtia,&nbsp;Salima Saib,&nbsp;Nadir Bouarissa","doi":"10.1016/j.physe.2025.116384","DOIUrl":"10.1016/j.physe.2025.116384","url":null,"abstract":"<div><div>Through comprehensive first-principles calculations coupled with Boltzmann transport theory, we systematically investigate the strain-dependent structural, mechanical, electronic, and thermoelectric properties of monolayer ZrX<sub>2</sub> (X = S, Se). Our mechanical analysis reveals both materials maintain exceptional stability under biaxial strains ranging from −10 % to +10 %, with ZrS<sub>2</sub> exhibiting superior mechanical robustness as evidenced by its higher Young's modulus (73.95 N/m) compared to ZrSe<sub>2</sub> (63.70 N/m). Detailed electronic structure calculations employing the TB-mBJ potential demonstrate these monolayers are indirect band gap semiconductors, with fundamental gaps of 1.8 eV for ZrS<sub>2</sub> and 1.16 eV for ZrSe<sub>2</sub>. Notably, compressive strain induces dramatic electronic transitions, reducing the band gap progressively until ZrSe<sub>2</sub> undergoes a complete semiconductor-to-metal transition at −10 % strain. The thermoelectric transport properties show remarkable strain sensitivity. Applied biaxial strain enhances the power factor by an order of magnitude, reaching exceptional values of 2.4 × 10<sup>11</sup> W/mK<sup>2</sup>s for ZrSe<sub>2</sub> at −6 % strain. Comparative analysis reveals n-type doping consistently outperforms p-type configurations in thermoelectric efficiency across all strain conditions. These enhancements originate from strain-induced modifications to both electronic band structures and carrier scattering mechanisms. Our combined mechanical, electronic, and thermoelectric characterization provides fundamental insights into the strain-response of ZrX<sub>2</sub> monolayers, demonstrating their exceptional tunability for next-generation flexible electronics, strain sensors, and high-efficiency energy conversion devices. The comprehensive dataset presented here establishes a foundation for future experimental investigations and device applications of these promising 2D materials.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116384"},"PeriodicalIF":2.9,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145267672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broken sublattice symmetry induced gap opening of spin-polarized Dirac cone in MnF3 亚晶格对称性破缺诱导MnF3中自旋极化Dirac锥的隙开
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-09-29 DOI: 10.1016/j.physe.2025.116382
Limei Zheng, Yu Li, Dazhi Sun, Baozeng Zhou, Xiaocha Wang
Two-dimensional (2D) transition-metal trihalides have received extensive attention in the field of novel spintronic devices and heterostructure coupling is an effective method for achieving multifunctional integration and regulation. In this work, using first-principles calculations, we systematically study the electronic structure and magnetic properties of the 2D MnF3/graphene heterostructures. MnF3 monolayer exhibits Dirac half-metal properties, with electron states featuring Dirac cones in its single spin channel. With different stacking configurations, the electronic properties of both are well preserved from the band structure, interfacial charge transfer only causes the relative movement of the electronic states. Additionally, due to the broken sublattice symmetry of MnF3 in heterostructure, a gap opening of 24.9 meV appears around the spin-polarized Dirac cone in MnF3. Moreover, the formation of heterostructure significantly enhances the in-plane magnetic anisotropy of the MnF3 monolayer. By reducing the interlayer distance, the spin-polarized Dirac cone has a larger gap opening of 555.5 meV, which induces the transition of MnF3 from Dirac half-metal to magnetic semiconductor, and the Curie temperature (TC) increases obviously. Furthermore, a spin logic device based on MnF3/graphene heterostructures is proposed, which can complete the resistive state switching from the "1″ state to the "0″ state by application of pressure. These results provide a reference for the application of MnF3/graphene heterostructure in spintronic devices.
二维过渡金属三卤化物在新型自旋电子器件领域受到广泛关注,异质结构耦合是实现多功能集成和调控的有效方法。在这项工作中,我们使用第一性原理计算,系统地研究了二维MnF3/石墨烯异质结构的电子结构和磁性能。MnF3单层膜具有狄拉克半金属性质,其单自旋通道的电子态具有狄拉克锥。在不同的堆叠构型下,从能带结构上看,两者的电子性质都得到了很好的保留,界面电荷转移只引起电子态的相对运动。此外,由于MnF3异质结构中亚晶格对称性的破坏,在MnF3中自旋极化的Dirac锥周围出现了24.9 meV的隙开。此外,异质结构的形成显著增强了MnF3单层的面内磁各向异性。通过减小层间距离,自旋极化的Dirac锥隙开度增大至555.5 meV,诱导MnF3从Dirac半金属向磁性半导体转变,居里温度(TC)明显升高。此外,提出了一种基于MnF3/石墨烯异质结构的自旋逻辑器件,该器件可以通过施加压力完成从“1″”状态到“0″”状态的电阻性状态切换。这些结果为MnF3/石墨烯异质结构在自旋电子器件中的应用提供了参考。
{"title":"Broken sublattice symmetry induced gap opening of spin-polarized Dirac cone in MnF3","authors":"Limei Zheng,&nbsp;Yu Li,&nbsp;Dazhi Sun,&nbsp;Baozeng Zhou,&nbsp;Xiaocha Wang","doi":"10.1016/j.physe.2025.116382","DOIUrl":"10.1016/j.physe.2025.116382","url":null,"abstract":"<div><div>Two-dimensional (2D) transition-metal trihalides have received extensive attention in the field of novel spintronic devices and heterostructure coupling is an effective method for achieving multifunctional integration and regulation. In this work, using first-principles calculations, we systematically study the electronic structure and magnetic properties of the 2D MnF<sub>3</sub>/graphene heterostructures. MnF<sub>3</sub> monolayer exhibits Dirac half-metal properties, with electron states featuring Dirac cones in its single spin channel. With different stacking configurations, the electronic properties of both are well preserved from the band structure, interfacial charge transfer only causes the relative movement of the electronic states. Additionally, due to the broken sublattice symmetry of MnF<sub>3</sub> in heterostructure, a gap opening of 24.9 meV appears around the spin-polarized Dirac cone in MnF<sub>3</sub>. Moreover, the formation of heterostructure significantly enhances the in-plane magnetic anisotropy of the MnF<sub>3</sub> monolayer. By reducing the interlayer distance, the spin-polarized Dirac cone has a larger gap opening of 555.5 meV, which induces the transition of MnF<sub>3</sub> from Dirac half-metal to magnetic semiconductor, and the Curie temperature (<em>T</em><sub>C</sub>) increases obviously. Furthermore, a spin logic device based on MnF<sub>3</sub>/graphene heterostructures is proposed, which can complete the resistive state switching from the \"1″ state to the \"0″ state by application of pressure. These results provide a reference for the application of MnF<sub>3</sub>/graphene heterostructure in spintronic devices.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116382"},"PeriodicalIF":2.9,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145220920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical photonic diode realization through spatial self-phase modulation using Mn3O4 nanoparticles 利用Mn3O4纳米粒子空间自相位调制实现光学光子二极管
IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Pub Date : 2025-09-25 DOI: 10.1016/j.physe.2025.116378
K.V. Jayaprasad, Titu Thomas, Manu Vaishakh, Sheenu Thomas
The growing demand for efficient nonlinear optical (NLO) materials for photonic devices such as isolators, switches, and telecommunication components necessitates the exploration of new nanostructured systems. Transition metal oxides like Mn3O4, with strong electronic interactions and thermal responses, remain relatively underexplored for their NLO behavior. In this work, Mn3O4 nanoparticles synthesized via ultrasonication-assisted precipitation were investigated using spatial self-phase modulation (SSPM) with a 532 nm CW DPSS laser. Structural and morphological characteristics were confirmed by XRD and TEM analyses. Nonlinear optical parameters, including the nonlinear refractive index (n2) and thermo-optic coefficient dndT , were determined from the variation of SSPM patterns with laser intensity. Furthermore, a photonic diode based on a cascaded Mn3O4/TiO2 hybrid structure was demonstrated, enabling nonreciprocal light propagation through unidirectional SSPM excitation. These findings highlight Mn3O4 nanoparticles as promising candidates for NLO applications, while the proposed hybrid photonic diode offers potential in integrated optics, optical switching, and telecommunication technologies.
由于隔离器、开关和电信元件等光子器件对高效非线性光学(NLO)材料的需求不断增长,因此有必要探索新的纳米结构系统。像Mn3O4这样具有强电子相互作用和热响应的过渡金属氧化物,其NLO行为的研究相对较少。本文采用空间自相位调制(SSPM)技术,利用532 nm连续波DPSS激光器对超声辅助沉淀法制备纳米Mn3O4进行了研究。通过XRD和TEM分析证实了材料的结构和形态特征。非线性光学参数包括非线性折射率(n2)和热光系数dndT随激光强度的变化。此外,基于级联Mn3O4/TiO2杂化结构的光子二极管被证明,使光通过单向SSPM激发非互反传播。这些发现强调了Mn3O4纳米颗粒是NLO应用的有希望的候选者,而所提出的混合光子二极管在集成光学、光开关和电信技术方面具有潜力。
{"title":"Optical photonic diode realization through spatial self-phase modulation using Mn3O4 nanoparticles","authors":"K.V. Jayaprasad,&nbsp;Titu Thomas,&nbsp;Manu Vaishakh,&nbsp;Sheenu Thomas","doi":"10.1016/j.physe.2025.116378","DOIUrl":"10.1016/j.physe.2025.116378","url":null,"abstract":"<div><div>The growing demand for efficient nonlinear optical (NLO) materials for photonic devices such as isolators, switches, and telecommunication components necessitates the exploration of new nanostructured systems. Transition metal oxides like Mn<sub>3</sub>O<sub>4</sub>, with strong electronic interactions and thermal responses, remain relatively underexplored for their NLO behavior. In this work, Mn<sub>3</sub>O<sub>4</sub> nanoparticles synthesized via ultrasonication-assisted precipitation were investigated using spatial self-phase modulation (SSPM) with a 532 nm CW DPSS laser. Structural and morphological characteristics were confirmed by XRD and TEM analyses. Nonlinear optical parameters, including the nonlinear refractive index (n<sub>2</sub>) and thermo-optic coefficient <span><math><mrow><mfrac><mtext>dn</mtext><mrow><mi>d</mi><mspace></mspace><mi>T</mi></mrow></mfrac></mrow></math></span> , were determined from the variation of SSPM patterns with laser intensity. Furthermore, a photonic diode based on a cascaded Mn<sub>3</sub>O<sub>4</sub>/TiO<sub>2</sub> hybrid structure was demonstrated, enabling nonreciprocal light propagation through unidirectional SSPM excitation. These findings highlight Mn<sub>3</sub>O<sub>4</sub> nanoparticles as promising candidates for NLO applications, while the proposed hybrid photonic diode offers potential in integrated optics, optical switching, and telecommunication technologies.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"175 ","pages":"Article 116378"},"PeriodicalIF":2.9,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145220922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physica E-low-dimensional Systems & Nanostructures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1