首页 > 最新文献

Plant Cell最新文献

英文 中文
Dark-responsive BGH2 and light-responsive BPG4: Taming the GLK1/2 master transcription factors for etioplast and chloroplast homeostasis. 暗适应BGH2和光响应BPG4:抑制GLK1/2主转录因子对病质体和叶绿体稳态的影响。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-08-04 DOI: 10.1093/plcell/koaf190
Jiajun Wang
{"title":"Dark-responsive BGH2 and light-responsive BPG4: Taming the GLK1/2 master transcription factors for etioplast and chloroplast homeostasis.","authors":"Jiajun Wang","doi":"10.1093/plcell/koaf190","DOIUrl":"10.1093/plcell/koaf190","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144837315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The jojoba lipid droplet protein LDAP1 facilitates the packaging of wax esters into lipid droplets. 荷荷巴脂滴蛋白LDAP1促进蜡酯包装成脂滴。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-08-01 DOI: 10.1093/plcell/koaf115
Payton Whitehead, Saad Raza, Magdalena Miklaszewska, Ellen Hornung, Cornelia Herrfurth, Rohith Nadella, Alyssa Clews, Nathan M Doner, John M Dyer, Robert Mullen, Ivo Feussner, Josh V Vermaas, Kent D Chapman

Jojoba (Simmondsia chinensis) is a desert shrub with an unusual capacity to store liquid wax esters (WEs) in its seeds instead of triacylglycerols (TAGs) like most oilseed crops. To examine the factors that are important for WE compartmentalization in jojoba, we reconstituted WE biosynthesis and packaging in the leaves of Nicotiana benthamiana. Using this system, we screened jojoba proteins for their ability to support lipid droplet (LD) formation. A specific LIPID DROPLET-ASSOCIATED PROTEIN (LDAP) isoform, ScLDAP1, was identified as a key factor in the efficient compartmentalization of WEs in plant cells. LDAP1 isoforms from other plants (e.g. Arabidopsis thaliana [AtLDAP1]) did not support WE partitioning from the endoplasmic reticulum into LDs, although both AtLDAP1 and ScLDAP1 were targeted specifically to LD monolayer surfaces. ScLDAP1-mediated selective, efficient WE partitioning was facilitated by an amphipathic α-helix near its C-terminus, and mutational analysis identified 1 amino acid residue within this helix that was both necessary and sufficient for proper WE packaging into cytoplasmic LDs. Taken together, our results provide a mechanistic link between the biosynthesis and storage of WEs in plant cells, and will inform future biotechnology strategies for the efficient packaging of various neutral lipid types as demonstrated here for WEs in transgenic seeds.

荷荷巴(Simmondsia chinensis)是一种沙漠灌木,其种子中储存液体蜡酯(WEs)的能力不同寻常,而不是像大多数油籽作物那样储存三酰甘油(TAGs)。为了研究影响荷荷巴草中WE区系的重要因素,我们重建了烟叶中WE的生物合成和包装。使用该系统,我们筛选了荷荷巴蛋白支持脂滴(LD)形成的能力。一种特殊的脂滴相关蛋白(LDAP)异构体ScLDAP1被确定为植物细胞中WEs有效区隔的关键因素。来自其他植物(如拟南芥[AtLDAP1])的LDAP1亚型不支持WE从内质网分配到LD,尽管AtLDAP1和ScLDAP1都专门针对LD单层表面。scldap1介导的选择性高效WE分配由其c端附近的两亲性α-螺旋促进,突变分析发现,该螺旋内的1个氨基酸残基对于将WE正确包装到细胞质ld中既必要又充分。综上所述,我们的研究结果提供了植物细胞中WEs的生物合成和储存之间的机制联系,并将为未来的生物技术策略提供信息,以有效包装各种中性脂类,如在转基因种子中展示的WEs。
{"title":"The jojoba lipid droplet protein LDAP1 facilitates the packaging of wax esters into lipid droplets.","authors":"Payton Whitehead, Saad Raza, Magdalena Miklaszewska, Ellen Hornung, Cornelia Herrfurth, Rohith Nadella, Alyssa Clews, Nathan M Doner, John M Dyer, Robert Mullen, Ivo Feussner, Josh V Vermaas, Kent D Chapman","doi":"10.1093/plcell/koaf115","DOIUrl":"10.1093/plcell/koaf115","url":null,"abstract":"<p><p>Jojoba (Simmondsia chinensis) is a desert shrub with an unusual capacity to store liquid wax esters (WEs) in its seeds instead of triacylglycerols (TAGs) like most oilseed crops. To examine the factors that are important for WE compartmentalization in jojoba, we reconstituted WE biosynthesis and packaging in the leaves of Nicotiana benthamiana. Using this system, we screened jojoba proteins for their ability to support lipid droplet (LD) formation. A specific LIPID DROPLET-ASSOCIATED PROTEIN (LDAP) isoform, ScLDAP1, was identified as a key factor in the efficient compartmentalization of WEs in plant cells. LDAP1 isoforms from other plants (e.g. Arabidopsis thaliana [AtLDAP1]) did not support WE partitioning from the endoplasmic reticulum into LDs, although both AtLDAP1 and ScLDAP1 were targeted specifically to LD monolayer surfaces. ScLDAP1-mediated selective, efficient WE partitioning was facilitated by an amphipathic α-helix near its C-terminus, and mutational analysis identified 1 amino acid residue within this helix that was both necessary and sufficient for proper WE packaging into cytoplasmic LDs. Taken together, our results provide a mechanistic link between the biosynthesis and storage of WEs in plant cells, and will inform future biotechnology strategies for the efficient packaging of various neutral lipid types as demonstrated here for WEs in transgenic seeds.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 8","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144837317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sugar, we're going down: PRC2-mediated epigenetic repression of sucrose metabolism promotes phototrophy during seedling establishment. 糖,我们正在下降:prc2介导的蔗糖代谢的表观遗传抑制在幼苗建立期间促进光养。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-07-01 DOI: 10.1093/plcell/koaf155
Rory Osborne
{"title":"Sugar, we're going down: PRC2-mediated epigenetic repression of sucrose metabolism promotes phototrophy during seedling establishment.","authors":"Rory Osborne","doi":"10.1093/plcell/koaf155","DOIUrl":"10.1093/plcell/koaf155","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144286156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tiny seeds, big decisions: Jasmonate-mediated regulation of seed size in Arabidopsis via the SOD7-KLU module. 小种子,大决定:茉莉酸通过SOD7- KLU模块介导拟南芥种子大小的调节。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-07-01 DOI: 10.1093/plcell/koaf160
Nitin Uttam Kamble
{"title":"Tiny seeds, big decisions: Jasmonate-mediated regulation of seed size in Arabidopsis via the SOD7-KLU module.","authors":"Nitin Uttam Kamble","doi":"10.1093/plcell/koaf160","DOIUrl":"10.1093/plcell/koaf160","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144294800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Best practices in plant fluorescence imaging and reporting: A primer. 植物荧光成像和报告的最佳实践:引物。
IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-07-01 DOI: 10.1093/plcell/koaf143
Kirk J Czymmek, Yoselin Benitez-Alfonso, Tessa Burch-Smith, Luigi F Di Costanzo, Georgia Drakakaki, Michelle Facette, Daniel Kierzkowski, Anastasiya Klebanovych, Ivan Radin, Suruchi Roychoudhry, Heather E McFarlane

Microscopy is a fundamental approach for plant cell and developmental biology as well as an essential tool for mechanistic studies in plant research. However, setting up a new microscopy-based experiment can be challenging, especially for beginner users, when implementing new imaging workflows or when working in an imaging facility where staff may not have extensive experience with plant samples. The basic principles of optics, chemistry, imaging, and data handling are shared among all cell types. However, unique challenges are faced when imaging plant specimens due to their waxy cuticles, strong/broad spectrum autofluorescence, recalcitrant cell walls, and air spaces that impede fixation or live imaging, impacting sample preparation and image quality. As expert plant microscopists, we share our collective experience on best practices to improve the quality of published microscopy results and promote transparency, reproducibility, and data reuse for meta-analyses. We offer plant-specific advice and examples for microscope users at all stages of fluorescence microscopy workflows, from experimental design through sample preparation, image acquisition, processing, and analyses, to image display and methods reporting in manuscripts. We also present standards for methods reporting that will be valuable to all users and offer tools to improve reproducibility and data sharing.

显微镜是研究植物细胞和发育生物学的一种基本方法,也是植物机制研究的重要工具。然而,当实施新的成像工作流程或在工作人员可能没有丰富植物样品经验的成像设施中工作时,建立一个新的基于显微镜的实验可能具有挑战性,特别是对于初学者用户。光学、化学、成像和数据处理的基本原理在所有细胞类型中都是共享的。然而,由于植物标本的蜡质角质层、强/广谱自身荧光、顽固的细胞壁和阻碍固定或实时成像的空气空间,影响了样品制备和图像质量,因此在成像植物标本时面临着独特的挑战。作为植物显微镜专家,我们分享我们的最佳实践经验,以提高已发表的显微镜结果的质量,促进透明度,可重复性和数据重用,用于荟萃分析。我们在荧光显微镜工作流程的各个阶段为显微镜用户提供特定植物的建议和示例,从实验设计到样品制备,图像采集,处理和分析,到图像显示和手稿中的方法报告。我们还提出了对所有用户都有价值的方法报告标准,并提供了提高可重复性和数据共享的工具。
{"title":"Best practices in plant fluorescence imaging and reporting: A primer.","authors":"Kirk J Czymmek, Yoselin Benitez-Alfonso, Tessa Burch-Smith, Luigi F Di Costanzo, Georgia Drakakaki, Michelle Facette, Daniel Kierzkowski, Anastasiya Klebanovych, Ivan Radin, Suruchi Roychoudhry, Heather E McFarlane","doi":"10.1093/plcell/koaf143","DOIUrl":"10.1093/plcell/koaf143","url":null,"abstract":"<p><p>Microscopy is a fundamental approach for plant cell and developmental biology as well as an essential tool for mechanistic studies in plant research. However, setting up a new microscopy-based experiment can be challenging, especially for beginner users, when implementing new imaging workflows or when working in an imaging facility where staff may not have extensive experience with plant samples. The basic principles of optics, chemistry, imaging, and data handling are shared among all cell types. However, unique challenges are faced when imaging plant specimens due to their waxy cuticles, strong/broad spectrum autofluorescence, recalcitrant cell walls, and air spaces that impede fixation or live imaging, impacting sample preparation and image quality. As expert plant microscopists, we share our collective experience on best practices to improve the quality of published microscopy results and promote transparency, reproducibility, and data reuse for meta-analyses. We offer plant-specific advice and examples for microscope users at all stages of fluorescence microscopy workflows, from experimental design through sample preparation, image acquisition, processing, and analyses, to image display and methods reporting in manuscripts. We also present standards for methods reporting that will be valuable to all users and offer tools to improve reproducibility and data sharing.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":"37 7","pages":""},"PeriodicalIF":11.6,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284399/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144691234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergence and evolution of canonical microRNAs: A case study in Arabidopsis halleri and A. lyrata. 标准microrna的出现和进化:以拟南芥和拟南芥为例。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-07-01 DOI: 10.1093/plcell/koaf159
Pei Qin Ng
{"title":"Emergence and evolution of canonical microRNAs: A case study in Arabidopsis halleri and A. lyrata.","authors":"Pei Qin Ng","doi":"10.1093/plcell/koaf159","DOIUrl":"10.1093/plcell/koaf159","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12264591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144310310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin insulators: Good fences that make good neighbors. 染色质绝缘体:形成好邻居的好篱笆。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-07-01 DOI: 10.1093/plcell/koaf157
Laura Arribas-Hernández
{"title":"Chromatin insulators: Good fences that make good neighbors.","authors":"Laura Arribas-Hernández","doi":"10.1093/plcell/koaf157","DOIUrl":"10.1093/plcell/koaf157","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144294799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The multifunctional ascorbate peroxidase MoApx1 secreted by Magnaporthe oryzae mediates the suppression of rice immunity. 水稻Magnaporthe oryzae分泌的多功能抗坏血酸过氧化物酶MoApx1介导水稻免疫抑制。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-07-01 DOI: 10.1093/plcell/koaf146
Muxing Liu, Ziqian Guo, Jiexiong Hu, Yuke Chen, Fang Chen, Weizhong Chen, Wenya Wang, Boyang Ye, Zhixiang Yang, Gang Li, Xinyu Liu, Haifeng Zhang, Ping Wang, Zhengguang Zhang

Fungi secrete effector proteins, including extracellular redox enzymes, to inhibit host immunity. Redox enzymes have been hypothesized to inhibit host reactive oxygen species (ROS); however, how they suppress host immunity remains unknown. We characterized an extracellular ascorbate peroxidase (MoApx1) that is secreted into rice chloroplasts by the rice blast fungus Magnaporthe oryzae. MoApx1 displays multifunctional capabilities that significantly contribute to fungal virulence. Firstly, MoApx1 neutralizes host-derived H2O2 within the chloroplast through its peroxidase activity, thereby inhibiting chloroplast ROS (cROS)-mediated defense responses. Secondly, MoApx1 targets the photosystem I subunit OsPsaD, disrupting photosynthetic electron transport to further suppress cROS production. Most importantly, MoApx1 has evolved a fungal-specific starch-binding domain that binds host starch, inhibiting its degradation and disrupting the energy supply required for host resistance. Our findings underscore the importance of a novel multifaceted strategy, potentially widely employed by other fungal pathogens, in suppressing host immunity during host-microbe interactions.

真菌分泌包括细胞外氧化还原酶在内的效应蛋白来抑制宿主免疫。氧化还原酶被认为可以抑制宿主活性氧(ROS);然而,它们如何抑制宿主免疫仍然未知。我们鉴定了一种细胞外抗坏血酸过氧化物酶(MoApx1),它是由稻瘟病菌Magnaporthe oryzae分泌到水稻叶绿体中的。MoApx1显示出多种功能,对真菌毒力有重要影响。首先,MoApx1通过其过氧化物酶活性中和叶绿体内宿主来源的H2O2,从而抑制叶绿体ROS (cROS)介导的防御反应。其次,MoApx1靶向光系统I (PSI)亚基OsPsaD,破坏光合电子传递,进一步抑制cROS的产生。最重要的是,MoApx1进化出了一个真菌特异性的淀粉结合结构域,可以结合宿主淀粉,抑制其降解并破坏宿主抗性所需的能量供应。我们的发现强调了一种新的多方面策略的重要性,这种策略可能被其他真菌病原体广泛采用,在宿主-微生物相互作用期间抑制宿主免疫。
{"title":"The multifunctional ascorbate peroxidase MoApx1 secreted by Magnaporthe oryzae mediates the suppression of rice immunity.","authors":"Muxing Liu, Ziqian Guo, Jiexiong Hu, Yuke Chen, Fang Chen, Weizhong Chen, Wenya Wang, Boyang Ye, Zhixiang Yang, Gang Li, Xinyu Liu, Haifeng Zhang, Ping Wang, Zhengguang Zhang","doi":"10.1093/plcell/koaf146","DOIUrl":"10.1093/plcell/koaf146","url":null,"abstract":"<p><p>Fungi secrete effector proteins, including extracellular redox enzymes, to inhibit host immunity. Redox enzymes have been hypothesized to inhibit host reactive oxygen species (ROS); however, how they suppress host immunity remains unknown. We characterized an extracellular ascorbate peroxidase (MoApx1) that is secreted into rice chloroplasts by the rice blast fungus Magnaporthe oryzae. MoApx1 displays multifunctional capabilities that significantly contribute to fungal virulence. Firstly, MoApx1 neutralizes host-derived H2O2 within the chloroplast through its peroxidase activity, thereby inhibiting chloroplast ROS (cROS)-mediated defense responses. Secondly, MoApx1 targets the photosystem I subunit OsPsaD, disrupting photosynthetic electron transport to further suppress cROS production. Most importantly, MoApx1 has evolved a fungal-specific starch-binding domain that binds host starch, inhibiting its degradation and disrupting the energy supply required for host resistance. Our findings underscore the importance of a novel multifaceted strategy, potentially widely employed by other fungal pathogens, in suppressing host immunity during host-microbe interactions.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144266960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Auxin meets BR: OsIAA7 teams up with OsGSK2 to destabilize OsBZR1 for rice seed size control. 生长素与BR相遇:OsIAA7与OsGSK2合作,破坏OsBZR1的稳定,控制水稻种子大小。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-07-01 DOI: 10.1093/plcell/koaf152
Jiajun Wang
{"title":"Auxin meets BR: OsIAA7 teams up with OsGSK2 to destabilize OsBZR1 for rice seed size control.","authors":"Jiajun Wang","doi":"10.1093/plcell/koaf152","DOIUrl":"10.1093/plcell/koaf152","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144286132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Division of labor in the nodule: Plant GluTRs fuel heme biosynthesis for symbiosis. 根瘤中的劳动分工:共生的植物食用菌燃料血红素生物合成。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-07-01 DOI: 10.1093/plcell/koaf156
Min-Yao Jhu, Raphael Ledermann
{"title":"Division of labor in the nodule: Plant GluTRs fuel heme biosynthesis for symbiosis.","authors":"Min-Yao Jhu, Raphael Ledermann","doi":"10.1093/plcell/koaf156","DOIUrl":"10.1093/plcell/koaf156","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144286133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1