首页 > 最新文献

Plant Cell最新文献

英文 中文
Air plant genomes shed light on photosynthesis innovation. 气生植物基因组揭示了光合作用的创新。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae213
Andrew C Willoughby
{"title":"Air plant genomes shed light on photosynthesis innovation.","authors":"Andrew C Willoughby","doi":"10.1093/plcell/koae213","DOIUrl":"10.1093/plcell/koae213","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"3897-3898"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chloroplast ATP synthase: From structure to engineering. 叶绿体 ATP 合酶:从结构到工程。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae081
Thilo Rühle, Dario Leister, Viviana Pasch

F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.

由于 F 型 ATP 合酶在能量代谢中发挥着广泛而核心的作用,因此对其蛋白质复合物进行了广泛的研究。结构生物学、蛋白质组学和分子生物学方面的进展也极大地促进了我们对叶绿体 ATP 合酶的催化机理、翻译后修饰和生物生成的了解。鉴于叶绿体 ATP 合成酶在光驱动 ATP 生成过程中的关键作用,调整叶绿体 ATP 合成酶的活性和建模方法可用于调节光合作用。未来,基因操作和蛋白质设计工具的进步将大大扩展光驱动纳米发动机工程新策略的测试范围。
{"title":"Chloroplast ATP synthase: From structure to engineering.","authors":"Thilo Rühle, Dario Leister, Viviana Pasch","doi":"10.1093/plcell/koae081","DOIUrl":"10.1093/plcell/koae081","url":null,"abstract":"<p><p>F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"3974-3996"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140132351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NIN-LIKE PROTEIN3.2 inhibits repressor Aux/IAA14 expression and enhances root biomass in maize seedlings under low nitrogen. NIN-LIKE PROTEIN3.2 可抑制抑制因子 Aux/IAA14 的表达,并提高玉米幼苗在低氮条件下的根生物量。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae184
Ruifeng Wang, Yanting Zhong, Jienan Han, Liangliang Huang, Yongqi Wang, Xionggao Shi, Mengfei Li, Yao Zhuang, Wei Ren, Xiaoting Liu, Huairong Cao, Beibei Xin, Jinsheng Lai, Limei Chen, Fanjun Chen, Lixing Yuan, Yi Wang, Xuexian Li

Plants generally enhance their root growth in the form of greater biomass and/or root length to boost nutrient uptake in response to short-term low nitrogen (LN). However, the underlying mechanisms of short-term LN-mediated root growth remain largely elusive. Our genome-wide association study, haplotype analysis, and phenotyping of transgenic plants showed that the crucial nitrate signaling component NIN-LIKE PROTEIN3.2 (ZmNLP3.2), a positive regulator of root biomass, is associated with natural variations in root biomass of maize (Zea mays L.) seedlings under LN. The monocot-specific gene AUXIN/INDOLE-3-ACETIC ACID14 (ZmAux/IAA14) exhibited opposite expression patterns to ZmNLP3.2 in ZmNLP3.2 knockout and overexpression lines, suggesting that ZmNLP3.2 hampers ZmAux/IAA14 transcription. Importantly, ZmAux/IAA14 knockout seedlings showed a greater root dry weight (RDW), whereas ZmAux/IAA14 overexpression reduced RDW under LN compared with wild-type plants, indicating that ZmAux/IAA14 negatively regulates the RDW of LN-grown seedlings. Moreover, in vitro and vivo assays indicated that AUXIN RESPONSE FACTOR19 (ZmARF19) binds to and transcriptionally activates ZmAux/IAA14, which was weakened by the ZmNLP3.2-ZmARF19 interaction. The zmnlp3.2 ZmAux/IAA14-OE seedlings exhibited further reduced RDW compared with ZmAux/IAA14 overexpression lines when subjected to LN treatment, corroborating the ZmNLP3.2-ZmAux/IAA14 interaction. Thus, our study reveals a ZmNLP3.2-ZmARF19-ZmAux/IAA14 module regulating root biomass in response to nitrogen limitation in maize.

植物在应对短期低氮(LN)时,通常会以增加生物量和/或根系长度的形式促进根系生长,以提高养分吸收率。然而,短期低氮(LN)介导根系生长的潜在机制在很大程度上仍然难以捉摸。我们的全基因组关联研究、单体型分析和转基因植物的表型分析表明,硝酸根生物量的正调控因子--重要的硝酸根信号转导成分 NIN-LIKE PROTEIN3.2 (ZmNLP3.2)与玉米(Zea mays L.)幼苗在低氮条件下根生物量的自然变化有关。单子叶植物特异基因 AUXIN/INDOLE-3-ACETIC ACID14(ZmAux/IAA14)在 ZmNLP3.2 基因敲除和过表达株系中表现出与 ZmNLP3.2 相反的表达模式,表明 ZmNLP3.2 阻碍了 ZmAux/IAA14 的转录。重要的是,与野生型植株相比,ZmAux/IAA14敲除株系的幼苗在LN条件下的根干重(RDW)更大,而ZmAux/IAA14过表达株系的幼苗在LN条件下的根干重(RDW)更小,这表明ZmAux/IAA14对LN生长幼苗的根干重(RDW)有负调控作用。此外,体外和体内试验表明,AUXIN RESPONSE FACTOR19(ZmARF19)与 ZmAux/IAA14 结合并转录激活 ZmAux/IAA14,ZmNLP3.2-ZmARF19 的相互作用削弱了 ZmAux/IAA14 的活性。与 ZmAux/IAA14 过表达株系相比,zmnlp3.2 ZmAux/IAA14-OE 株系的幼苗在接受 LN 处理时表现出更低的 RDW,这证实了 ZmNLP3.2-ZmAux/IAA14 的相互作用。因此,我们的研究揭示了一个 ZmNLP3.2-ZmARF19-ZmAux/IAA14 模块调节玉米根系生物量以应对氮限制。
{"title":"NIN-LIKE PROTEIN3.2 inhibits repressor Aux/IAA14 expression and enhances root biomass in maize seedlings under low nitrogen.","authors":"Ruifeng Wang, Yanting Zhong, Jienan Han, Liangliang Huang, Yongqi Wang, Xionggao Shi, Mengfei Li, Yao Zhuang, Wei Ren, Xiaoting Liu, Huairong Cao, Beibei Xin, Jinsheng Lai, Limei Chen, Fanjun Chen, Lixing Yuan, Yi Wang, Xuexian Li","doi":"10.1093/plcell/koae184","DOIUrl":"10.1093/plcell/koae184","url":null,"abstract":"<p><p>Plants generally enhance their root growth in the form of greater biomass and/or root length to boost nutrient uptake in response to short-term low nitrogen (LN). However, the underlying mechanisms of short-term LN-mediated root growth remain largely elusive. Our genome-wide association study, haplotype analysis, and phenotyping of transgenic plants showed that the crucial nitrate signaling component NIN-LIKE PROTEIN3.2 (ZmNLP3.2), a positive regulator of root biomass, is associated with natural variations in root biomass of maize (Zea mays L.) seedlings under LN. The monocot-specific gene AUXIN/INDOLE-3-ACETIC ACID14 (ZmAux/IAA14) exhibited opposite expression patterns to ZmNLP3.2 in ZmNLP3.2 knockout and overexpression lines, suggesting that ZmNLP3.2 hampers ZmAux/IAA14 transcription. Importantly, ZmAux/IAA14 knockout seedlings showed a greater root dry weight (RDW), whereas ZmAux/IAA14 overexpression reduced RDW under LN compared with wild-type plants, indicating that ZmAux/IAA14 negatively regulates the RDW of LN-grown seedlings. Moreover, in vitro and vivo assays indicated that AUXIN RESPONSE FACTOR19 (ZmARF19) binds to and transcriptionally activates ZmAux/IAA14, which was weakened by the ZmNLP3.2-ZmARF19 interaction. The zmnlp3.2 ZmAux/IAA14-OE seedlings exhibited further reduced RDW compared with ZmAux/IAA14 overexpression lines when subjected to LN treatment, corroborating the ZmNLP3.2-ZmAux/IAA14 interaction. Thus, our study reveals a ZmNLP3.2-ZmARF19-ZmAux/IAA14 module regulating root biomass in response to nitrogen limitation in maize.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4388-4403"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structure and interaction of polymers affects secondary cell wall banding patterns in Arabidopsis. 聚合物的结构和相互作用影响拟南芥次生细胞壁的条带模式。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae233
Sarah A Pfaff, Edward R Wagner, Daniel J Cosgrove

Xylem tracheary elements (TEs) synthesize patterned secondary cell walls (SCWs) to reinforce against the negative pressure of water transport. VASCULAR-RELATED NAC-DOMAIN 7 (VND7) induces differentiation, accompanied by cellulose, xylan, and lignin deposition into banded domains. To investigate the effect of polymer biosynthesis mutations on SCW patterning, we developed a method to induce tracheary element transdifferentiation of isolated protoplasts, by transient transformation with VND7. Our data showed that proper xylan elongation is necessary for distinct cellulose bands, cellulose-xylan interactions are essential for coincident polymer patterns, and cellulose deposition is needed to override the intracellular organization that yields unique xylan patterns. These data indicate that a properly assembled cell wall network acts as a scaffold to direct polymer deposition into distinctly banded domains. We describe the transdifferentiation of protoplasts into TEs, providing an avenue to study patterned SCW biosynthesis in a tissue-free environment and in various mutant backgrounds.

木质部气管元件合成图案化的次生细胞壁(SCW),以抵御水分运输的负压。VASCULAR-RELATED NAC-DOMAIN7 (VND7) 可诱导分化,并伴随纤维素、木聚糖和木质素沉积成带状结构域。为了研究聚合物生物合成突变对 SCW 形态的影响,我们开发了一种方法,通过 VND7 的瞬时转化,诱导离体原生质体的气管元件转分化。我们的数据表明,正确的木聚糖伸长是形成独特纤维素带的必要条件,纤维素-木聚糖相互作用是形成重合聚合物图案的必要条件,而纤维素沉积则是产生独特木聚糖图案的细胞内组织所必需的。这些数据表明,正确组装的细胞壁网络可作为支架,引导聚合物沉积成独特的带状结构域。我们描述了原生质体向气管元件的转分化,为在无组织环境和各种突变背景下研究模式化 SCW 生物合成提供了途径。
{"title":"The structure and interaction of polymers affects secondary cell wall banding patterns in Arabidopsis.","authors":"Sarah A Pfaff, Edward R Wagner, Daniel J Cosgrove","doi":"10.1093/plcell/koae233","DOIUrl":"10.1093/plcell/koae233","url":null,"abstract":"<p><p>Xylem tracheary elements (TEs) synthesize patterned secondary cell walls (SCWs) to reinforce against the negative pressure of water transport. VASCULAR-RELATED NAC-DOMAIN 7 (VND7) induces differentiation, accompanied by cellulose, xylan, and lignin deposition into banded domains. To investigate the effect of polymer biosynthesis mutations on SCW patterning, we developed a method to induce tracheary element transdifferentiation of isolated protoplasts, by transient transformation with VND7. Our data showed that proper xylan elongation is necessary for distinct cellulose bands, cellulose-xylan interactions are essential for coincident polymer patterns, and cellulose deposition is needed to override the intracellular organization that yields unique xylan patterns. These data indicate that a properly assembled cell wall network acts as a scaffold to direct polymer deposition into distinctly banded domains. We describe the transdifferentiation of protoplasts into TEs, providing an avenue to study patterned SCW biosynthesis in a tissue-free environment and in various mutant backgrounds.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4309-4322"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The secret of self-fertilizing plants: NIN-NAD1's role in symbiotic nitrogen fixation. 植物自肥的秘密:NIN-NAD1 在共生固氮中的作用
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae237
Min-Yao Jhu, Jian Feng
{"title":"The secret of self-fertilizing plants: NIN-NAD1's role in symbiotic nitrogen fixation.","authors":"Min-Yao Jhu, Jian Feng","doi":"10.1093/plcell/koae237","DOIUrl":"10.1093/plcell/koae237","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4291-4292"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448891/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Off the beaten pathway: Powering carbon capture with alternative photosynthetic electron transfer pathways. 不走寻常路:利用替代光合电子传递途径实现碳捕获。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae155
Guy Levin
{"title":"Off the beaten pathway: Powering carbon capture with alternative photosynthetic electron transfer pathways.","authors":"Guy Levin","doi":"10.1093/plcell/koae155","DOIUrl":"10.1093/plcell/koae155","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"3899-3900"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building a better blueprint for bolting. 为螺栓连接绘制更好的蓝图。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae240
Nora Flynn
{"title":"Building a better blueprint for bolting.","authors":"Nora Flynn","doi":"10.1093/plcell/koae240","DOIUrl":"10.1093/plcell/koae240","url":null,"abstract":"","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4289-4290"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448881/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lighting the way: Compelling open questions in photosynthesis research. 照亮道路:光合作用研究中令人信服的开放性问题。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae203
Nancy A Eckardt, Yagut Allahverdiyeva, Clarisa E Alvarez, Claudia Büchel, Adrien Burlacot, Tanai Cardona, Emma Chaloner, Benjamin D Engel, Arthur R Grossman, Dvir Harris, Nicolas Herrmann, Michael Hodges, Jan Kern, Tom Dongmin Kim, Veronica G Maurino, Conrad W Mullineaux, Henna Mustila, Lauri Nikkanen, Gabriela Schlau-Cohen, Marcos A Tronconi, Wojciech Wietrzynski, Vittal K Yachandra, Junko Yano

Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.

光合作用--将太阳光能转化为化学能--对地球上的生命至关重要。然而,我们对光合作用能量转换的基本原理还有很多不了解的地方:光合作用是如何进化的,其多样性程度如何,其动态如何,以及其调节过程中涉及的所有成分和联系。在这篇评论中,研究光合作用基本方面(包括光依赖反应、光呼吸和 C4 光合代谢)的研究人员提出并讨论了他们认为在其研究领域中最引人注目的开放性问题。
{"title":"Lighting the way: Compelling open questions in photosynthesis research.","authors":"Nancy A Eckardt, Yagut Allahverdiyeva, Clarisa E Alvarez, Claudia Büchel, Adrien Burlacot, Tanai Cardona, Emma Chaloner, Benjamin D Engel, Arthur R Grossman, Dvir Harris, Nicolas Herrmann, Michael Hodges, Jan Kern, Tom Dongmin Kim, Veronica G Maurino, Conrad W Mullineaux, Henna Mustila, Lauri Nikkanen, Gabriela Schlau-Cohen, Marcos A Tronconi, Wojciech Wietrzynski, Vittal K Yachandra, Junko Yano","doi":"10.1093/plcell/koae203","DOIUrl":"10.1093/plcell/koae203","url":null,"abstract":"<p><p>Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"3914-3943"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppression of SMXL4 and SMXL5 confers enhanced thermotolerance through promoting HSFA2 transcription in Arabidopsis. 通过促进拟南芥中 HSFA2 的转录,抑制 SMXL4 和 SMXL5 可增强其耐热性。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae224
Yajie Pan, Bofan Yu, Xin Wei, Yuping Qiu, Xin Mao, Yuelin Liu, Wei Yan, Qianyan Linghu, Wenyang Li, Hongwei Guo, Zhonghua Tang

Identifying the essential factors and underlying mechanisms regulating plant heat stress (HS) responses is crucial for mitigating the threat posed by HS on plant growth, development, distribution, and productivity. In this study, we found that the Arabidopsis (Arabidopsis thaliana) super-killer2 (ski2) dicer-like4 (dcl4) mutant, characterized by RNA processing defects and the accumulation of abundant 22-nt small interfering RNAs derived from protein-coding transcripts, displayed significantly increased expression levels of HS-responsive genes and enhanced thermotolerance. These traits primarily resulted from the suppression of SMAX1-LIKE4 (SMXL4) and SMXL5, which encode 2 putative transcriptional regulators that belong to the SMXL protein family. While smxl4 and smxl5 single mutants were similar to wild type, the smxl4 smxl5 double mutant displayed substantially heightened seedling thermotolerance. Further investigation demonstrated that SMXL4 and SMXL5 repressed the transcription of HEAT-SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), encoding a master regulator of thermotolerance, independently of ethylene-response factor-associated amphiphilic repression motifs. Moreover, SMXL4 and SMXL5 interacted with HSFA1d and HSFA1e, central regulators sensing and transducing HS stimuli, and antagonistically affected their transactivation activity. In addition, HSFA2 directly bound to the SMXL4 and SMXL5 promoters, inducing their expression during recovery from HS. Collectively, our findings elucidate the role of the SMXL4/SMXL5-HSFA2 regulatory module in orchestrating plant thermotolerance under HS.

确定调控植物热胁迫(HS)反应的基本因子和潜在机制对于减轻 HS 对植物生长、发育、分布和生产力造成的威胁至关重要。在这里,我们发现拟南芥(Arabidopsis thaliana)超级杀手2(ski2)dicer-like4(dcl4)突变体具有 RNA 处理缺陷,并积累了大量来自蛋白编码转录本的 22-nt 小干扰 RNA(siRNA),其 HS 响应基因的表达水平显著提高,耐热性增强。这些性状主要是由于 SMAX1-LIKE4 (SMXL4)和 SMXL5 受抑制所致,这两个基因编码属于 SMXL 蛋白家族的两种推定转录调节因子。虽然 smxl4 和 smxl5 单突变体与野生型相似,但 smxl4 smxl5 双突变体却大大提高了幼苗的耐热性。进一步的研究表明,SMXL4 和 SMXL5 可抑制热休克转录因子 A2(HSFA2)的转录,HSFA2 编码耐热性的主调控因子,与 EAR motifs 无关。此外,SMXL4 和 SMXL5 还与 HSFA1d 和 HSFA1e(感知和传递 HS 刺激的中心调节因子)相互作用,并拮抗地影响它们的转录活化活性。此外,HSFA2直接与SMXL4和SMXL5启动子结合,在HS恢复期间诱导它们的表达。总之,我们的研究结果阐明了 SMXL4/SMXL5-HSFA2 调控模块在协调植物对 HS 的耐热性中的作用。
{"title":"Suppression of SMXL4 and SMXL5 confers enhanced thermotolerance through promoting HSFA2 transcription in Arabidopsis.","authors":"Yajie Pan, Bofan Yu, Xin Wei, Yuping Qiu, Xin Mao, Yuelin Liu, Wei Yan, Qianyan Linghu, Wenyang Li, Hongwei Guo, Zhonghua Tang","doi":"10.1093/plcell/koae224","DOIUrl":"10.1093/plcell/koae224","url":null,"abstract":"<p><p>Identifying the essential factors and underlying mechanisms regulating plant heat stress (HS) responses is crucial for mitigating the threat posed by HS on plant growth, development, distribution, and productivity. In this study, we found that the Arabidopsis (Arabidopsis thaliana) super-killer2 (ski2) dicer-like4 (dcl4) mutant, characterized by RNA processing defects and the accumulation of abundant 22-nt small interfering RNAs derived from protein-coding transcripts, displayed significantly increased expression levels of HS-responsive genes and enhanced thermotolerance. These traits primarily resulted from the suppression of SMAX1-LIKE4 (SMXL4) and SMXL5, which encode 2 putative transcriptional regulators that belong to the SMXL protein family. While smxl4 and smxl5 single mutants were similar to wild type, the smxl4 smxl5 double mutant displayed substantially heightened seedling thermotolerance. Further investigation demonstrated that SMXL4 and SMXL5 repressed the transcription of HEAT-SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), encoding a master regulator of thermotolerance, independently of ethylene-response factor-associated amphiphilic repression motifs. Moreover, SMXL4 and SMXL5 interacted with HSFA1d and HSFA1e, central regulators sensing and transducing HS stimuli, and antagonistically affected their transactivation activity. In addition, HSFA2 directly bound to the SMXL4 and SMXL5 promoters, inducing their expression during recovery from HS. Collectively, our findings elucidate the role of the SMXL4/SMXL5-HSFA2 regulatory module in orchestrating plant thermotolerance under HS.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4557-4575"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The microRNA408-plantacyanin module balances plant growth and drought resistance by regulating reactive oxygen species homeostasis in guard cells. microRNA408-placyanin 模块通过调节防护细胞中活性氧的平衡来平衡植物的生长和抗旱性。
IF 1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1093/plcell/koae144
Yanzhi Yang, Lei Xu, Chen Hao, Miaomiao Wan, Yihan Tao, Yan Zhuang, Yanning Su, Lei Li

The conserved microRNA (miRNA) miR408 enhances photosynthesis and compromises stress tolerance in multiple plants, but the cellular mechanism underlying its function remains largely unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), the transcript encoding the blue copper protein PLANTACYANIN (PCY) is the primary target for miR408 in vegetative tissues. PCY is preferentially expressed in the guard cells, and PCY is associated with the endomembrane surrounding individual chloroplasts. We found that the MIR408 promoter is suppressed by multiple abscisic acid (ABA)-responsive transcription factors, thus allowing PCY to accumulate under stress conditions. Genetic analysis revealed that PCY elevates reactive oxygen species (ROS) levels in the guard cells, promotes stomatal closure, reduces photosynthetic gas exchange, and enhances drought resistance. Moreover, the miR408-PCY module is sufficient to rescue the growth and drought tolerance phenotypes caused by gain- and loss-of-function of MYB44, an established positive regulator of ABA responses, indicating that the miR408-PCY module relays ABA signaling for regulating ROS homeostasis and drought resistance. These results demonstrate that miR408 regulates stomatal movement to balance growth and drought resistance, providing a mechanistic understanding of why miR408 is selected during land plant evolution and insights into the long-pursued quest of breeding drought-tolerant and high-yielding crops.

在多种植物中,保守的微 RNA(miRNA)miR408 可增强光合作用并损害胁迫耐受性,但其功能的细胞机制在很大程度上仍不清楚。在这里,我们发现在拟南芥(Arabidopsis thaliana)中,编码蓝铜蛋白 PLANTACYANIN(PCY)的转录本是 miR408 在无性组织中的主要靶标。PCY 优先在保卫细胞中表达,并且 PCY 与单个叶绿体周围的内膜有关。我们发现,MIR408 启动子受到多种脱落酸(ABA)反应性转录因子的抑制,从而使 PCY 在胁迫条件下积累。遗传分析表明,PCY能提高保卫细胞中活性氧(ROS)的水平,促进气孔关闭,减少光合气体交换,并增强抗旱性。此外,miR408-PCY 模块足以挽救已确立的 ABA 反应正调控因子 MYB44 功能增益和缺失所导致的生长和抗旱表型,表明 miR408-PCY 模块传递 ABA 信号以调控 ROS 平衡和抗旱性。这些结果表明,miR408 调控气孔运动以平衡生长和抗旱性,从机理上理解了 miR408 在陆地植物进化过程中被选择的原因,并为培育耐旱高产作物的长期探索提供了启示。
{"title":"The microRNA408-plantacyanin module balances plant growth and drought resistance by regulating reactive oxygen species homeostasis in guard cells.","authors":"Yanzhi Yang, Lei Xu, Chen Hao, Miaomiao Wan, Yihan Tao, Yan Zhuang, Yanning Su, Lei Li","doi":"10.1093/plcell/koae144","DOIUrl":"10.1093/plcell/koae144","url":null,"abstract":"<p><p>The conserved microRNA (miRNA) miR408 enhances photosynthesis and compromises stress tolerance in multiple plants, but the cellular mechanism underlying its function remains largely unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), the transcript encoding the blue copper protein PLANTACYANIN (PCY) is the primary target for miR408 in vegetative tissues. PCY is preferentially expressed in the guard cells, and PCY is associated with the endomembrane surrounding individual chloroplasts. We found that the MIR408 promoter is suppressed by multiple abscisic acid (ABA)-responsive transcription factors, thus allowing PCY to accumulate under stress conditions. Genetic analysis revealed that PCY elevates reactive oxygen species (ROS) levels in the guard cells, promotes stomatal closure, reduces photosynthetic gas exchange, and enhances drought resistance. Moreover, the miR408-PCY module is sufficient to rescue the growth and drought tolerance phenotypes caused by gain- and loss-of-function of MYB44, an established positive regulator of ABA responses, indicating that the miR408-PCY module relays ABA signaling for regulating ROS homeostasis and drought resistance. These results demonstrate that miR408 regulates stomatal movement to balance growth and drought resistance, providing a mechanistic understanding of why miR408 is selected during land plant evolution and insights into the long-pursued quest of breeding drought-tolerant and high-yielding crops.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4338-4355"},"PeriodicalIF":10.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1