Magnetoacoustic tomography with magnetic induction (MAT-MI) offers non-invasive imaging of tissue conductivity distribution with ultrasound-comparable resolution based on multi-physical field coupling effects. However, practical clinical translation of MAT-MI is hampered by reconstruction challenges, particularly the trade-off between image fidelity and speed under realistic noise levels and data incompleteness. Conventional analytical algorithms are fast but prone to artifacts and inaccuracies due to simplified physics assumptions, while model-based iterative reconstruction provides superior fidelity but often suffers from high computational cost and challenges in effectively integrating complex priors. This work introduces SCG-MAR (superiorized conjugate gradient magnetoacoustic reconstruction), a novel algorithm for high-fidelity, real-time MAT-MI reconstruction. SCG-MAR synergistically integrates a precise physics-based magnetoacoustic forward model, accounting for crucial experimental factors, with the computationally efficient perturbed SCG method. Implemented via parallel graphics processing unit acceleration, SCG-MAR achieves real-time inversion speeds in MAT-MI (∼16 fps for multi-frame parallel reconstruction); note that this real-time capability refers specifically to the iterative image reconstruction process. Comprehensive benchmarking of SCG-MAR against conventional methods (filtered back-projection; delay-and-sum; algebraic reconstruction technique) and model-based reconstruction methods (CG-based MAR, CG-MAR; unconstrained superiorized variant, uSCG-MAR) across simulations, phantoms, andin vivomouse studies demonstrates significant improvements in reconstruction accuracy, background contrast, robustness to noise, and artifact suppression. To our knowledge, this is the first demonstration of high-quality real-timein vivoMAT-MI imaging achieved using a model-based inversion algorithm, significantly advancing the potential for MAT-MI in biomedical research and clinical applications.
扫码关注我们
求助内容:
应助结果提醒方式:
