首页 > 最新文献

Plant Cell最新文献

英文 中文
The Plant Cell welcomes 2025 Assistant Features Editors. 植物细胞欢迎2025助理功能编辑。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-23 DOI: 10.1093/plcell/koaf001
Nancy A Eckardt, Blake C Meyers, Pablo A Manavella
{"title":"The Plant Cell welcomes 2025 Assistant Features Editors.","authors":"Nancy A Eckardt, Blake C Meyers, Pablo A Manavella","doi":"10.1093/plcell/koaf001","DOIUrl":"https://doi.org/10.1093/plcell/koaf001","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution and functional divergence of glycosyltransferase genes shaped the quality and cold tolerance of tea plants. 糖基转移酶基因的进化和功能分化塑造了茶树的品质和耐寒性。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae268
Jingming Wang, Yutong Hu, Danyang Guo, Ting Gao, Tianqi Liu, Jieyang Jin, Mingyue Zhao, Keke Yu, Wei Tong, Honghua Ge, Yuting Pan, Mengting Zhang, Mengqian Lu, Tingting Jing, Wenkai Du, Xiaoyan Tang, Chenjie Zhao, Wei Zhao, Zhijie Bao, Wilfried Schwab, Enhua Xia, Chuankui Song

Plant uridine diphosphate-dependent glycosyltransferases (UGTs) play a key role in plant growth and metabolism. Here, we examined the evolutionary landscape among UGTs in 28 fully sequenced species from early algae to angiosperms. Our findings revealed a distinctive expansion and contraction of UGTs in the G and H groups in tea (Camellia sinensis), respectively. Whole-genome duplication and tandem duplication events jointly drove the massive expansion of UGTs, and the interplay of natural and artificial selection has resulted in marked functional divergence within the G group of the sinensis-type tea population. In Cluster II of group G, differences in substrate selection (e.g. abscisic acid) of the enzymes encoded by UGT genes led to their functional diversification, and these genes influence tolerance to abiotic stresses such as low temperature and drought via different modes of positive and negative regulation, respectively. UGTs in Cluster III of the G group have diverse aroma substrate preferences, which contribute a diverse aroma spectrum of the sinensis-type tea population. All Cluster III genes respond to low-temperature stress, whereas UGTs within Cluster III-1, shaped by artificial selection, are unresponsive to drought. This suggests that artificial selection of tea plants focused on improving quality and cold tolerance as primary targets.

植物糖基转移酶(UGTs)在植物生长和新陈代谢中发挥着关键作用。在这里,我们研究了从早期藻类到被子植物的 28 个完全测序物种中 UGTs 的进化情况。我们的研究结果表明,茶叶(Camellia sinensis)中 G 组和 H 组的 UGTs 分别出现了明显的扩张和收缩。全基因组复制和串联复制事件共同推动了UGTs的大规模扩增,自然选择和人工选择的相互作用导致了中华茶树种群G群内部明显的功能分化。在G群的簇II中,UGT基因编码的酶在底物(如脱落酸)选择上的差异导致了其功能的多样化,这些基因分别通过不同的正负调控模式影响对低温和干旱等非生物胁迫的耐受性。G 组第 III 群组中的 UGTs 对香气底物的偏好各不相同,从而形成了多种多样的中茶香气谱。所有簇 III 基因都对低温胁迫有反应,而人工选择形成的簇 III-1 内的 UGTs 对干旱无反应。这表明,茶树的人工选择以提高品质和耐寒性为主要目标。
{"title":"Evolution and functional divergence of glycosyltransferase genes shaped the quality and cold tolerance of tea plants.","authors":"Jingming Wang, Yutong Hu, Danyang Guo, Ting Gao, Tianqi Liu, Jieyang Jin, Mingyue Zhao, Keke Yu, Wei Tong, Honghua Ge, Yuting Pan, Mengting Zhang, Mengqian Lu, Tingting Jing, Wenkai Du, Xiaoyan Tang, Chenjie Zhao, Wei Zhao, Zhijie Bao, Wilfried Schwab, Enhua Xia, Chuankui Song","doi":"10.1093/plcell/koae268","DOIUrl":"10.1093/plcell/koae268","url":null,"abstract":"<p><p>Plant uridine diphosphate-dependent glycosyltransferases (UGTs) play a key role in plant growth and metabolism. Here, we examined the evolutionary landscape among UGTs in 28 fully sequenced species from early algae to angiosperms. Our findings revealed a distinctive expansion and contraction of UGTs in the G and H groups in tea (Camellia sinensis), respectively. Whole-genome duplication and tandem duplication events jointly drove the massive expansion of UGTs, and the interplay of natural and artificial selection has resulted in marked functional divergence within the G group of the sinensis-type tea population. In Cluster II of group G, differences in substrate selection (e.g. abscisic acid) of the enzymes encoded by UGT genes led to their functional diversification, and these genes influence tolerance to abiotic stresses such as low temperature and drought via different modes of positive and negative regulation, respectively. UGTs in Cluster III of the G group have diverse aroma substrate preferences, which contribute a diverse aroma spectrum of the sinensis-type tea population. All Cluster III genes respond to low-temperature stress, whereas UGTs within Cluster III-1, shaped by artificial selection, are unresponsive to drought. This suggests that artificial selection of tea plants focused on improving quality and cold tolerance as primary targets.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
You can have it all: How the interplay between SnRK1 and RBOH1 promotes nitrate uptake in tomato. 你可以拥有一切:SnRK1和RBOH1之间的相互作用如何促进番茄的硝酸盐吸收。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae325
Margot Raffeiner
{"title":"You can have it all: How the interplay between SnRK1 and RBOH1 promotes nitrate uptake in tomato.","authors":"Margot Raffeiner","doi":"10.1093/plcell/koae325","DOIUrl":"10.1093/plcell/koae325","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noncanonical transcription initiation is primarily tissue specific and epigenetically tuned in paleopolyploid plants. 在古多倍体植物中,非规范转录起始主要具有组织特异性,并受到表观遗传学的调整。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae288
Xutong Wang, Jingbo Duan, Chancelor B Clark, Wanjie Feng, Jianxin Ma

Alternative transcription initiation (ATI) appears to be a ubiquitous regulatory mechanism of gene expression in eukaryotes. However, the extent to which it affects the products of gene expression and how it evolves and is regulated remain unknown. Here, we report genome-wide identification and analysis of transcription start sites (TSSs) in various soybean (Glycine max) tissues using a survey of transcription initiation at promoter elements with high-throughput sequencing (STRIPE-seq). We defined 193,579 TSS clusters/regions (TSRs) in 37,911 annotated genes, with 56.5% located in canonical regulatory regions and 43.5% from start codons to 3' untranslated regions, which were responsible for changes in open reading frames of 24,131 genes. Strikingly, 6,845 genes underwent ATI within coding sequences (CDSs). These CDS-TSRs were tissue-specific, did not have TATA-boxes typical of canonical promoters, and were embedded in nucleosome-free regions flanked by nucleosomes with enhanced levels of histone marks potentially associated with intragenic transcriptional initiation, suggesting that ATI within CDSs was epigenetically tuned and associated with tissue-specific functions. Overall, duplicated genes possessed more TSRs, exhibited lower degrees of tissue specificity, and underwent stronger purifying selection than singletons. This study highlights the significance of ATI and the genomic and epigenomic factors shaping the distribution of ATI in CDSs in a paleopolyploid eukaryote.

在真核生物中,替代转录起始(ATI)似乎是一种无处不在的基因表达调控机制。然而,它对基因表达产物的影响程度以及如何演变和调控仍是未知数。在此,我们报告了利用高通量测序(STRIPE-seq)对启动子元件上的转录起始位点(TSSs)进行调查,在大豆(Glycine max)各种组织中对转录起始位点(TSSs)进行全基因组鉴定和分析的结果。我们在 37,911 个注释基因中定义了 193,579 个 TSS 簇/区域 (TSR),其中 56.5% 位于典型调控区域,43.5% 从起始密码子到 3' 非翻译区,它们导致了 24,131 个基因开放阅读框的变化。引人注目的是,有6845个基因在编码序列(CDS)内发生了ATI。这些CDS-TSR具有组织特异性,没有典型的规范启动子的TATA-框,而且嵌入了无核糖体区域,该区域两侧的核糖体具有增强的组蛋白标记水平,可能与基因内转录启动有关,这表明CDS内的ATI是经过表观遗传学调整的,与组织特异性功能有关。总体而言,重复基因比单体基因拥有更多的 TSR,表现出更低的组织特异性,并经历了更强的纯化选择。这项研究强调了 ATI 的重要性,以及在古多倍体真核生物中影响 ATI 在 CDS 中分布的基因组和表观基因组因素。
{"title":"Noncanonical transcription initiation is primarily tissue specific and epigenetically tuned in paleopolyploid plants.","authors":"Xutong Wang, Jingbo Duan, Chancelor B Clark, Wanjie Feng, Jianxin Ma","doi":"10.1093/plcell/koae288","DOIUrl":"10.1093/plcell/koae288","url":null,"abstract":"<p><p>Alternative transcription initiation (ATI) appears to be a ubiquitous regulatory mechanism of gene expression in eukaryotes. However, the extent to which it affects the products of gene expression and how it evolves and is regulated remain unknown. Here, we report genome-wide identification and analysis of transcription start sites (TSSs) in various soybean (Glycine max) tissues using a survey of transcription initiation at promoter elements with high-throughput sequencing (STRIPE-seq). We defined 193,579 TSS clusters/regions (TSRs) in 37,911 annotated genes, with 56.5% located in canonical regulatory regions and 43.5% from start codons to 3' untranslated regions, which were responsible for changes in open reading frames of 24,131 genes. Strikingly, 6,845 genes underwent ATI within coding sequences (CDSs). These CDS-TSRs were tissue-specific, did not have TATA-boxes typical of canonical promoters, and were embedded in nucleosome-free regions flanked by nucleosomes with enhanced levels of histone marks potentially associated with intragenic transcriptional initiation, suggesting that ATI within CDSs was epigenetically tuned and associated with tissue-specific functions. Overall, duplicated genes possessed more TSRs, exhibited lower degrees of tissue specificity, and underwent stronger purifying selection than singletons. This study highlights the significance of ATI and the genomic and epigenomic factors shaping the distribution of ATI in CDSs in a paleopolyploid eukaryote.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multitasker Argonaute leaves no stone unturned. 多任务处理机 Argonaute 不遗余力。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae306
Laura Arribas-Hernández
{"title":"Multitasker Argonaute leaves no stone unturned.","authors":"Laura Arribas-Hernández","doi":"10.1093/plcell/koae306","DOIUrl":"10.1093/plcell/koae306","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic modeling reveals distinct roles of sugars and carboxylic acids in stomatal opening as well as unexpected carbon fluxes. 代谢模型揭示了糖和羧酸在气孔开放中的不同作用,并发现了意想不到的碳通量。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae252
Noah Sprent, C Y Maurice Cheung, Sanu Shameer, R George Ratcliffe, Lee J Sweetlove, Nadine Töpfer

Guard cell metabolism is crucial for stomatal dynamics, but a full understanding of its role is hampered by experimental limitations and the flexible nature of the metabolic network. To tackle this challenge, we constructed a time-resolved stoichiometric model of guard cell metabolism that accounts for energy and osmolyte requirements and which is integrated with the mesophyll. The model resolved distinct roles for starch, sugars, and malate in guard cell metabolism and revealed several unexpected flux patterns in central metabolism. During blue light-mediated stomatal opening, starch breakdown was the most efficient way to generate osmolytes with downregulation of glycolysis allowing starch-derived glucose to accumulate as a cytosolic osmolyte. Maltose could also accumulate as a cytosolic osmoticum, although this made the metabolic system marginally less efficient. The metabolic energy for stomatal opening was predicted to be derived independently of starch, using nocturnally accumulated citrate which was metabolized in the tricarboxylic acid cycle to malate to provide mitochondrial reducing power for ATP synthesis. In white light-mediated stomatal opening, malate transferred reducing equivalents from guard cell photosynthesis to mitochondria for ATP production. Depending on the capacity for guard cell photosynthesis, glycolysis showed little flux during the day but was crucial for energy metabolism at night. In summary, our analyses have corroborated recent findings in Arabidopsis guard cell research, resolved conflicting observations by highlighting the flexibility of guard cell metabolism, and proposed new metabolic flux modes for further experimental testing.

保卫细胞的新陈代谢对气孔动力学至关重要,但实验的局限性和新陈代谢网络的灵活性阻碍了对其作用的全面了解。为了应对这一挑战,我们构建了一个时间分辨的护卫细胞新陈代谢化学计量模型,该模型考虑了能量和渗透溶质的需求,并与叶肉结合在一起。该模型解决了淀粉、糖类和苹果酸盐在保卫细胞代谢中的不同作用,并揭示了中央代谢中几种意想不到的通量模式。在蓝光介导的气孔开放过程中,淀粉分解是产生渗透溶质的最有效方式,糖酵解的下调使淀粉衍生的葡萄糖作为细胞膜渗透溶质积累。麦芽糖也可以作为细胞膜渗透质积累,尽管这使得代谢系统的效率略低。据预测,气孔打开所需的代谢能不依赖于淀粉,而是利用夜间积累的柠檬酸,在三羧酸循环中代谢成苹果酸,为线粒体合成 ATP 提供还原力。在白光介导的气孔打开过程中,苹果酸将还原当量从保卫细胞的光合作用转移到线粒体,以产生 ATP。根据保卫细胞光合作用的能力,糖酵解在白天的通量很小,但在夜间对能量代谢至关重要。总之,我们的分析证实了拟南芥保卫细胞研究的最新发现,通过强调保卫细胞代谢的灵活性解决了相互矛盾的观察结果,并提出了新的代谢通量模式供进一步实验测试。
{"title":"Metabolic modeling reveals distinct roles of sugars and carboxylic acids in stomatal opening as well as unexpected carbon fluxes.","authors":"Noah Sprent, C Y Maurice Cheung, Sanu Shameer, R George Ratcliffe, Lee J Sweetlove, Nadine Töpfer","doi":"10.1093/plcell/koae252","DOIUrl":"10.1093/plcell/koae252","url":null,"abstract":"<p><p>Guard cell metabolism is crucial for stomatal dynamics, but a full understanding of its role is hampered by experimental limitations and the flexible nature of the metabolic network. To tackle this challenge, we constructed a time-resolved stoichiometric model of guard cell metabolism that accounts for energy and osmolyte requirements and which is integrated with the mesophyll. The model resolved distinct roles for starch, sugars, and malate in guard cell metabolism and revealed several unexpected flux patterns in central metabolism. During blue light-mediated stomatal opening, starch breakdown was the most efficient way to generate osmolytes with downregulation of glycolysis allowing starch-derived glucose to accumulate as a cytosolic osmolyte. Maltose could also accumulate as a cytosolic osmoticum, although this made the metabolic system marginally less efficient. The metabolic energy for stomatal opening was predicted to be derived independently of starch, using nocturnally accumulated citrate which was metabolized in the tricarboxylic acid cycle to malate to provide mitochondrial reducing power for ATP synthesis. In white light-mediated stomatal opening, malate transferred reducing equivalents from guard cell photosynthesis to mitochondria for ATP production. Depending on the capacity for guard cell photosynthesis, glycolysis showed little flux during the day but was crucial for energy metabolism at night. In summary, our analyses have corroborated recent findings in Arabidopsis guard cell research, resolved conflicting observations by highlighting the flexibility of guard cell metabolism, and proposed new metabolic flux modes for further experimental testing.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663573/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The older the wiser, unless you are a banana: The NAP1-MADS1 network in the regulation of banana ripening. 越老越聪明,除非你是香蕉:香蕉成熟过程中的 NAP1-MADS1 网络调控。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae305
Raul Sanchez-Muñoz
{"title":"The older the wiser, unless you are a banana: The NAP1-MADS1 network in the regulation of banana ripening.","authors":"Raul Sanchez-Muñoz","doi":"10.1093/plcell/koae305","DOIUrl":"10.1093/plcell/koae305","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative RNA profiling identifies stage-specific phasiRNAs and coexpressed Argonaute genes in Bambusoideae and Pooideae species. 比较 RNA 分析确定了 Bambusoideae 和 Pooideae 物种中特定阶段的 phasiRNA 和共表达 Argonaute 基因。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae308
Sébastien Bélanger, Junpeng Zhan, Yunqing Yu, Blake C Meyers

Phased, small interfering RNAs (PhasiRNAs) play a crucial role in supporting male fertility in grasses. Earlier work in maize (Zea mays) and rice (Oryza sativa)-and subsequently many other plant species-identified premeiotic 21-nucleotide (nt) and meiotic 24-nt phasiRNAs. More recently, a group of premeiotic 24-nt phasiRNAs was discovered in the anthers of 2 Pooideae species, barley (Hordeum vulgare) and bread wheat (Triticum aestivum). Whether premeiotic 24-nt phasiRNAs and other classes of reproductive phasiRNAs are conserved across Pooideae species remains unclear. We conducted comparative RNA profiling of 3 anther stages in 6 Pooideae species and 1 Bambusoideae species. We observed complex temporal accumulation patterns of 21-nt and 24-nt phasiRNAs in Pooideae and Bambusoideae grasses. In Bambusoideae, 21-nt phasiRNAs accumulated during meiosis, whereas 24-nt phasiRNAs were present in both premeiotic and postmeiotic stages. We identified premeiotic 24-nt phasiRNAs in all 7 species examined. These phasiRNAs exhibit distinct biogenesis mechanisms and potential Argonaute effectors compared to meiotic 24-nt phasiRNAs. We show that specific Argonaute genes coexpressed with stage-specific phasiRNAs are conserved across Bambusoideae and Pooideae species. Our degradome analysis identified a set of conserved miRNA target genes across species, while 21-nt phasiRNA targets were species-specific. Cleavage of few targets was observed for 24-nt phasiRNAs. In summary, this study demonstrates that premeiotic 24-nt phasiRNAs are present across Bambusoideae and Pooideae families, and the temporal accumulation of other classes of 21-nt and 24-nt phasiRNA differs between bamboo and Pooideae species. Furthermore, targets of the 3 classes of phasiRNAs may be rapidly evolving or undetectable.

PhasiRNA(分阶段小干扰 RNA)在支持禾本科植物雄性生殖力方面发挥着至关重要的作用。早先在玉米(Zea mays)和水稻(Oryza sativa)以及随后在许多其他植物物种中发现了减数分裂前 21-nt 和减数分裂 24-nt phasiRNAs。最近,在大麦(Hordeum vulgare)和面包小麦(Triticum aestivum)这两种普氏植物的花药中发现了一组减数分裂前 24-nt phasiRNAs。至于减数分裂前 24-nt phasiRNAs 和其他生殖类 phasiRNAs 是否在不同的普氏拟南芥物种中保持一致,目前仍不清楚。我们对 6 个 Pooideae 物种和 1 个 Bambusoideae 物种的 3 个花药阶段进行了比较 RNA 分析。我们观察到 21-nt 和 24-nt phasiRNAs 在禾本科和禾本科禾本科植物中复杂的时间积累模式。在 Bambusoideae 中,21-nt phasiRNAs 在减数分裂过程中积累,而 24-nt phasiRNAs 在减数分裂前期和后期都存在。我们在考察的所有七个物种中都发现了减数分裂前期的 24-nt phasiRNAs。与减数分裂期的 24-nt phasiRNA 相比,这些 phasiRNA 表现出不同的生物发生机制和潜在的 Argonaute 效应器。我们发现,与阶段特异性 phasiRNAs 共同表达的特定 Argonaute 基因在 Bambusoideae 和 Pooideae 物种中是保守的。我们的降解组分析发现了一组跨物种的保守 miRNA 靶基因,而 21-nt phasiRNA 靶基因则具有物种特异性。在 24-nt phasiRNAs 中,只观察到少数靶基因被裂解。总之,本研究表明,雌核发育前的 24-nt phasiRNA 在竹科和拟南芥科中都存在,而其他类别的 21-nt 和 24-nt phasiRNA 的时间积累在竹科和拟南芥科物种之间存在差异。此外,这三类 phasiRNAs 的靶标可能会迅速演变或无法检测。
{"title":"Comparative RNA profiling identifies stage-specific phasiRNAs and coexpressed Argonaute genes in Bambusoideae and Pooideae species.","authors":"Sébastien Bélanger, Junpeng Zhan, Yunqing Yu, Blake C Meyers","doi":"10.1093/plcell/koae308","DOIUrl":"10.1093/plcell/koae308","url":null,"abstract":"<p><p>Phased, small interfering RNAs (PhasiRNAs) play a crucial role in supporting male fertility in grasses. Earlier work in maize (Zea mays) and rice (Oryza sativa)-and subsequently many other plant species-identified premeiotic 21-nucleotide (nt) and meiotic 24-nt phasiRNAs. More recently, a group of premeiotic 24-nt phasiRNAs was discovered in the anthers of 2 Pooideae species, barley (Hordeum vulgare) and bread wheat (Triticum aestivum). Whether premeiotic 24-nt phasiRNAs and other classes of reproductive phasiRNAs are conserved across Pooideae species remains unclear. We conducted comparative RNA profiling of 3 anther stages in 6 Pooideae species and 1 Bambusoideae species. We observed complex temporal accumulation patterns of 21-nt and 24-nt phasiRNAs in Pooideae and Bambusoideae grasses. In Bambusoideae, 21-nt phasiRNAs accumulated during meiosis, whereas 24-nt phasiRNAs were present in both premeiotic and postmeiotic stages. We identified premeiotic 24-nt phasiRNAs in all 7 species examined. These phasiRNAs exhibit distinct biogenesis mechanisms and potential Argonaute effectors compared to meiotic 24-nt phasiRNAs. We show that specific Argonaute genes coexpressed with stage-specific phasiRNAs are conserved across Bambusoideae and Pooideae species. Our degradome analysis identified a set of conserved miRNA target genes across species, while 21-nt phasiRNA targets were species-specific. Cleavage of few targets was observed for 24-nt phasiRNAs. In summary, this study demonstrates that premeiotic 24-nt phasiRNAs are present across Bambusoideae and Pooideae families, and the temporal accumulation of other classes of 21-nt and 24-nt phasiRNA differs between bamboo and Pooideae species. Furthermore, targets of the 3 classes of phasiRNAs may be rapidly evolving or undetectable.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KNUCKLES regulates floral meristem termination by controlling auxin distribution and cytokinin activity. KNUCKLES 通过控制叶黄素的分布和细胞分裂素的活性来调节花分生组织的终止。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae312
Guangling Wang, Zhiyue Wu, Bo Sun

The termination of floral meristem (FM) activity is essential for the normal development of reproductive floral organs. During this process, KNUCKLES (KNU), a C2H2-type zinc finger protein, crucially regulates FM termination by directly repressing the expression of both the stem cell identity gene WUSCHEL (WUS) and the stem cell marker gene CLAVATA3 (CLV3) to abolish the WUS-CLV3 feedback loop required for FM maintenance. In addition, phytohormones auxin and cytokinin are involved in FM regulation. However, whether KNU modulates auxin and cytokinin activities for FM determinacy control remains unclear. Here, we show that the auxin distribution and the cytokinin activity mediated by KNU in Arabidopsis (Arabidopsis thaliana) promote the termination of FM during stage 6 of flower development. Mutation of KNU leads to altered distribution of auxin and cytokinin in the FM of a stage 6 floral bud. Moreover, KNU directly represses the auxin transporter gene PIN-FORMED1 (PIN1) and the cytokinin biosynthesis gene ISOPENTENYLTRANSFERASE7 (IPT7) via mediating H3K27me3 deposition on these 2 loci to regulate auxin and cytokinin activities. Our study presents a molecular regulatory network that elucidates how the transcriptional repressor KNU integrates and modulates the activities of auxin and cytokinin, thus securing the timed FM termination.

花分生组织(FM)活动的终止对于生殖花器官的正常发育至关重要。在这一过程中,C2H2 型锌指蛋白 KNUCKLES(KNU)通过直接抑制干细胞特征基因 WUSCHEL(WUS)和干细胞标记基因 CLAVATA3(CLV3)的表达,取消花分生组织维持所需的 WUS-CLV3 反馈环,对花分生组织的终止起着至关重要的调控作用。此外,植物激素辅助素和细胞分裂素也参与了调控调频。然而,KNU 是否会调节辅助素和细胞分裂素的活性以控制调频的确定性仍不清楚。在这里,我们发现在拟南芥(Arabidopsis thaliana)中,KNU介导的辅助素分布和细胞分裂素活性促进了花发育第6阶段的FM终止。KNU 的突变会导致第 6 期花芽的 FM 中的辅助素和细胞分裂素分布发生改变。此外,KNU 通过介导 H3K27me3 在这两个基因座上的沉积,直接抑制了叶绿素转运基因 PIN-FORMED1 (PIN1)和细胞分裂素生物合成基因 ISOPENTENYLTRANSFERASE7 (IPT7),从而调控叶绿素和细胞分裂素的活性。我们的研究提出了一个分子调控网络,阐明了转录抑制因子 KNU 如何整合和调节辅助素和细胞分裂素的活性,从而确保调频定时终止。
{"title":"KNUCKLES regulates floral meristem termination by controlling auxin distribution and cytokinin activity.","authors":"Guangling Wang, Zhiyue Wu, Bo Sun","doi":"10.1093/plcell/koae312","DOIUrl":"10.1093/plcell/koae312","url":null,"abstract":"<p><p>The termination of floral meristem (FM) activity is essential for the normal development of reproductive floral organs. During this process, KNUCKLES (KNU), a C2H2-type zinc finger protein, crucially regulates FM termination by directly repressing the expression of both the stem cell identity gene WUSCHEL (WUS) and the stem cell marker gene CLAVATA3 (CLV3) to abolish the WUS-CLV3 feedback loop required for FM maintenance. In addition, phytohormones auxin and cytokinin are involved in FM regulation. However, whether KNU modulates auxin and cytokinin activities for FM determinacy control remains unclear. Here, we show that the auxin distribution and the cytokinin activity mediated by KNU in Arabidopsis (Arabidopsis thaliana) promote the termination of FM during stage 6 of flower development. Mutation of KNU leads to altered distribution of auxin and cytokinin in the FM of a stage 6 floral bud. Moreover, KNU directly represses the auxin transporter gene PIN-FORMED1 (PIN1) and the cytokinin biosynthesis gene ISOPENTENYLTRANSFERASE7 (IPT7) via mediating H3K27me3 deposition on these 2 loci to regulate auxin and cytokinin activities. Our study presents a molecular regulatory network that elucidates how the transcriptional repressor KNU integrates and modulates the activities of auxin and cytokinin, thus securing the timed FM termination.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ALTERED MERISTEM PROGRAM1 impairs RNA silencing by repressing the biogenesis of a subset of inverted repeat-derived siRNAs. ALTERED MERISTEM PROGRAM1 通过抑制反向重复衍生的 siRNAs 子集的生物生成来损害 RNA 沉默。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-23 DOI: 10.1093/plcell/koae293
Jing Li, Brandon Le, Xufeng Wang, Ye Xu, Suikang Wang, Hao Li, Lei Gao, Beixin Mo, Lin Liu, Xuemei Chen

RNA silencing negatively regulates gene expression at the transcriptional and posttranscriptional levels through DNA methylation, histone modification, mRNA cleavage, and translational inhibition. Small interfering RNAs (siRNAs) of 21 to 24 nucleotides are processed from double-stranded RNAs by Dicer-like (DCL) enzymes and play essential roles in RNA silencing in plants. Here, we demonstrated that ALTERED MERISTEM PROGRAM1 (AMP1) and its putative paralog LIKE AMP1 (LAMP1) impair RNA silencing by repressing the biogenesis of a subset of inverted repeat (IR)-derived siRNAs in Arabidopsis (Arabidopsis thaliana). AMP1 and LAMP1 inhibit Pol II-dependent IR gene transcription by suppressing ARGONAUTE 1 (AGO1) protein levels. Genetic analysis indicates that AMP1 acts upstream of RNA polymerase IV subunit 1 (NRPD1), RNA-dependent RNA polymerase 2 (RDR2), and DCL4, which are required for IR-induced RNA silencing. We also show that AMP1 and LAMP1 inhibit siRNA-mediated silencing in a different mechanism from that of AGO4 and DCL3. Together, these results reveal two previously unknown players in siRNA biogenesis from IRs-AGO1, which promotes IR transcription, and AMP1, which inhibits IR transcription indirectly through the repression of AGO1 expression.

RNA 沉默通过 DNA 甲基化、组蛋白修饰、mRNA 断裂和翻译抑制,在转录和转录后水平对基因表达进行负向调节。21-24 个核苷酸的小干扰 RNA(siRNA)由双链 RNA 经类 Dicer 酶加工而成,在植物的 RNA 沉默中发挥着重要作用。在这里,我们证明了 ALTERED MERISTEM PROGRAM1(AMP1)及其推测的同源物 LIKE AMP1(LAMP1)通过抑制拟南芥(Arabidopsis thaliana)中倒位重复(IR)衍生的 siRNA 亚群的生物发生来损害 RNA 沉默。AMP1 和 LAMP1 通过抑制 ARGONAUTE 1 (AGO1) 蛋白水平来抑制 Pol II 依赖性 IR 基因转录。遗传分析表明,AMP1作用于RNA聚合酶IV亚基1(NRPD1)、RNA依赖性RNA聚合酶2(RDR2)和Dicer-Like 4(DCL4)的上游,它们是IR诱导的RNA沉默所必需的。我们还发现,AMP1 和 LAMP1 抑制 siRNA 介导的沉默的机制与 AGO4 和 DCL3 不同。这些结果共同揭示了红外 siRNA 生物发生过程中两个以前未知的参与者--AGO1 和 AMP1--前者促进红外转录,后者通过抑制 AGO1 的表达间接抑制红外转录。
{"title":"ALTERED MERISTEM PROGRAM1 impairs RNA silencing by repressing the biogenesis of a subset of inverted repeat-derived siRNAs.","authors":"Jing Li, Brandon Le, Xufeng Wang, Ye Xu, Suikang Wang, Hao Li, Lei Gao, Beixin Mo, Lin Liu, Xuemei Chen","doi":"10.1093/plcell/koae293","DOIUrl":"10.1093/plcell/koae293","url":null,"abstract":"<p><p>RNA silencing negatively regulates gene expression at the transcriptional and posttranscriptional levels through DNA methylation, histone modification, mRNA cleavage, and translational inhibition. Small interfering RNAs (siRNAs) of 21 to 24 nucleotides are processed from double-stranded RNAs by Dicer-like (DCL) enzymes and play essential roles in RNA silencing in plants. Here, we demonstrated that ALTERED MERISTEM PROGRAM1 (AMP1) and its putative paralog LIKE AMP1 (LAMP1) impair RNA silencing by repressing the biogenesis of a subset of inverted repeat (IR)-derived siRNAs in Arabidopsis (Arabidopsis thaliana). AMP1 and LAMP1 inhibit Pol II-dependent IR gene transcription by suppressing ARGONAUTE 1 (AGO1) protein levels. Genetic analysis indicates that AMP1 acts upstream of RNA polymerase IV subunit 1 (NRPD1), RNA-dependent RNA polymerase 2 (RDR2), and DCL4, which are required for IR-induced RNA silencing. We also show that AMP1 and LAMP1 inhibit siRNA-mediated silencing in a different mechanism from that of AGO4 and DCL3. Together, these results reveal two previously unknown players in siRNA biogenesis from IRs-AGO1, which promotes IR transcription, and AMP1, which inhibits IR transcription indirectly through the repression of AGO1 expression.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1