首页 > 最新文献

Plant Cell最新文献

英文 中文
Regulation of the immunity-related VIK-APK-EDS1 pathway in Medicago for resistance to Phytophthora. 紫花苜蓿抗疫霉免疫相关VIK-APK-EDS1通路的调控
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-07-01 DOI: 10.1093/plcell/koaf161
Li Liu, Xiangzhao Meng, Qinyi Ye, Da Guo, Yafei Zhao, Na Cao, Lihua Zheng, Fei Guo, Jiangqi Wen, Yiding Niu, Tao Wang, Jiangli Dong

Root rot, induced by Phytophthora medicaginis, causes devastating damage to perennial alfalfa (Medicago sativa). However, the mechanism by which P. medicaginis infects Medicago remains elusive. Here, we identified the VASCULAR HIGHWAY 1-INTERACTING KINASE (VIK)-ANKYRIN PROTEIN KINASE (APK)-ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) pathway during P. medicaginis infection in Medicago truncatula. MtAPK is an autoimmune gene, and Mtapk-mediated autoimmunity depends on MtEDS1. P. medicaginis infection triggers MtVIK to phosphorylate Ser20 of MtAPK, enhancing the interaction between MtAPK and MtEDS1 in the cytoplasm and constraining the nuclear resistance of MtEDS1. Disease resistance could be enhanced not only by knocking out MtVIK but also by the Ser20Ala site mutation of MtAPK. Interestingly, we found that alfalfa germplasms with lower MsVIK expression after inoculation with P. medicaginis exhibited greater disease resistance. Furthermore, CRISPR/Cas9 editing of MsVIK mutants in alfalfa resulted in stronger disease resistance without growth or yield penalties. Taken together, VIK is a negative regulator of Medicago immunity and has significant potential for cultivating durable resistance in crops through genetic modification.

由疫霉(Phytophthora medicaginis)引起的根腐病对多年生紫花苜蓿(Medicago sativa)造成了毁灭性的危害。然而,P. medicaginis感染Medicago的机制仍然是难以捉摸的。本研究中,我们发现了在紫花苜蓿(medicaginis)感染过程中,VASCULAR HIGHWAY 1- interacting KINASE (VIK)-ANKYRIN PROTEIN KINASE (APK)-ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)通路。MtAPK是一种自身免疫基因,MtAPK介导的自身免疫依赖于MtEDS1。P. medicaginis感染触发MtVIK磷酸化MtAPK的Ser20,增强MtAPK与细胞质中MtEDS1的相互作用,抑制MtEDS1的核抗性。不仅可以通过敲除MtVIK,还可以通过MtAPK的Ser20Ala位点突变来增强抗病性。有趣的是,我们发现接种P. medicaginis后MsVIK表达较低的苜蓿种质具有更强的抗病能力。此外,CRISPR/Cas9编辑苜蓿中的MsVIK突变体导致更强的抗病性,而没有生长或产量损失。综上所述,VIK是紫花苜蓿免疫的负调节因子,具有通过基因改造培育持久抗性作物的巨大潜力。
{"title":"Regulation of the immunity-related VIK-APK-EDS1 pathway in Medicago for resistance to Phytophthora.","authors":"Li Liu, Xiangzhao Meng, Qinyi Ye, Da Guo, Yafei Zhao, Na Cao, Lihua Zheng, Fei Guo, Jiangqi Wen, Yiding Niu, Tao Wang, Jiangli Dong","doi":"10.1093/plcell/koaf161","DOIUrl":"10.1093/plcell/koaf161","url":null,"abstract":"<p><p>Root rot, induced by Phytophthora medicaginis, causes devastating damage to perennial alfalfa (Medicago sativa). However, the mechanism by which P. medicaginis infects Medicago remains elusive. Here, we identified the VASCULAR HIGHWAY 1-INTERACTING KINASE (VIK)-ANKYRIN PROTEIN KINASE (APK)-ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) pathway during P. medicaginis infection in Medicago truncatula. MtAPK is an autoimmune gene, and Mtapk-mediated autoimmunity depends on MtEDS1. P. medicaginis infection triggers MtVIK to phosphorylate Ser20 of MtAPK, enhancing the interaction between MtAPK and MtEDS1 in the cytoplasm and constraining the nuclear resistance of MtEDS1. Disease resistance could be enhanced not only by knocking out MtVIK but also by the Ser20Ala site mutation of MtAPK. Interestingly, we found that alfalfa germplasms with lower MsVIK expression after inoculation with P. medicaginis exhibited greater disease resistance. Furthermore, CRISPR/Cas9 editing of MsVIK mutants in alfalfa resulted in stronger disease resistance without growth or yield penalties. Taken together, VIK is a negative regulator of Medicago immunity and has significant potential for cultivating durable resistance in crops through genetic modification.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144507471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing a nitrogen-efficient cold-tolerant maize for modern agricultural systems. 为现代农业系统设计一种高效氮耐寒玉米。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-07-01 DOI: 10.1093/plcell/koaf139
Jonathan Odilón Ojeda-Rivera, Allison C Barnes, Elizabeth A Ainsworth, Ruthie Angelovici, Bruno Basso, Lara J Brindisi, Matthew D Brooks, Wolfgang Busch, Gretta L Buttelmann, Michael J Castellano, Junping Chen, Denise E Costich, Natalia de Leon, Bryan D Emmett, David Ertl, Sarah L Fitzsimmons, Sherry A Flint-Garcia, Michael A Gore, Kaiyu Guan, Charles O Hale, Sam Herr, Candice N Hirsch, David H Holding, James B Holland, Sheng-Kai Hsu, Jian Hua, Matthew B Hufford, Shawn M Kaeppler, Emma N Leary, Zong-Yan Liu, Anthony A Mahama, Tyler J McCubbin, Carlos D Messina, Todd P Michael, Sara J Miller, Seth C Murray, Sakiko Okumoto, Elad Oren, Alexa N Park, Miguel A Piñeros, Nicholas Ace Pugh, Victor Raboy, Rubén Rellán-Álvarez, M Cinta Romay, Travis Rooney, Rebecca L Roston, Ruairidh J H Sawers, James C Schnable, Aimee J Schulz, M Paul Scott, Nathan M Springer, Jacob D Washburn, Michelle A Zambrano, Jingjing Zhai, Jitao Zou, Edward S Buckler

Maize (Zea mays L.) is the world's most productive grain crop and a cornerstone of global food supply. However, in temperate agricultural systems, maize exhibits 2 key anomalies. First, as a tropical species, maize cannot be planted in the cold conditions of early spring when light and natural soil nitrogen are available, resulting in a shorter growing season and creating a seasonal mismatch between nitrogen accessibility and demand. Second, maize kernel protein is a major nitrogen sink, driving fertilizer demand because of the scale of cultivation. This inefficient mismatch stems from modern maize's uses and the modest nutritional value of storage proteins. To address these anomalies, we established the Circular Economy that Reimagines Corn Agriculture initiative. Our vision requires advances in 3 research areas: (ⅰ) developing cold and frost tolerance during germination and early growth to enable the use of spring nitrogen and light resources; (ⅱ) reducing nitrogen allocation to grain by reducing low-quality storage proteins and developing alternative nitrogen sinks; and (ⅲ) stabilizing soil nitrogen by enhancing biological nitrification inhibition. We present blueprints for a nitrogen-efficient, cold-tolerant maize designed to utilize the full growing season, enabling farmers in temperate regions to fully leverage maize's C4 photosynthesis, reduce fertilizer inputs, increase yields, and minimize environmental impact.

玉米(Zea mays L.)是世界上产量最高的粮食作物,也是全球粮食供应的基石。然而,在温带农业系统中,玉米表现出两个关键的异常。首先,作为热带物种,玉米不能在早春的寒冷条件下种植,因为春光和天然土壤氮都是可用的,导致生长季节较短,并造成氮可及性和需求之间的季节性不匹配。其次,玉米籽粒蛋白是主要的氮汇,由于种植规模的扩大,带动了肥料需求。这种低效率的不匹配源于现代玉米的用途和储存蛋白质的适度营养价值。为了解决这些异常情况,我们建立了循环经济,重新构想玉米农业倡议。我们的愿景需要在3个研究领域取得进展:(ⅰ)在萌发和生长早期培养耐寒性,使其能够利用春季氮和光照资源;(ⅱ)通过减少低品质贮藏蛋白和开发替代氮汇来减少籽粒氮素分配;(ⅲ)通过加强生物硝化抑制作用来稳定土壤氮。我们提出了一种高效氮耐寒玉米的蓝图,旨在利用整个生长季节,使温带地区的农民能够充分利用玉米的C4光合作用,减少肥料投入,提高产量,并最大限度地减少对环境的影响。
{"title":"Designing a nitrogen-efficient cold-tolerant maize for modern agricultural systems.","authors":"Jonathan Odilón Ojeda-Rivera, Allison C Barnes, Elizabeth A Ainsworth, Ruthie Angelovici, Bruno Basso, Lara J Brindisi, Matthew D Brooks, Wolfgang Busch, Gretta L Buttelmann, Michael J Castellano, Junping Chen, Denise E Costich, Natalia de Leon, Bryan D Emmett, David Ertl, Sarah L Fitzsimmons, Sherry A Flint-Garcia, Michael A Gore, Kaiyu Guan, Charles O Hale, Sam Herr, Candice N Hirsch, David H Holding, James B Holland, Sheng-Kai Hsu, Jian Hua, Matthew B Hufford, Shawn M Kaeppler, Emma N Leary, Zong-Yan Liu, Anthony A Mahama, Tyler J McCubbin, Carlos D Messina, Todd P Michael, Sara J Miller, Seth C Murray, Sakiko Okumoto, Elad Oren, Alexa N Park, Miguel A Piñeros, Nicholas Ace Pugh, Victor Raboy, Rubén Rellán-Álvarez, M Cinta Romay, Travis Rooney, Rebecca L Roston, Ruairidh J H Sawers, James C Schnable, Aimee J Schulz, M Paul Scott, Nathan M Springer, Jacob D Washburn, Michelle A Zambrano, Jingjing Zhai, Jitao Zou, Edward S Buckler","doi":"10.1093/plcell/koaf139","DOIUrl":"10.1093/plcell/koaf139","url":null,"abstract":"<p><p>Maize (Zea mays L.) is the world's most productive grain crop and a cornerstone of global food supply. However, in temperate agricultural systems, maize exhibits 2 key anomalies. First, as a tropical species, maize cannot be planted in the cold conditions of early spring when light and natural soil nitrogen are available, resulting in a shorter growing season and creating a seasonal mismatch between nitrogen accessibility and demand. Second, maize kernel protein is a major nitrogen sink, driving fertilizer demand because of the scale of cultivation. This inefficient mismatch stems from modern maize's uses and the modest nutritional value of storage proteins. To address these anomalies, we established the Circular Economy that Reimagines Corn Agriculture initiative. Our vision requires advances in 3 research areas: (ⅰ) developing cold and frost tolerance during germination and early growth to enable the use of spring nitrogen and light resources; (ⅱ) reducing nitrogen allocation to grain by reducing low-quality storage proteins and developing alternative nitrogen sinks; and (ⅲ) stabilizing soil nitrogen by enhancing biological nitrification inhibition. We present blueprints for a nitrogen-efficient, cold-tolerant maize designed to utilize the full growing season, enabling farmers in temperate regions to fully leverage maize's C4 photosynthesis, reduce fertilizer inputs, increase yields, and minimize environmental impact.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 7","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144650171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root tip regeneration: Yet another feather in FERONIA's cap. 根尖再生:FERONIA的另一项成就。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-07-01 DOI: 10.1093/plcell/koaf154
Leonard Blaschek
{"title":"Root tip regeneration: Yet another feather in FERONIA's cap.","authors":"Leonard Blaschek","doi":"10.1093/plcell/koaf154","DOIUrl":"10.1093/plcell/koaf154","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144286155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small DNA elements can act as both insulators and silencers in plants. 在植物中,小的DNA元素既可以起到绝缘体的作用,也可以起到消音器的作用。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-06-04 DOI: 10.1093/plcell/koaf084
Tobias Jores, Nicholas A Mueth, Jackson Tonnies, Si Nian Char, Bo Liu, Valentina Grillo-Alvarado, Shane Abbitt, Ajith Anand, Stéphane Deschamps, Scott Diehn, Bill Gordon-Kamm, Shuping Jiao, Kathy Munkvold, Heather Snowgren, Nagesh Sardesai, Stanley Fields, Bing Yang, Josh T Cuperus, Christine Queitsch

Insulators are cis-regulatory elements that separate transcriptional units, whereas silencers are elements that repress transcription regardless of their position. In plants, these elements remain largely uncharacterized. Here, we use the massively parallel reporter assay Plant STARR-seq with short fragments of 8 large insulators to identify more than 100 fragments that block enhancer activity. The short fragments can be combined to generate more powerful insulators that abolish the capacity of the strong viral 35S enhancer to activate the 35S minimal promoter. Unexpectedly, when tested upstream of weak enhancers, these fragments act as silencers and repress transcription. Thus, these elements are capable of insulating or repressing transcription, depending on the regulatory context. We validate our findings in stable transgenic Arabidopsis thaliana, maize (Zea mays), and rice (Oryza sativa) plants. The short elements identified here should be useful building blocks for plant biotechnology.

绝缘子是分离转录单位的顺式调控元件,而沉默子是抑制转录的元件,无论其位置如何。在植物中,这些元素在很大程度上仍然是未知的。在这里,我们使用大规模平行报告实验Plant STARR-seq与8个大绝缘子的短片段鉴定了100多个阻断增强子活性的片段。这些短片段可以结合起来产生更强大的绝缘子,从而消除强病毒35S增强子激活35S最小启动子的能力。出乎意料的是,当在弱增强子上游测试时,这些片段充当沉默者并抑制转录。因此,这些元件能够隔离或抑制转录,这取决于调控环境。我们在稳定的转基因拟南芥、玉米(Zea mays)和水稻(Oryza sativa)植物中验证了我们的发现。这里确定的短元素应该是植物生物技术的有用组成部分。
{"title":"Small DNA elements can act as both insulators and silencers in plants.","authors":"Tobias Jores, Nicholas A Mueth, Jackson Tonnies, Si Nian Char, Bo Liu, Valentina Grillo-Alvarado, Shane Abbitt, Ajith Anand, Stéphane Deschamps, Scott Diehn, Bill Gordon-Kamm, Shuping Jiao, Kathy Munkvold, Heather Snowgren, Nagesh Sardesai, Stanley Fields, Bing Yang, Josh T Cuperus, Christine Queitsch","doi":"10.1093/plcell/koaf084","DOIUrl":"10.1093/plcell/koaf084","url":null,"abstract":"<p><p>Insulators are cis-regulatory elements that separate transcriptional units, whereas silencers are elements that repress transcription regardless of their position. In plants, these elements remain largely uncharacterized. Here, we use the massively parallel reporter assay Plant STARR-seq with short fragments of 8 large insulators to identify more than 100 fragments that block enhancer activity. The short fragments can be combined to generate more powerful insulators that abolish the capacity of the strong viral 35S enhancer to activate the 35S minimal promoter. Unexpectedly, when tested upstream of weak enhancers, these fragments act as silencers and repress transcription. Thus, these elements are capable of insulating or repressing transcription, depending on the regulatory context. We validate our findings in stable transgenic Arabidopsis thaliana, maize (Zea mays), and rice (Oryza sativa) plants. The short elements identified here should be useful building blocks for plant biotechnology.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12164753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144249183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction of: "NAC Transcription Factor SPEEDY HYPONASTIC GROWTH Regulates Flooding-Induced Leaf Movement in Arabidopsis". 撤回:“NAC转录因子快速下阴生长调节洪水诱导的拟南芥叶片运动”。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-06-04 DOI: 10.1093/plcell/koaf114
{"title":"Retraction of: \"NAC Transcription Factor SPEEDY HYPONASTIC GROWTH Regulates Flooding-Induced Leaf Movement in Arabidopsis\".","authors":"","doi":"10.1093/plcell/koaf114","DOIUrl":"https://doi.org/10.1093/plcell/koaf114","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 6","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144310311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cracking the seed code: How nitrate directly breaks ABA signaling for germination. 破解种子密码:硝酸盐如何直接破坏ABA信号萌发。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-06-04 DOI: 10.1093/plcell/koaf072
Nitin Uttam Kamble
{"title":"Cracking the seed code: How nitrate directly breaks ABA signaling for germination.","authors":"Nitin Uttam Kamble","doi":"10.1093/plcell/koaf072","DOIUrl":"10.1093/plcell/koaf072","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 6","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12164581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144289591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis. 修正:MIR164A和CUC2基因之间的平衡控制拟南芥叶缘锯齿形。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-06-04 DOI: 10.1093/plcell/koaf123
{"title":"Correction to: The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis.","authors":"","doi":"10.1093/plcell/koaf123","DOIUrl":"10.1093/plcell/koaf123","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 6","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12461202/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144234740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: A single dominant GLOBOSA allele accounts for repeated origins of hose-in-hose flowers in Sinningia (Gesneriaceae). 更正:一个单一的显性GLOBOSA等位基因解释了Sinningia(苦苣苣科)中软管中的软管花的重复起源。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-06-04 DOI: 10.1093/plcell/koaf147
{"title":"Correction to: A single dominant GLOBOSA allele accounts for repeated origins of hose-in-hose flowers in Sinningia (Gesneriaceae).","authors":"","doi":"10.1093/plcell/koaf147","DOIUrl":"https://doi.org/10.1093/plcell/koaf147","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 6","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144326651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: A deficient CP24 allele defines variation for dynamic nonphotochemical quenching and photosystem II efficiency in maize. 修正:CP24等位基因缺陷决定了玉米动态非光化学猝灭和光系统II效率的变异。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-06-04 DOI: 10.1093/plcell/koaf158
{"title":"Correction to: A deficient CP24 allele defines variation for dynamic nonphotochemical quenching and photosystem II efficiency in maize.","authors":"","doi":"10.1093/plcell/koaf158","DOIUrl":"10.1093/plcell/koaf158","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 6","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12186852/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144485570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maize big embryo 6 reveals roles of plastidial and cytosolic prephenate aminotransferases in seed and plant development. 玉米大胚6揭示了质体和细胞质预苯酸氨基转移酶在种子和植株发育中的作用。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-06-04 DOI: 10.1093/plcell/koaf067
Hui Liu, Jorge El-Azaz, Abou Yobi, Ryo Yokoyama, Shan Wu, Alec D Chin-Quee, Zachary Gorman, Ruthie Angelovici, Anna K Block, Hiroshi A Maeda, Donald R McCarty, Masaharu Suzuki

In plants, embryo size is determined via interactions between metabolic and developmental signals. Maize (Zea mays) big embryo 6 (bige6) enhances embryo size while sharply reducing plant growth. Here, we show that BigE6 encodes a plastidial prephenate aminotransferase (PPA-AT), a key enzyme in the arogenate pathway for L-phenylalanine (Phe) and L-tyrosine (Tyr) biosynthesis. The maize BigE6 paralog, BigE6Like, encodes a cytosol-localized PPA-AT, revealing Phe and Tyr biosynthesis via cytosolic arogenate as a potential alternative to the known cytosolic phenylpyruvate pathway. Moreover, the single PPA-AT gene of Arabidopsis (Arabidopsis thaliana) encodes plastidial and cytosolic enzymes by alternative splicing. Transgenic rescue of a ppa-at mutant in Arabidopsis demonstrates that the plastidial PPA-AT is indispensable for seed formation due, in part, to its essential role in the female gametophyte. Leaves of bige6 maize maintained overall homeostasis for aromatic amino acids and downstream metabolites, revealing a resilience of mechanisms that scale growth to a limiting supply of Phe and Tyr. In bige6 seeds, broad perturbation of amino acid homeostasis is associated with transcriptomic upregulation of growth processes in the embryo and endosperm, implicating amino acid signaling in the regulation of embryo size. Our findings reveal the complexity and developmental dependence of growth responses to limiting amino acid biosynthesis.

在植物中,胚胎大小是通过代谢和发育信号之间的相互作用决定的。玉米(Zea mays)大胚6 (bige6)增加了胚的大小,但显著降低了植株的生长。在这里,我们发现BigE6编码一种可塑预苯酸氨基转移酶(PPA-AT),这是l -苯丙氨酸(Phe)和l -酪氨酸(Tyr)生物合成中的一个关键酶。玉米BigE6类似物,BigE6 like,编码胞质定位的PPA-AT,揭示了通过胞质外原酸酯进行Phe和Tyr的生物合成是已知胞质苯丙酮酸途径的潜在替代途径。此外,拟南芥(Arabidopsis thaliana)的单个PPA-AT基因通过选择性剪接编码质体酶和细胞质酶。拟南芥中ppa-at突变体的转基因拯救表明,由于其在雌性配子体中的重要作用,质体ppa-at对种子形成是必不可少的。bige6玉米叶片保持了芳香氨基酸和下游代谢物的整体稳态,揭示了一种将生长扩展到限制苯丙氨酸和酪氨酸供应的机制的弹性。在bige6种子中,氨基酸稳态的广泛扰动与胚胎和胚乳生长过程的转录组上调有关,暗示氨基酸信号参与了胚胎大小的调节。我们的研究结果揭示了限制性氨基酸生物合成的生长反应的复杂性和发育依赖性。
{"title":"Maize big embryo 6 reveals roles of plastidial and cytosolic prephenate aminotransferases in seed and plant development.","authors":"Hui Liu, Jorge El-Azaz, Abou Yobi, Ryo Yokoyama, Shan Wu, Alec D Chin-Quee, Zachary Gorman, Ruthie Angelovici, Anna K Block, Hiroshi A Maeda, Donald R McCarty, Masaharu Suzuki","doi":"10.1093/plcell/koaf067","DOIUrl":"10.1093/plcell/koaf067","url":null,"abstract":"<p><p>In plants, embryo size is determined via interactions between metabolic and developmental signals. Maize (Zea mays) big embryo 6 (bige6) enhances embryo size while sharply reducing plant growth. Here, we show that BigE6 encodes a plastidial prephenate aminotransferase (PPA-AT), a key enzyme in the arogenate pathway for L-phenylalanine (Phe) and L-tyrosine (Tyr) biosynthesis. The maize BigE6 paralog, BigE6Like, encodes a cytosol-localized PPA-AT, revealing Phe and Tyr biosynthesis via cytosolic arogenate as a potential alternative to the known cytosolic phenylpyruvate pathway. Moreover, the single PPA-AT gene of Arabidopsis (Arabidopsis thaliana) encodes plastidial and cytosolic enzymes by alternative splicing. Transgenic rescue of a ppa-at mutant in Arabidopsis demonstrates that the plastidial PPA-AT is indispensable for seed formation due, in part, to its essential role in the female gametophyte. Leaves of bige6 maize maintained overall homeostasis for aromatic amino acids and downstream metabolites, revealing a resilience of mechanisms that scale growth to a limiting supply of Phe and Tyr. In bige6 seeds, broad perturbation of amino acid homeostasis is associated with transcriptomic upregulation of growth processes in the embryo and endosperm, implicating amino acid signaling in the regulation of embryo size. Our findings reveal the complexity and developmental dependence of growth responses to limiting amino acid biosynthesis.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 6","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12142466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144234741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1