Lizhen Lu, Serge Delrot, Peige Fan, Zhan Zhang, Die Wu, Fengqin Dong, Pedro García-Caparros, Shaohua Li, Zhanwu Dai, Zhenchang Liang
Sugar transport plays a pivotal role in determining the productivity of plants and their capacity to act as carbon sinks. In the major fruit crop grapevine (Vitis vinifera L.), the transporter gene V. vinifera Sugars Will Eventually be Exported Transporter 15 (VvSWEET15) is strongly expressed during berry ripening. However, the specific functions of VvSWEET15 and the mechanisms governing its transcriptional regulation remain largely unresolved. Here, we demonstrate that VvSWEET15 functions as a hexose transporter whose expression is associated with the strong sugar accumulation that starts at the véraison stage. We also characterize VvERF105 as a repressor that binds to the LTR-binding element in the VvSWEET15 promoter, thereby downregulating its expression and inhibiting hexose accumulation at the prevéraison stage. In contrast, VvNAC72 is an activator that binds to the VvNAC72-binding domain (CACATG) and promotes VvSWEET15 expression and hexose accumulation at postvéraison stages. Both transcription factors and VvSWEET15 are preferentially expressed in phloem cells. These results demonstrate that the balance between transcriptional activators and repressors is critical in regulating VvSWEET15 expression in sink organs. Further understanding of these processes will help improve plant productivity and their potential to be used as carbon sinks.
糖的运输在决定植物的生产力和它们作为碳汇的能力方面起着关键作用。在主要水果作物葡萄(Vitis vinifera L.)中,转运基因Vitis vinifera Sugars Will final be Exported transporter 15 (VvSWEET15)在浆果成熟过程中强烈表达。然而,VvSWEET15的具体功能及其转录调控机制在很大程度上仍未得到解决。在这里,我们证明了VvSWEET15作为一种己糖转运蛋白的功能,其表达与开始于vvac阶段的强糖积累有关。我们还将VvERF105描述为一种与VvSWEET15启动子中的ltr结合元件结合的抑制因子,从而下调其表达并抑制VvERF105启动子前阶段的己糖积累。相比之下,VvNAC72是一种结合VvNAC72结合域(CACATG)的激活剂,并促进VvSWEET15的表达和vcv后阶段的己糖积累。转录因子和VvSWEET15均优先在韧皮部细胞中表达。这些结果表明,转录激活因子和转录抑制因子之间的平衡对于调节汇器官中VvSWEET15的表达至关重要。进一步了解这些过程将有助于提高植物的生产力和它们作为碳汇的潜力。
{"title":"The transcription factors ERF105 and NAC72 regulate expression of a sugar transporter gene and hexose accumulation in grape.","authors":"Lizhen Lu, Serge Delrot, Peige Fan, Zhan Zhang, Die Wu, Fengqin Dong, Pedro García-Caparros, Shaohua Li, Zhanwu Dai, Zhenchang Liang","doi":"10.1093/plcell/koae326","DOIUrl":"10.1093/plcell/koae326","url":null,"abstract":"<p><p>Sugar transport plays a pivotal role in determining the productivity of plants and their capacity to act as carbon sinks. In the major fruit crop grapevine (Vitis vinifera L.), the transporter gene V. vinifera Sugars Will Eventually be Exported Transporter 15 (VvSWEET15) is strongly expressed during berry ripening. However, the specific functions of VvSWEET15 and the mechanisms governing its transcriptional regulation remain largely unresolved. Here, we demonstrate that VvSWEET15 functions as a hexose transporter whose expression is associated with the strong sugar accumulation that starts at the véraison stage. We also characterize VvERF105 as a repressor that binds to the LTR-binding element in the VvSWEET15 promoter, thereby downregulating its expression and inhibiting hexose accumulation at the prevéraison stage. In contrast, VvNAC72 is an activator that binds to the VvNAC72-binding domain (CACATG) and promotes VvSWEET15 expression and hexose accumulation at postvéraison stages. Both transcription factors and VvSWEET15 are preferentially expressed in phloem cells. These results demonstrate that the balance between transcriptional activators and repressors is critical in regulating VvSWEET15 expression in sink organs. Further understanding of these processes will help improve plant productivity and their potential to be used as carbon sinks.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unraveled: The role of Arabidopsis GTE4-EML in transcription via two distinct histone modifications.","authors":"Pei Qin Ng","doi":"10.1093/plcell/koaf009","DOIUrl":"10.1093/plcell/koaf009","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Feeling the heat: Long-term heat stress impairs growth but not photosynthesis in a C4 grass.","authors":"Guy Levin, Gadi Schuster","doi":"10.1093/plcell/koaf008","DOIUrl":"10.1093/plcell/koaf008","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760537/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Setting the record straight: Loss of wall-associated kinases does not affect plant perception of pectin fragments.","authors":"Leonard Blaschek","doi":"10.1093/plcell/koae318","DOIUrl":"10.1093/plcell/koae318","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: The DYRKP1 kinase regulates cell wall degradation in Chlamydomonas by inducing matrix metalloproteinase expression.","authors":"","doi":"10.1093/plcell/koae334","DOIUrl":"10.1093/plcell/koae334","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142907476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The regulation of non-climacteric fruit ripening by the transcription factor NON-RIPENING (NOR) is poorly understood. Here, we identified that the NOR homolog in the non-climacteric fruit watermelon (Citrullus lanatus) was located within the selective sweep and sweetness quantitative trait locus that was selected during domestication from landraces to cultivars. ClNOR knockout substantially delayed fruit ripening, and the fruits of the knockout plants had lower abscisic acid (ABA) levels, lighter colored flesh, and were less sweet compared to wild type. Transcriptome analysis and DNA affinity purification sequencing revealed that ClNOR targeted the Basic Leucine Zipper gene ClbZIP1, which links ClNOR to genes that do not have a ClNOR-binding motif in their promoters, such as the ABA biosynthesis gene, 9-cis-epoxycarotenoid dioxygenase ClNCED1 and the chromoplast phosphate transporter gene ClPHT4;2. The double mutant Clnor Clbzip1 exhibited delayed fruit ripening, lower ABA level, and lighter colored flesh. Its delayed ripening phenotype was stronger than that of the Clbzip1 single mutant. Additionally, the ClNORT,T haplotype in cultivated watermelon resulted in higher ClbZIP1 expression, but ClNORC,T from landraces and ClNORC,G from ancestral watermelon did not. Heterologous ClNORT,T expression rescued the delayed ripening phenotype of the Slnor knockout in tomato (Solanum lycopersicum). This natural variant (564T/C) of ClNOR promoted fruit ripening by enhancing target genes transcription. Overall, these findings will help elucidate the evolutionary mechanisms of nonclimacteric fruit ripening.
{"title":"A natural variant of NON-RIPENING promotes fruit ripening in watermelon.","authors":"Jinfang Wang, Yongtao Yu, Shaogui Guo, Jie Zhang, Yi Ren, Shouwei Tian, Maoying Li, Shengjin Liao, Guoyi Gong, Haiying Zhang, Yong Xu","doi":"10.1093/plcell/koae313","DOIUrl":"10.1093/plcell/koae313","url":null,"abstract":"<p><p>The regulation of non-climacteric fruit ripening by the transcription factor NON-RIPENING (NOR) is poorly understood. Here, we identified that the NOR homolog in the non-climacteric fruit watermelon (Citrullus lanatus) was located within the selective sweep and sweetness quantitative trait locus that was selected during domestication from landraces to cultivars. ClNOR knockout substantially delayed fruit ripening, and the fruits of the knockout plants had lower abscisic acid (ABA) levels, lighter colored flesh, and were less sweet compared to wild type. Transcriptome analysis and DNA affinity purification sequencing revealed that ClNOR targeted the Basic Leucine Zipper gene ClbZIP1, which links ClNOR to genes that do not have a ClNOR-binding motif in their promoters, such as the ABA biosynthesis gene, 9-cis-epoxycarotenoid dioxygenase ClNCED1 and the chromoplast phosphate transporter gene ClPHT4;2. The double mutant Clnor Clbzip1 exhibited delayed fruit ripening, lower ABA level, and lighter colored flesh. Its delayed ripening phenotype was stronger than that of the Clbzip1 single mutant. Additionally, the ClNORT,T haplotype in cultivated watermelon resulted in higher ClbZIP1 expression, but ClNORC,T from landraces and ClNORC,G from ancestral watermelon did not. Heterologous ClNORT,T expression rescued the delayed ripening phenotype of the Slnor knockout in tomato (Solanum lycopersicum). This natural variant (564T/C) of ClNOR promoted fruit ripening by enhancing target genes transcription. Overall, these findings will help elucidate the evolutionary mechanisms of nonclimacteric fruit ripening.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grain size and weight are important determinants of crop yield. Although the ubiquitin pathway has been implicated in the grain development in rice (Oryza sativa), the underlying genetic and molecular mechanisms remain largely unknown. Here, we report that the plant U-box E3 ubiquitin ligase OsPUB33 interferes with the OsNAC120-BG1 module to control rice grain development. Functional loss of OsPUB33 triggers elevated photosynthetic rates and greater sugar translocation, leading to enhanced cell proliferation and accelerated grain filling. These changes cause enlarged spikelet hulls, thereby increasing final grain size and weight. OsPUB33 interacts with transcription factor OsNAC120, resulting in its ubiquitination and degradation. Unlike OsPUB33, OsNAC120 promotes grain size and weight: OsNAC120-overexpression plants harbor large and heavy grains, whereas osnac120 loss-of-function mutants produce small grains. Genetic interaction analysis supports that OsPUB33 and OsNAC120 function at least partially in a common pathway to control grain development, but have opposite functions. Additionally, OsNAC120 transcriptionally activates BIG GRAIN1 (BG1), a prominent modulator of grain size, whereas OsPUB33 impairs the OsNAC120-mediated regulation of BG1. Collectively, our findings uncover an important molecular framework for the control of grain size and weight by the OsPUB33-OsNAC120-BG1 regulatory module and provide promising targets for improving crop yield.
{"title":"The E3 ligase OsPUB33 controls rice grain size and weight by regulating the OsNAC120-BG1 module.","authors":"Zizhao Xie, Ying Sun, Chenghang Zhan, Chengfeng Qu, Ning Jin, Xinyue Gu, Junli Huang","doi":"10.1093/plcell/koae297","DOIUrl":"10.1093/plcell/koae297","url":null,"abstract":"<p><p>Grain size and weight are important determinants of crop yield. Although the ubiquitin pathway has been implicated in the grain development in rice (Oryza sativa), the underlying genetic and molecular mechanisms remain largely unknown. Here, we report that the plant U-box E3 ubiquitin ligase OsPUB33 interferes with the OsNAC120-BG1 module to control rice grain development. Functional loss of OsPUB33 triggers elevated photosynthetic rates and greater sugar translocation, leading to enhanced cell proliferation and accelerated grain filling. These changes cause enlarged spikelet hulls, thereby increasing final grain size and weight. OsPUB33 interacts with transcription factor OsNAC120, resulting in its ubiquitination and degradation. Unlike OsPUB33, OsNAC120 promotes grain size and weight: OsNAC120-overexpression plants harbor large and heavy grains, whereas osnac120 loss-of-function mutants produce small grains. Genetic interaction analysis supports that OsPUB33 and OsNAC120 function at least partially in a common pathway to control grain development, but have opposite functions. Additionally, OsNAC120 transcriptionally activates BIG GRAIN1 (BG1), a prominent modulator of grain size, whereas OsPUB33 impairs the OsNAC120-mediated regulation of BG1. Collectively, our findings uncover an important molecular framework for the control of grain size and weight by the OsPUB33-OsNAC120-BG1 regulatory module and provide promising targets for improving crop yield.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seed dormancy, an essential trait for plant adaptation, is determined by the embryo itself and the surrounding tissues. Here, we found that rice (Oryza sativa) FERTILIZATION-INDEPENDENT ENDOSPERM1 (OsFIE1) regulates endosperm-imposed dormancy and the dorsal aleurone thickness in a manner dependent on the parent of origin. Maternally expressed OsFIE1 suppresses gibberellin (GA) biosynthesis in the endosperm by depositing trimethylation of lysine 27 on histone H3 (H3K27me3) marks on GA biosynthesis-related genes, thus inhibiting germination and aleurone differentiation. Knockout of rice GA 20-oxidase1 (OsGA20ox1) alleviated the phenotypic defects in osfie1. The aleurone-positive determinant Crinkly 4 (OsCR4) is another target of the OsFIE1-containing Polycomb repressive complex 2 (PRC2). We found that OsFIE1 plays an important role in genomic imprinting in the endosperm of germinating seeds, particularly for paternally expressed genes associated with H3K27me3. The increased aleurone thickness of osfie1 substantially improved grain nutritional quality, indicating that the osfie1 gene may be utilized for breeding nutrient-enriched rice. The findings provide insights into the essential roles of PRC2-mediated H3K27me3 methylation in the acquisition of seed dormancy and endosperm cell differentiation in rice.
{"title":"Maternally expressed FERTILIZATION-INDEPENDENT ENDOSPERM1 regulates seed dormancy and aleurone development in rice.","authors":"Xiaojun Cheng, Su Zhang, Zhiguo E, Zongju Yang, Sijia Cao, Rui Zhang, Baixiao Niu, Qian-Feng Li, Yong Zhou, Xin-Yuan Huang, Qiao-Quan Liu, Chen Chen","doi":"10.1093/plcell/koae304","DOIUrl":"10.1093/plcell/koae304","url":null,"abstract":"<p><p>Seed dormancy, an essential trait for plant adaptation, is determined by the embryo itself and the surrounding tissues. Here, we found that rice (Oryza sativa) FERTILIZATION-INDEPENDENT ENDOSPERM1 (OsFIE1) regulates endosperm-imposed dormancy and the dorsal aleurone thickness in a manner dependent on the parent of origin. Maternally expressed OsFIE1 suppresses gibberellin (GA) biosynthesis in the endosperm by depositing trimethylation of lysine 27 on histone H3 (H3K27me3) marks on GA biosynthesis-related genes, thus inhibiting germination and aleurone differentiation. Knockout of rice GA 20-oxidase1 (OsGA20ox1) alleviated the phenotypic defects in osfie1. The aleurone-positive determinant Crinkly 4 (OsCR4) is another target of the OsFIE1-containing Polycomb repressive complex 2 (PRC2). We found that OsFIE1 plays an important role in genomic imprinting in the endosperm of germinating seeds, particularly for paternally expressed genes associated with H3K27me3. The increased aleurone thickness of osfie1 substantially improved grain nutritional quality, indicating that the osfie1 gene may be utilized for breeding nutrient-enriched rice. The findings provide insights into the essential roles of PRC2-mediated H3K27me3 methylation in the acquisition of seed dormancy and endosperm cell differentiation in rice.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingzhi Zhang, Keun Pyo Lee, Yanling Liu, Chanhong Kim
The Arabidopsis (Arabidopsis thaliana) yellow variegated2 (var2) mutant, lacking functional FILAMENTATION TEMPERATURE-SENSITIVE H2 (FtsH2), an ATP-dependent zinc metalloprotease, is a powerful tool for studying the photosystem II (PSII) repair process in plants. FtsH2, forming hetero-hexamers with FtsH1, FtsH5, and FtsH8, plays an indispensable role in PSII proteostasis. Although abiotic stresses like cold and heat increase chloroplast reactive oxygen species (ROS) and PSII damage, var2 mutants behave like wild-type plants under heat stress but collapse under cold stress. Our study on transgenic var2 lines expressing FtsH2 variants, defective in either substrate extraction or proteolysis, reveals that cold stress causes an increase in membrane viscosity, demanding more substrate extraction power than proteolysis by FtsH2. Overexpression of FtsH2 lacking substrate extraction activity does not rescue the cold-sensitive phenotype, while overexpression of FtsH2 lacking protease activity does in var2, with other FtsH isomers present. This indicates that FtsH2's substrate extraction activity is indispensable under cold stress when membranes become more viscous. As temperatures rise and membrane fluidity increases, substrate extraction activity from other isomers suffices, explaining the var2 mutant's heat stress resilience. These findings underscore the direct effect of membrane fluidity on the functionality of the thylakoid FtsH complex under stress. Future research should explore how membrane fluidity impacts proteostasis, potentially uncovering strategies to modulate thermosensitivity.
{"title":"Temperature-driven changes in membrane fluidity differentially impact FILAMENTATION TEMPERATURE-SENSITIVE H2-mediated photosystem II repair.","authors":"Jingzhi Zhang, Keun Pyo Lee, Yanling Liu, Chanhong Kim","doi":"10.1093/plcell/koae323","DOIUrl":"10.1093/plcell/koae323","url":null,"abstract":"<p><p>The Arabidopsis (Arabidopsis thaliana) yellow variegated2 (var2) mutant, lacking functional FILAMENTATION TEMPERATURE-SENSITIVE H2 (FtsH2), an ATP-dependent zinc metalloprotease, is a powerful tool for studying the photosystem II (PSII) repair process in plants. FtsH2, forming hetero-hexamers with FtsH1, FtsH5, and FtsH8, plays an indispensable role in PSII proteostasis. Although abiotic stresses like cold and heat increase chloroplast reactive oxygen species (ROS) and PSII damage, var2 mutants behave like wild-type plants under heat stress but collapse under cold stress. Our study on transgenic var2 lines expressing FtsH2 variants, defective in either substrate extraction or proteolysis, reveals that cold stress causes an increase in membrane viscosity, demanding more substrate extraction power than proteolysis by FtsH2. Overexpression of FtsH2 lacking substrate extraction activity does not rescue the cold-sensitive phenotype, while overexpression of FtsH2 lacking protease activity does in var2, with other FtsH isomers present. This indicates that FtsH2's substrate extraction activity is indispensable under cold stress when membranes become more viscous. As temperatures rise and membrane fluidity increases, substrate extraction activity from other isomers suffices, explaining the var2 mutant's heat stress resilience. These findings underscore the direct effect of membrane fluidity on the functionality of the thylakoid FtsH complex under stress. Future research should explore how membrane fluidity impacts proteostasis, potentially uncovering strategies to modulate thermosensitivity.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhao Wen, Zuopeng Xu, Lanjun Zhang, Yi Xue, Hang Wang, Lin Jian, Jianing Ma, Zhuolin Liu, Hanlei Yang, Shaohui Huang, Xue Kang, Yihua Zhou, Baocai Zhang
Xylan, a pivotal polymer with diversified structures, is indispensable for cell wall integrity and contributes to plant growth and biomass recalcitrance. Xylan is synthesized by multienzyme complexes named xylan synthase complexes (XSCs). However, the biochemical mechanism of XSCs and the functions of core components within XSC remain unclear. Here, we report that rice (Oryza sativa) XYLAN O-ACETYLTRANSFERASE 6 (XOAT6) and the xylan synthase IRREGULAR XYLEM10 (IRX10) represent core components of the XSC, acting together to biosynthesize acetyl-xylans. Co-fractionation mass spectrometry and protein-protein interaction analyses revealed that IRX10 and XOAT6 physically interact within XSC, corroborated by similar xylan defects in xoat6 and irx10 mutants. Biochemical assays showed that XOAT6 is an O-acetyltransferase of the xylan backbone and facilitates chain polymerization catalyzed by IRX10. Fluorescence correlation spectroscopy further visualized the xylooligomer polymerization process at a single-molecule level. Solid-state NMR analysis, electron microscopy observations, and nanoindentation examinations identified the altered xylan conformation, disorganized cellulosic structure, and increased wall rigidity and cellulose accessibility in the mutants, leading to brittleness and improved saccharification efficiency. Our findings provide insights into the assembly of XSCs and xylan biosynthesis and offer a framework for tailoring xylans to improve crop traits and biomass.
{"title":"XYLAN O-ACETYLTRANSFERASE 6 promotes xylan synthesis by forming a complex with IRX10 and governs wall formation in rice.","authors":"Zhao Wen, Zuopeng Xu, Lanjun Zhang, Yi Xue, Hang Wang, Lin Jian, Jianing Ma, Zhuolin Liu, Hanlei Yang, Shaohui Huang, Xue Kang, Yihua Zhou, Baocai Zhang","doi":"10.1093/plcell/koae322","DOIUrl":"10.1093/plcell/koae322","url":null,"abstract":"<p><p>Xylan, a pivotal polymer with diversified structures, is indispensable for cell wall integrity and contributes to plant growth and biomass recalcitrance. Xylan is synthesized by multienzyme complexes named xylan synthase complexes (XSCs). However, the biochemical mechanism of XSCs and the functions of core components within XSC remain unclear. Here, we report that rice (Oryza sativa) XYLAN O-ACETYLTRANSFERASE 6 (XOAT6) and the xylan synthase IRREGULAR XYLEM10 (IRX10) represent core components of the XSC, acting together to biosynthesize acetyl-xylans. Co-fractionation mass spectrometry and protein-protein interaction analyses revealed that IRX10 and XOAT6 physically interact within XSC, corroborated by similar xylan defects in xoat6 and irx10 mutants. Biochemical assays showed that XOAT6 is an O-acetyltransferase of the xylan backbone and facilitates chain polymerization catalyzed by IRX10. Fluorescence correlation spectroscopy further visualized the xylooligomer polymerization process at a single-molecule level. Solid-state NMR analysis, electron microscopy observations, and nanoindentation examinations identified the altered xylan conformation, disorganized cellulosic structure, and increased wall rigidity and cellulose accessibility in the mutants, leading to brittleness and improved saccharification efficiency. Our findings provide insights into the assembly of XSCs and xylan biosynthesis and offer a framework for tailoring xylans to improve crop traits and biomass.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}