Nancy A Eckardt, Blake C Meyers, Pablo A Manavella
{"title":"The Plant Cell welcomes 2025 Assistant Features Editors.","authors":"Nancy A Eckardt, Blake C Meyers, Pablo A Manavella","doi":"10.1093/plcell/koaf001","DOIUrl":"https://doi.org/10.1093/plcell/koaf001","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant uridine diphosphate-dependent glycosyltransferases (UGTs) play a key role in plant growth and metabolism. Here, we examined the evolutionary landscape among UGTs in 28 fully sequenced species from early algae to angiosperms. Our findings revealed a distinctive expansion and contraction of UGTs in the G and H groups in tea (Camellia sinensis), respectively. Whole-genome duplication and tandem duplication events jointly drove the massive expansion of UGTs, and the interplay of natural and artificial selection has resulted in marked functional divergence within the G group of the sinensis-type tea population. In Cluster II of group G, differences in substrate selection (e.g. abscisic acid) of the enzymes encoded by UGT genes led to their functional diversification, and these genes influence tolerance to abiotic stresses such as low temperature and drought via different modes of positive and negative regulation, respectively. UGTs in Cluster III of the G group have diverse aroma substrate preferences, which contribute a diverse aroma spectrum of the sinensis-type tea population. All Cluster III genes respond to low-temperature stress, whereas UGTs within Cluster III-1, shaped by artificial selection, are unresponsive to drought. This suggests that artificial selection of tea plants focused on improving quality and cold tolerance as primary targets.
植物糖基转移酶(UGTs)在植物生长和新陈代谢中发挥着关键作用。在这里,我们研究了从早期藻类到被子植物的 28 个完全测序物种中 UGTs 的进化情况。我们的研究结果表明,茶叶(Camellia sinensis)中 G 组和 H 组的 UGTs 分别出现了明显的扩张和收缩。全基因组复制和串联复制事件共同推动了UGTs的大规模扩增,自然选择和人工选择的相互作用导致了中华茶树种群G群内部明显的功能分化。在G群的簇II中,UGT基因编码的酶在底物(如脱落酸)选择上的差异导致了其功能的多样化,这些基因分别通过不同的正负调控模式影响对低温和干旱等非生物胁迫的耐受性。G 组第 III 群组中的 UGTs 对香气底物的偏好各不相同,从而形成了多种多样的中茶香气谱。所有簇 III 基因都对低温胁迫有反应,而人工选择形成的簇 III-1 内的 UGTs 对干旱无反应。这表明,茶树的人工选择以提高品质和耐寒性为主要目标。
{"title":"Evolution and functional divergence of glycosyltransferase genes shaped the quality and cold tolerance of tea plants.","authors":"Jingming Wang, Yutong Hu, Danyang Guo, Ting Gao, Tianqi Liu, Jieyang Jin, Mingyue Zhao, Keke Yu, Wei Tong, Honghua Ge, Yuting Pan, Mengting Zhang, Mengqian Lu, Tingting Jing, Wenkai Du, Xiaoyan Tang, Chenjie Zhao, Wei Zhao, Zhijie Bao, Wilfried Schwab, Enhua Xia, Chuankui Song","doi":"10.1093/plcell/koae268","DOIUrl":"10.1093/plcell/koae268","url":null,"abstract":"<p><p>Plant uridine diphosphate-dependent glycosyltransferases (UGTs) play a key role in plant growth and metabolism. Here, we examined the evolutionary landscape among UGTs in 28 fully sequenced species from early algae to angiosperms. Our findings revealed a distinctive expansion and contraction of UGTs in the G and H groups in tea (Camellia sinensis), respectively. Whole-genome duplication and tandem duplication events jointly drove the massive expansion of UGTs, and the interplay of natural and artificial selection has resulted in marked functional divergence within the G group of the sinensis-type tea population. In Cluster II of group G, differences in substrate selection (e.g. abscisic acid) of the enzymes encoded by UGT genes led to their functional diversification, and these genes influence tolerance to abiotic stresses such as low temperature and drought via different modes of positive and negative regulation, respectively. UGTs in Cluster III of the G group have diverse aroma substrate preferences, which contribute a diverse aroma spectrum of the sinensis-type tea population. All Cluster III genes respond to low-temperature stress, whereas UGTs within Cluster III-1, shaped by artificial selection, are unresponsive to drought. This suggests that artificial selection of tea plants focused on improving quality and cold tolerance as primary targets.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"You can have it all: How the interplay between SnRK1 and RBOH1 promotes nitrate uptake in tomato.","authors":"Margot Raffeiner","doi":"10.1093/plcell/koae325","DOIUrl":"10.1093/plcell/koae325","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xutong Wang, Jingbo Duan, Chancelor B Clark, Wanjie Feng, Jianxin Ma
Alternative transcription initiation (ATI) appears to be a ubiquitous regulatory mechanism of gene expression in eukaryotes. However, the extent to which it affects the products of gene expression and how it evolves and is regulated remain unknown. Here, we report genome-wide identification and analysis of transcription start sites (TSSs) in various soybean (Glycine max) tissues using a survey of transcription initiation at promoter elements with high-throughput sequencing (STRIPE-seq). We defined 193,579 TSS clusters/regions (TSRs) in 37,911 annotated genes, with 56.5% located in canonical regulatory regions and 43.5% from start codons to 3' untranslated regions, which were responsible for changes in open reading frames of 24,131 genes. Strikingly, 6,845 genes underwent ATI within coding sequences (CDSs). These CDS-TSRs were tissue-specific, did not have TATA-boxes typical of canonical promoters, and were embedded in nucleosome-free regions flanked by nucleosomes with enhanced levels of histone marks potentially associated with intragenic transcriptional initiation, suggesting that ATI within CDSs was epigenetically tuned and associated with tissue-specific functions. Overall, duplicated genes possessed more TSRs, exhibited lower degrees of tissue specificity, and underwent stronger purifying selection than singletons. This study highlights the significance of ATI and the genomic and epigenomic factors shaping the distribution of ATI in CDSs in a paleopolyploid eukaryote.
{"title":"Noncanonical transcription initiation is primarily tissue specific and epigenetically tuned in paleopolyploid plants.","authors":"Xutong Wang, Jingbo Duan, Chancelor B Clark, Wanjie Feng, Jianxin Ma","doi":"10.1093/plcell/koae288","DOIUrl":"10.1093/plcell/koae288","url":null,"abstract":"<p><p>Alternative transcription initiation (ATI) appears to be a ubiquitous regulatory mechanism of gene expression in eukaryotes. However, the extent to which it affects the products of gene expression and how it evolves and is regulated remain unknown. Here, we report genome-wide identification and analysis of transcription start sites (TSSs) in various soybean (Glycine max) tissues using a survey of transcription initiation at promoter elements with high-throughput sequencing (STRIPE-seq). We defined 193,579 TSS clusters/regions (TSRs) in 37,911 annotated genes, with 56.5% located in canonical regulatory regions and 43.5% from start codons to 3' untranslated regions, which were responsible for changes in open reading frames of 24,131 genes. Strikingly, 6,845 genes underwent ATI within coding sequences (CDSs). These CDS-TSRs were tissue-specific, did not have TATA-boxes typical of canonical promoters, and were embedded in nucleosome-free regions flanked by nucleosomes with enhanced levels of histone marks potentially associated with intragenic transcriptional initiation, suggesting that ATI within CDSs was epigenetically tuned and associated with tissue-specific functions. Overall, duplicated genes possessed more TSRs, exhibited lower degrees of tissue specificity, and underwent stronger purifying selection than singletons. This study highlights the significance of ATI and the genomic and epigenomic factors shaping the distribution of ATI in CDSs in a paleopolyploid eukaryote.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multitasker Argonaute leaves no stone unturned.","authors":"Laura Arribas-Hernández","doi":"10.1093/plcell/koae306","DOIUrl":"10.1093/plcell/koae306","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noah Sprent, C Y Maurice Cheung, Sanu Shameer, R George Ratcliffe, Lee J Sweetlove, Nadine Töpfer
Guard cell metabolism is crucial for stomatal dynamics, but a full understanding of its role is hampered by experimental limitations and the flexible nature of the metabolic network. To tackle this challenge, we constructed a time-resolved stoichiometric model of guard cell metabolism that accounts for energy and osmolyte requirements and which is integrated with the mesophyll. The model resolved distinct roles for starch, sugars, and malate in guard cell metabolism and revealed several unexpected flux patterns in central metabolism. During blue light-mediated stomatal opening, starch breakdown was the most efficient way to generate osmolytes with downregulation of glycolysis allowing starch-derived glucose to accumulate as a cytosolic osmolyte. Maltose could also accumulate as a cytosolic osmoticum, although this made the metabolic system marginally less efficient. The metabolic energy for stomatal opening was predicted to be derived independently of starch, using nocturnally accumulated citrate which was metabolized in the tricarboxylic acid cycle to malate to provide mitochondrial reducing power for ATP synthesis. In white light-mediated stomatal opening, malate transferred reducing equivalents from guard cell photosynthesis to mitochondria for ATP production. Depending on the capacity for guard cell photosynthesis, glycolysis showed little flux during the day but was crucial for energy metabolism at night. In summary, our analyses have corroborated recent findings in Arabidopsis guard cell research, resolved conflicting observations by highlighting the flexibility of guard cell metabolism, and proposed new metabolic flux modes for further experimental testing.
保卫细胞的新陈代谢对气孔动力学至关重要,但实验的局限性和新陈代谢网络的灵活性阻碍了对其作用的全面了解。为了应对这一挑战,我们构建了一个时间分辨的护卫细胞新陈代谢化学计量模型,该模型考虑了能量和渗透溶质的需求,并与叶肉结合在一起。该模型解决了淀粉、糖类和苹果酸盐在保卫细胞代谢中的不同作用,并揭示了中央代谢中几种意想不到的通量模式。在蓝光介导的气孔开放过程中,淀粉分解是产生渗透溶质的最有效方式,糖酵解的下调使淀粉衍生的葡萄糖作为细胞膜渗透溶质积累。麦芽糖也可以作为细胞膜渗透质积累,尽管这使得代谢系统的效率略低。据预测,气孔打开所需的代谢能不依赖于淀粉,而是利用夜间积累的柠檬酸,在三羧酸循环中代谢成苹果酸,为线粒体合成 ATP 提供还原力。在白光介导的气孔打开过程中,苹果酸将还原当量从保卫细胞的光合作用转移到线粒体,以产生 ATP。根据保卫细胞光合作用的能力,糖酵解在白天的通量很小,但在夜间对能量代谢至关重要。总之,我们的分析证实了拟南芥保卫细胞研究的最新发现,通过强调保卫细胞代谢的灵活性解决了相互矛盾的观察结果,并提出了新的代谢通量模式供进一步实验测试。
{"title":"Metabolic modeling reveals distinct roles of sugars and carboxylic acids in stomatal opening as well as unexpected carbon fluxes.","authors":"Noah Sprent, C Y Maurice Cheung, Sanu Shameer, R George Ratcliffe, Lee J Sweetlove, Nadine Töpfer","doi":"10.1093/plcell/koae252","DOIUrl":"10.1093/plcell/koae252","url":null,"abstract":"<p><p>Guard cell metabolism is crucial for stomatal dynamics, but a full understanding of its role is hampered by experimental limitations and the flexible nature of the metabolic network. To tackle this challenge, we constructed a time-resolved stoichiometric model of guard cell metabolism that accounts for energy and osmolyte requirements and which is integrated with the mesophyll. The model resolved distinct roles for starch, sugars, and malate in guard cell metabolism and revealed several unexpected flux patterns in central metabolism. During blue light-mediated stomatal opening, starch breakdown was the most efficient way to generate osmolytes with downregulation of glycolysis allowing starch-derived glucose to accumulate as a cytosolic osmolyte. Maltose could also accumulate as a cytosolic osmoticum, although this made the metabolic system marginally less efficient. The metabolic energy for stomatal opening was predicted to be derived independently of starch, using nocturnally accumulated citrate which was metabolized in the tricarboxylic acid cycle to malate to provide mitochondrial reducing power for ATP synthesis. In white light-mediated stomatal opening, malate transferred reducing equivalents from guard cell photosynthesis to mitochondria for ATP production. Depending on the capacity for guard cell photosynthesis, glycolysis showed little flux during the day but was crucial for energy metabolism at night. In summary, our analyses have corroborated recent findings in Arabidopsis guard cell research, resolved conflicting observations by highlighting the flexibility of guard cell metabolism, and proposed new metabolic flux modes for further experimental testing.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663573/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The older the wiser, unless you are a banana: The NAP1-MADS1 network in the regulation of banana ripening.","authors":"Raul Sanchez-Muñoz","doi":"10.1093/plcell/koae305","DOIUrl":"10.1093/plcell/koae305","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sébastien Bélanger, Junpeng Zhan, Yunqing Yu, Blake C Meyers
Phased, small interfering RNAs (PhasiRNAs) play a crucial role in supporting male fertility in grasses. Earlier work in maize (Zea mays) and rice (Oryza sativa)-and subsequently many other plant species-identified premeiotic 21-nucleotide (nt) and meiotic 24-nt phasiRNAs. More recently, a group of premeiotic 24-nt phasiRNAs was discovered in the anthers of 2 Pooideae species, barley (Hordeum vulgare) and bread wheat (Triticum aestivum). Whether premeiotic 24-nt phasiRNAs and other classes of reproductive phasiRNAs are conserved across Pooideae species remains unclear. We conducted comparative RNA profiling of 3 anther stages in 6 Pooideae species and 1 Bambusoideae species. We observed complex temporal accumulation patterns of 21-nt and 24-nt phasiRNAs in Pooideae and Bambusoideae grasses. In Bambusoideae, 21-nt phasiRNAs accumulated during meiosis, whereas 24-nt phasiRNAs were present in both premeiotic and postmeiotic stages. We identified premeiotic 24-nt phasiRNAs in all 7 species examined. These phasiRNAs exhibit distinct biogenesis mechanisms and potential Argonaute effectors compared to meiotic 24-nt phasiRNAs. We show that specific Argonaute genes coexpressed with stage-specific phasiRNAs are conserved across Bambusoideae and Pooideae species. Our degradome analysis identified a set of conserved miRNA target genes across species, while 21-nt phasiRNA targets were species-specific. Cleavage of few targets was observed for 24-nt phasiRNAs. In summary, this study demonstrates that premeiotic 24-nt phasiRNAs are present across Bambusoideae and Pooideae families, and the temporal accumulation of other classes of 21-nt and 24-nt phasiRNA differs between bamboo and Pooideae species. Furthermore, targets of the 3 classes of phasiRNAs may be rapidly evolving or undetectable.
{"title":"Comparative RNA profiling identifies stage-specific phasiRNAs and coexpressed Argonaute genes in Bambusoideae and Pooideae species.","authors":"Sébastien Bélanger, Junpeng Zhan, Yunqing Yu, Blake C Meyers","doi":"10.1093/plcell/koae308","DOIUrl":"10.1093/plcell/koae308","url":null,"abstract":"<p><p>Phased, small interfering RNAs (PhasiRNAs) play a crucial role in supporting male fertility in grasses. Earlier work in maize (Zea mays) and rice (Oryza sativa)-and subsequently many other plant species-identified premeiotic 21-nucleotide (nt) and meiotic 24-nt phasiRNAs. More recently, a group of premeiotic 24-nt phasiRNAs was discovered in the anthers of 2 Pooideae species, barley (Hordeum vulgare) and bread wheat (Triticum aestivum). Whether premeiotic 24-nt phasiRNAs and other classes of reproductive phasiRNAs are conserved across Pooideae species remains unclear. We conducted comparative RNA profiling of 3 anther stages in 6 Pooideae species and 1 Bambusoideae species. We observed complex temporal accumulation patterns of 21-nt and 24-nt phasiRNAs in Pooideae and Bambusoideae grasses. In Bambusoideae, 21-nt phasiRNAs accumulated during meiosis, whereas 24-nt phasiRNAs were present in both premeiotic and postmeiotic stages. We identified premeiotic 24-nt phasiRNAs in all 7 species examined. These phasiRNAs exhibit distinct biogenesis mechanisms and potential Argonaute effectors compared to meiotic 24-nt phasiRNAs. We show that specific Argonaute genes coexpressed with stage-specific phasiRNAs are conserved across Bambusoideae and Pooideae species. Our degradome analysis identified a set of conserved miRNA target genes across species, while 21-nt phasiRNA targets were species-specific. Cleavage of few targets was observed for 24-nt phasiRNAs. In summary, this study demonstrates that premeiotic 24-nt phasiRNAs are present across Bambusoideae and Pooideae families, and the temporal accumulation of other classes of 21-nt and 24-nt phasiRNA differs between bamboo and Pooideae species. Furthermore, targets of the 3 classes of phasiRNAs may be rapidly evolving or undetectable.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The termination of floral meristem (FM) activity is essential for the normal development of reproductive floral organs. During this process, KNUCKLES (KNU), a C2H2-type zinc finger protein, crucially regulates FM termination by directly repressing the expression of both the stem cell identity gene WUSCHEL (WUS) and the stem cell marker gene CLAVATA3 (CLV3) to abolish the WUS-CLV3 feedback loop required for FM maintenance. In addition, phytohormones auxin and cytokinin are involved in FM regulation. However, whether KNU modulates auxin and cytokinin activities for FM determinacy control remains unclear. Here, we show that the auxin distribution and the cytokinin activity mediated by KNU in Arabidopsis (Arabidopsis thaliana) promote the termination of FM during stage 6 of flower development. Mutation of KNU leads to altered distribution of auxin and cytokinin in the FM of a stage 6 floral bud. Moreover, KNU directly represses the auxin transporter gene PIN-FORMED1 (PIN1) and the cytokinin biosynthesis gene ISOPENTENYLTRANSFERASE7 (IPT7) via mediating H3K27me3 deposition on these 2 loci to regulate auxin and cytokinin activities. Our study presents a molecular regulatory network that elucidates how the transcriptional repressor KNU integrates and modulates the activities of auxin and cytokinin, thus securing the timed FM termination.
{"title":"KNUCKLES regulates floral meristem termination by controlling auxin distribution and cytokinin activity.","authors":"Guangling Wang, Zhiyue Wu, Bo Sun","doi":"10.1093/plcell/koae312","DOIUrl":"10.1093/plcell/koae312","url":null,"abstract":"<p><p>The termination of floral meristem (FM) activity is essential for the normal development of reproductive floral organs. During this process, KNUCKLES (KNU), a C2H2-type zinc finger protein, crucially regulates FM termination by directly repressing the expression of both the stem cell identity gene WUSCHEL (WUS) and the stem cell marker gene CLAVATA3 (CLV3) to abolish the WUS-CLV3 feedback loop required for FM maintenance. In addition, phytohormones auxin and cytokinin are involved in FM regulation. However, whether KNU modulates auxin and cytokinin activities for FM determinacy control remains unclear. Here, we show that the auxin distribution and the cytokinin activity mediated by KNU in Arabidopsis (Arabidopsis thaliana) promote the termination of FM during stage 6 of flower development. Mutation of KNU leads to altered distribution of auxin and cytokinin in the FM of a stage 6 floral bud. Moreover, KNU directly represses the auxin transporter gene PIN-FORMED1 (PIN1) and the cytokinin biosynthesis gene ISOPENTENYLTRANSFERASE7 (IPT7) via mediating H3K27me3 deposition on these 2 loci to regulate auxin and cytokinin activities. Our study presents a molecular regulatory network that elucidates how the transcriptional repressor KNU integrates and modulates the activities of auxin and cytokinin, thus securing the timed FM termination.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Li, Brandon Le, Xufeng Wang, Ye Xu, Suikang Wang, Hao Li, Lei Gao, Beixin Mo, Lin Liu, Xuemei Chen
RNA silencing negatively regulates gene expression at the transcriptional and posttranscriptional levels through DNA methylation, histone modification, mRNA cleavage, and translational inhibition. Small interfering RNAs (siRNAs) of 21 to 24 nucleotides are processed from double-stranded RNAs by Dicer-like (DCL) enzymes and play essential roles in RNA silencing in plants. Here, we demonstrated that ALTERED MERISTEM PROGRAM1 (AMP1) and its putative paralog LIKE AMP1 (LAMP1) impair RNA silencing by repressing the biogenesis of a subset of inverted repeat (IR)-derived siRNAs in Arabidopsis (Arabidopsis thaliana). AMP1 and LAMP1 inhibit Pol II-dependent IR gene transcription by suppressing ARGONAUTE 1 (AGO1) protein levels. Genetic analysis indicates that AMP1 acts upstream of RNA polymerase IV subunit 1 (NRPD1), RNA-dependent RNA polymerase 2 (RDR2), and DCL4, which are required for IR-induced RNA silencing. We also show that AMP1 and LAMP1 inhibit siRNA-mediated silencing in a different mechanism from that of AGO4 and DCL3. Together, these results reveal two previously unknown players in siRNA biogenesis from IRs-AGO1, which promotes IR transcription, and AMP1, which inhibits IR transcription indirectly through the repression of AGO1 expression.
{"title":"ALTERED MERISTEM PROGRAM1 impairs RNA silencing by repressing the biogenesis of a subset of inverted repeat-derived siRNAs.","authors":"Jing Li, Brandon Le, Xufeng Wang, Ye Xu, Suikang Wang, Hao Li, Lei Gao, Beixin Mo, Lin Liu, Xuemei Chen","doi":"10.1093/plcell/koae293","DOIUrl":"10.1093/plcell/koae293","url":null,"abstract":"<p><p>RNA silencing negatively regulates gene expression at the transcriptional and posttranscriptional levels through DNA methylation, histone modification, mRNA cleavage, and translational inhibition. Small interfering RNAs (siRNAs) of 21 to 24 nucleotides are processed from double-stranded RNAs by Dicer-like (DCL) enzymes and play essential roles in RNA silencing in plants. Here, we demonstrated that ALTERED MERISTEM PROGRAM1 (AMP1) and its putative paralog LIKE AMP1 (LAMP1) impair RNA silencing by repressing the biogenesis of a subset of inverted repeat (IR)-derived siRNAs in Arabidopsis (Arabidopsis thaliana). AMP1 and LAMP1 inhibit Pol II-dependent IR gene transcription by suppressing ARGONAUTE 1 (AGO1) protein levels. Genetic analysis indicates that AMP1 acts upstream of RNA polymerase IV subunit 1 (NRPD1), RNA-dependent RNA polymerase 2 (RDR2), and DCL4, which are required for IR-induced RNA silencing. We also show that AMP1 and LAMP1 inhibit siRNA-mediated silencing in a different mechanism from that of AGO4 and DCL3. Together, these results reveal two previously unknown players in siRNA biogenesis from IRs-AGO1, which promotes IR transcription, and AMP1, which inhibits IR transcription indirectly through the repression of AGO1 expression.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}