Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical for plant development as well as for its stress response. They can function as signaling molecules to orchestrate a well-defined response of plants to biotic stress. These responses are further fine-tuned by phytohormones, such as salicylic acid, jasmonic acid, and ethylene, to modulate immune response. In the past decades, the intricacies of redox and phytohormonal signaling have been uncovered during plant-pathogen interactions. This review explores the dynamic interplay of these components, elucidating their roles in perceiving biotic threats and shaping the plant's defense strategy. Molecular regulators and sites of oxidative burst have been explored during pathogen perception. Further, the interplay between various components of redox and phytohormonal signaling has been explored during bacterial, fungal, viral, and nematode infections as well as during insect pest infestation. Understanding these interactions highlights gaps in the current knowledge and provides insights into engineering crop varieties with enhanced resistance to pathogens and pests. This review also highlights potential applications of manipulating regulators of redox signaling to bolster plant immunity and ensure global food security. Future research should explore regulators of these signaling pathways as potential target to develop biotic stress-tolerant crops. Further insights are also needed into roles of endophytes and host microbiome modulating host ROS and RNS pool for exploiting them as biocontrol agents imparting resistance against pathogens in plants.
{"title":"The molecular dynamics between reactive oxygen species (ROS), reactive nitrogen species (RNS) and phytohormones in plant's response to biotic stress.","authors":"Krishna Gogoi, Hunmoyna Gogoi, Manashi Borgohain, Ratul Saikia, Channakeshavaiah Chikkaputtaiah, Shridhar Hiremath, Udita Basu","doi":"10.1007/s00299-024-03343-3","DOIUrl":"https://doi.org/10.1007/s00299-024-03343-3","url":null,"abstract":"<p><p>Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical for plant development as well as for its stress response. They can function as signaling molecules to orchestrate a well-defined response of plants to biotic stress. These responses are further fine-tuned by phytohormones, such as salicylic acid, jasmonic acid, and ethylene, to modulate immune response. In the past decades, the intricacies of redox and phytohormonal signaling have been uncovered during plant-pathogen interactions. This review explores the dynamic interplay of these components, elucidating their roles in perceiving biotic threats and shaping the plant's defense strategy. Molecular regulators and sites of oxidative burst have been explored during pathogen perception. Further, the interplay between various components of redox and phytohormonal signaling has been explored during bacterial, fungal, viral, and nematode infections as well as during insect pest infestation. Understanding these interactions highlights gaps in the current knowledge and provides insights into engineering crop varieties with enhanced resistance to pathogens and pests. This review also highlights potential applications of manipulating regulators of redox signaling to bolster plant immunity and ensure global food security. Future research should explore regulators of these signaling pathways as potential target to develop biotic stress-tolerant crops. Further insights are also needed into roles of endophytes and host microbiome modulating host ROS and RNS pool for exploiting them as biocontrol agents imparting resistance against pathogens in plants.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1007/s00299-024-03356-y
Guofang Zhang, Zhuang Yang, Shen Zhou, Jinjin Zhu, Xianqing Liu, Jie Luo
Key message: Cellulose synthase-like OsCSLD4 plays a pivotal role in regulating diverse agronomic traits, enhancing resistance against bacterial leaf blight, and modulating metabolite indices based on the multi-omics analysis in rice. To delve deeper into this complex network between agronomic traits and metabolites in rice, we have compiled a dataset encompassing genome, phenome, and metabolome, including 524 diverse accessions, 11 agronomic traits, and 841 metabolites, enabling us to pinpoint eight hotspots through GWAS. We later discovered four distinct metabolite categories, encompassing 15 metabolites that are concurrently present on the QTL qC12.1, associated with leaf angle of flag and spikelet length, and finally focused the cellulose synthase-like OsCSLD4, which was pinpointed through a rigorous process encompassing sequence variation, haplotype, ATAC, and differential expression across diverse tissues. Compared to the wild type, csld4 exhibited significant reductions in the plant height, flag leaf length, leaf width, spikelet length, 1000-grain weight, grain width, grain thickness, fertility, yield per plant, and bacterial blight resistance. However, there were significant increase in tiller numbers, degree of leaf rolling, flowering period, growth period, grain length, and empty kernel rate. Furthermore, the content of four polyphenol metabolites, excluding metabolite N-feruloyltyramine (mr1268), notably rose, whereas the levels of the other three polyphenol metabolites, smiglaside C (mr1498), 4-coumaric acid (mr1622), and smiglaside A (mr1925) decreased significantly in mutant csld4. The content of amino acid L-tyramine (mr1446) exhibited a notable increase, whereas the alkaloid trigonelline (mr1188) displayed a substantial decrease among the mutants. This study offered a comprehensive multi-omics perspective to analyze the genetic mechanism of OsCSLD4, and breeders can potentially enhance rice's yield, bacterial leaf blight resistance, and metabolite content, leading to more sustainable and profitable rice production.
{"title":"Cellulose synthase-like OsCSLD4: a key regulator of agronomic traits, disease resistance, and metabolic indices in rice.","authors":"Guofang Zhang, Zhuang Yang, Shen Zhou, Jinjin Zhu, Xianqing Liu, Jie Luo","doi":"10.1007/s00299-024-03356-y","DOIUrl":"10.1007/s00299-024-03356-y","url":null,"abstract":"<p><strong>Key message: </strong>Cellulose synthase-like OsCSLD4 plays a pivotal role in regulating diverse agronomic traits, enhancing resistance against bacterial leaf blight, and modulating metabolite indices based on the multi-omics analysis in rice. To delve deeper into this complex network between agronomic traits and metabolites in rice, we have compiled a dataset encompassing genome, phenome, and metabolome, including 524 diverse accessions, 11 agronomic traits, and 841 metabolites, enabling us to pinpoint eight hotspots through GWAS. We later discovered four distinct metabolite categories, encompassing 15 metabolites that are concurrently present on the QTL qC12.1, associated with leaf angle of flag and spikelet length, and finally focused the cellulose synthase-like OsCSLD4, which was pinpointed through a rigorous process encompassing sequence variation, haplotype, ATAC, and differential expression across diverse tissues. Compared to the wild type, csld4 exhibited significant reductions in the plant height, flag leaf length, leaf width, spikelet length, 1000-grain weight, grain width, grain thickness, fertility, yield per plant, and bacterial blight resistance. However, there were significant increase in tiller numbers, degree of leaf rolling, flowering period, growth period, grain length, and empty kernel rate. Furthermore, the content of four polyphenol metabolites, excluding metabolite N-feruloyltyramine (mr1268), notably rose, whereas the levels of the other three polyphenol metabolites, smiglaside C (mr1498), 4-coumaric acid (mr1622), and smiglaside A (mr1925) decreased significantly in mutant csld4. The content of amino acid L-tyramine (mr1446) exhibited a notable increase, whereas the alkaloid trigonelline (mr1188) displayed a substantial decrease among the mutants. This study offered a comprehensive multi-omics perspective to analyze the genetic mechanism of OsCSLD4, and breeders can potentially enhance rice's yield, bacterial leaf blight resistance, and metabolite content, leading to more sustainable and profitable rice production.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1007/s00299-024-03357-x
Rong Wang, Yang-Cao Shi, Bo Zhang, Wan-Rong Liu, Feng-Quan Tan, Fang Lu, Nan Jiang, Lai-Chao Cheng, Kai-Dong Xie, Xiao-Meng Wu, Wen-Wu Guo
Key message: Abnormal expression of genes regulating anther and pollen development and insufficient accumulation of male sterility (MS)- related metabolites lead to MS in cybrid pummelo Male sterility (MS) is a major cause of seedlessness in citrus, which is an important trait for fresh fruit. Understanding the mechanism of MS is important for breeding seedless citrus cultivars. In this study, we dissected the transcriptional, metabolic and physiological mechanisms of MS in somatic cybrid of pummelo (G1 + HBP). G1 + HBP exhibited severe male sterility, manifesting as retarded anther differentiation, abnormal anther wall development (especially tapetum and endothecium), and deficient pollen wall formation. In the anthers of G1 + HBP, the expression of genes regulating anther differentiation and tapetum development was abnormal, and the expression of genes regulating endothecium secondary lignification thickening and pollen wall formation was down-regulated. The transcription of genes involved in MS-related biological processes, such as jasmonic acid (JA) signaling pathway, primary metabolism, flavonoid metabolism, and programmed cell death, was altered in G1 + HBP anthers, and the accumulation of MS-associated metabolites, including fatty acids, amino acids, sugars, ATP, flavonols and reactive oxygen species (ROS), was down-regulated in G1 + HBP anthers. In summary, abnormal expression of key genes regulating anther and pollen development, altered transcription of key genes involved in MS-related metabolic pathways, and insufficient accumulation of MS-related metabolites together lead to MS in G1 + HBP. The critical genes and the metabolism pathways identified herein provide new insights into the formation mechanism of MS in citrus and candidate genes for breeding seedless citrus.
关键信息:调控花药和花粉发育的基因表达异常以及雄性不育(MS)相关代谢物积累不足导致杂交柚的雄性不育 雄性不育(MS)是柑橘无籽的主要原因,而无籽是新鲜水果的重要性状。了解 MS 的机理对于培育无籽柑橘栽培品种非常重要。本研究剖析了柚子体细胞杂交种(G1 + HBP)的转录、代谢和生理机制。G1 + HBP表现出严重的雄性不育,具体表现为花药分化迟缓、花药壁发育异常(尤其是叶柄和内皮)以及花粉壁形成不足。在 G1 + HBP 的花药中,调控花药分化和叶舌发育的基因表达异常,调控内皮层次生木质化增厚和花粉壁形成的基因表达下调。在 G1 + HBP 花药中,参与 MS 相关生物学过程(如茉莉酸(JA)信号通路、初级代谢、类黄酮代谢和细胞程序性死亡)的基因转录发生了改变,MS 相关代谢产物(包括脂肪酸、氨基酸、糖类、ATP、黄酮醇和活性氧(ROS))的积累在 G1 + HBP 花药中下调。总之,调控花药和花粉发育的关键基因表达异常、参与 MS 相关代谢途径的关键基因转录改变以及 MS 相关代谢物积累不足共同导致了 G1 + HBP 的 MS。本文鉴定的关键基因和代谢途径为了解柑橘 MS 的形成机制和培育无籽柑橘的候选基因提供了新的视角。
{"title":"Gene expression profiles and metabolic pathways responsible for male sterility in cybrid pummelo.","authors":"Rong Wang, Yang-Cao Shi, Bo Zhang, Wan-Rong Liu, Feng-Quan Tan, Fang Lu, Nan Jiang, Lai-Chao Cheng, Kai-Dong Xie, Xiao-Meng Wu, Wen-Wu Guo","doi":"10.1007/s00299-024-03357-x","DOIUrl":"https://doi.org/10.1007/s00299-024-03357-x","url":null,"abstract":"<p><strong>Key message: </strong>Abnormal expression of genes regulating anther and pollen development and insufficient accumulation of male sterility (MS)- related metabolites lead to MS in cybrid pummelo Male sterility (MS) is a major cause of seedlessness in citrus, which is an important trait for fresh fruit. Understanding the mechanism of MS is important for breeding seedless citrus cultivars. In this study, we dissected the transcriptional, metabolic and physiological mechanisms of MS in somatic cybrid of pummelo (G1 + HBP). G1 + HBP exhibited severe male sterility, manifesting as retarded anther differentiation, abnormal anther wall development (especially tapetum and endothecium), and deficient pollen wall formation. In the anthers of G1 + HBP, the expression of genes regulating anther differentiation and tapetum development was abnormal, and the expression of genes regulating endothecium secondary lignification thickening and pollen wall formation was down-regulated. The transcription of genes involved in MS-related biological processes, such as jasmonic acid (JA) signaling pathway, primary metabolism, flavonoid metabolism, and programmed cell death, was altered in G1 + HBP anthers, and the accumulation of MS-associated metabolites, including fatty acids, amino acids, sugars, ATP, flavonols and reactive oxygen species (ROS), was down-regulated in G1 + HBP anthers. In summary, abnormal expression of key genes regulating anther and pollen development, altered transcription of key genes involved in MS-related metabolic pathways, and insufficient accumulation of MS-related metabolites together lead to MS in G1 + HBP. The critical genes and the metabolism pathways identified herein provide new insights into the formation mechanism of MS in citrus and candidate genes for breeding seedless citrus.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Key message: Platanus acerifolia AIL genes PaAIL5a/b and PaAIL6b participate in FT-AP1/FUL-AIL pathways to regulate bud dormancy. In addition, PaAIL6a/b can promote flowering, and PaAIL5b and PaAIL6b affect floral development. Bud dormancy and floral induction are essential processes for perennial plants, they are both regulated by photoperiod, temperature, and hormones, indicating the existence of common regulators for both processes. AINTEGUMENTA-LIKE (AIL) genes regulate reproductive growth of annual plants, including floral induction and flower development, and their homologs in poplar and grape act downstream of the florigen gene FT and the floral meristem identity genes AP1/FUL and function to maintain growth and thus inhibit dormancy induction. However, it is not known whether AIL homologs participate in the reproduction processes in perennials and whether the Platanus acerifolia AIL genes are involved in dormancy. P. acerifolia is a perennial woody plant whose reproductive growth is strongly associated with dormancy. Here, we isolated four AIL homologs from P. acerifolia, PaAIL5a, PaAIL5b, PaAIL6a, and PaAIL6b, and systematically investigated their functions by ectopic-overexpression in tobacco. The findings demonstrate that PaAIL5a/b and PaAIL6b respond to short day, low temperature, and hormone signals and act as the components of the FT-AP1/FUL-AIL pathway to regulate the bud dormancy in P. acerifolia. Notably, PaAIL5a/b and PaAIL6b function downstream of PaFTL-PaFUL1/2/3 to inhibit the dormancy induction and downstream of PaFT-PaFUL2/3 to promote the dormancy release. In addition, PaAIL6a/b were found to accelerate flowering in transgenic tobacco, whereas PaAIL5b and PaAIL6b affected the flower development. Together, our results suggest that PaAIL genes may act downstream of different PaFT/PaFTL and PaFUL proteins to fulfill conservative and diverse roles in floral initiation, floral development, and dormancy regulation in P. acerifolia.
关键信息:Platanus acerifolia AIL 基因 PaAIL5a/b 和 PaAIL6b 参与 FT-AP1/FUL-AIL 途径,调节花芽休眠。此外,PAAIL6a/b 能促进开花,PAAIL5b 和 PaAIL6b 影响花的发育。芽休眠和花诱导是多年生植物的重要过程,它们都受光周期、温度和激素的调控,表明这两个过程存在共同的调控因子。AINTEGUMENTA-LIKE(AIL)基因调控一年生植物的生殖生长,包括花的诱导和花的发育,其在杨树和葡萄中的同源物作用于花源基因 FT 和花分生组织特征基因 AP1/FUL 的下游,具有维持生长的功能,从而抑制休眠的诱导。然而,AIL 同源基因是否参与多年生植物的繁殖过程,以及皂荚属植物的 AIL 基因是否参与休眠,目前尚不清楚。桔梗是一种多年生木本植物,其生殖生长与休眠密切相关。在此,我们从桔梗中分离出了四个 AIL 同源物:PaAIL5a、PaAIL5b、PaAIL6a 和 PaAIL6b,并通过在烟草中异位表达系统地研究了它们的功能。研究结果表明,PaAIL5a/b和PaAIL6b能响应短日照、低温和激素信号,并作为FT-AP1/FUL-AIL通路的组分调控P.acerifolia的花蕾休眠。值得注意的是,PaAIL5a/b 和 PaAIL6b 在 PaFTL-PaFUL1/2/3 的下游起抑制休眠诱导的作用,在 PaFT-PaFUL2/3 的下游起促进休眠解除的作用。此外,我们还发现 PaAIL6a/b 能加速转基因烟草的开花,而 PaAIL5b 和 PaAIL6b 则影响花的发育。总之,我们的研究结果表明,PaAIL基因可能作用于不同的PaFT/PaFTL和PaFUL蛋白的下游,在P. acerifolia的花萌发、花发育和休眠调控中发挥保守而多样的作用。
{"title":"AINTEGUMENTA-LIKE genes regulate reproductive growth and bud dormancy in Platanus acerifolia.","authors":"Fangfang Cai, Xin Jin, Linshan Han, Hui Chen, Changsheng Shao, Gehui Shi, Manzhu Bao, Yuqiang Sun, Jiaqi Zhang","doi":"10.1007/s00299-024-03349-x","DOIUrl":"https://doi.org/10.1007/s00299-024-03349-x","url":null,"abstract":"<p><strong>Key message: </strong>Platanus acerifolia AIL genes PaAIL5a/b and PaAIL6b participate in FT-AP1/FUL-AIL pathways to regulate bud dormancy. In addition, PaAIL6a/b can promote flowering, and PaAIL5b and PaAIL6b affect floral development. Bud dormancy and floral induction are essential processes for perennial plants, they are both regulated by photoperiod, temperature, and hormones, indicating the existence of common regulators for both processes. AINTEGUMENTA-LIKE (AIL) genes regulate reproductive growth of annual plants, including floral induction and flower development, and their homologs in poplar and grape act downstream of the florigen gene FT and the floral meristem identity genes AP1/FUL and function to maintain growth and thus inhibit dormancy induction. However, it is not known whether AIL homologs participate in the reproduction processes in perennials and whether the Platanus acerifolia AIL genes are involved in dormancy. P. acerifolia is a perennial woody plant whose reproductive growth is strongly associated with dormancy. Here, we isolated four AIL homologs from P. acerifolia, PaAIL5a, PaAIL5b, PaAIL6a, and PaAIL6b, and systematically investigated their functions by ectopic-overexpression in tobacco. The findings demonstrate that PaAIL5a/b and PaAIL6b respond to short day, low temperature, and hormone signals and act as the components of the FT-AP1/FUL-AIL pathway to regulate the bud dormancy in P. acerifolia. Notably, PaAIL5a/b and PaAIL6b function downstream of PaFTL-PaFUL1/2/3 to inhibit the dormancy induction and downstream of PaFT-PaFUL2/3 to promote the dormancy release. In addition, PaAIL6a/b were found to accelerate flowering in transgenic tobacco, whereas PaAIL5b and PaAIL6b affected the flower development. Together, our results suggest that PaAIL genes may act downstream of different PaFT/PaFTL and PaFUL proteins to fulfill conservative and diverse roles in floral initiation, floral development, and dormancy regulation in P. acerifolia.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1007/s00299-024-03345-1
Imtiaz Ahmad, András Kis, Radhika Verma, István Szádeczky-Kardoss, Henrik Mihály Szaker, Aladár Pettkó-Szandtner, Dániel Silhavy, Zoltán Havelda, Tibor Csorba
Key message: Barley reproductive fitness and efficient heat stress adaptation requires the activity of TFIIS, the elongation cofactor of RNAPII. Regulation of transcriptional machinery and its adaptive role under different stress conditions are studied extensively in the dicot model plant Arabidopsis, but our knowledge on monocot species remains elusive. TFIIS is an RNA polymerase II-associated transcription elongation cofactor. Previously, it was shown that TFIIS ensures efficient transcription elongation that is necessary for heat stress survival in A. thaliana. However, the function of TFIIS has not been analysed in monocots. In the present work, we have generated and studied independent tfIIs-crispr-mutant barley lines. We show that TFIIS is needed for reproductive development and heat stress survival in barley. The molecular basis of HS-sensitivity of tfIIs mutants is the retarded expression of heat stress protein transcripts, which leads to late accumulation of HSP chaperones, enhanced proteotoxicity and ultimately to lethality. We also show that TFIIS is transcriptionally regulated in response to heat, supporting a conserved adaptive function of these control elements for plant thermal adaptation. In sum, our results are a step forward for the better understanding of transcriptional machinery regulation in monocot crops.
{"title":"TFIIS is required for reproductive development and thermal adaptation in barley.","authors":"Imtiaz Ahmad, András Kis, Radhika Verma, István Szádeczky-Kardoss, Henrik Mihály Szaker, Aladár Pettkó-Szandtner, Dániel Silhavy, Zoltán Havelda, Tibor Csorba","doi":"10.1007/s00299-024-03345-1","DOIUrl":"10.1007/s00299-024-03345-1","url":null,"abstract":"<p><strong>Key message: </strong>Barley reproductive fitness and efficient heat stress adaptation requires the activity of TFIIS, the elongation cofactor of RNAPII. Regulation of transcriptional machinery and its adaptive role under different stress conditions are studied extensively in the dicot model plant Arabidopsis, but our knowledge on monocot species remains elusive. TFIIS is an RNA polymerase II-associated transcription elongation cofactor. Previously, it was shown that TFIIS ensures efficient transcription elongation that is necessary for heat stress survival in A. thaliana. However, the function of TFIIS has not been analysed in monocots. In the present work, we have generated and studied independent tfIIs-crispr-mutant barley lines. We show that TFIIS is needed for reproductive development and heat stress survival in barley. The molecular basis of HS-sensitivity of tfIIs mutants is the retarded expression of heat stress protein transcripts, which leads to late accumulation of HSP chaperones, enhanced proteotoxicity and ultimately to lethality. We also show that TFIIS is transcriptionally regulated in response to heat, supporting a conserved adaptive function of these control elements for plant thermal adaptation. In sum, our results are a step forward for the better understanding of transcriptional machinery regulation in monocot crops.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1007/s00299-024-03348-y
Zhenghong Han, Yuanyuan Qiu, Ting Pan, Longjie Wang, Jing Wang, Kang Liu
Key message: GhMAC3e expression was induced by various stresses and hormones. GhMAC3e may regulate plant growth by influencing auxin distribution, and play important roles in Verticillium wilt resistance via mediating SA signaling. The MOS4-Associated Complex (MAC) is a highly conserved protein complex involved in pre-mRNA splicing and spliceosome assembly, which plays a vital role in plant immunity. It comprises key components such as MOS4, CDC5, and PRL1. MAC3A/B, as U-box E3 ubiquitin ligases, are crucial for various plant processes including development, stress responses, and disease resistance. However, their roles in cotton remain largely unknown. In this study, we first cloned the GhMAC3e gene from cotton and explored its biological functions by using virus-induced gene silencing (VIGS) in cotton and transgenic overexpression in Arabidopsis. The results showed that GhMAC3e is ubiquitously expressed in cotton tissues and could be induced by salt stress, Verticillium dahliae (VD) infection, PEG, ABA, ETH, GA3, MeJA, and SA. Silencing GhMAC3e retarded primary stem growth and reduced biomass of cotton coupled with the reduced auxin content in the petioles and veins. Silencing GhMAC3e up-regulated expression of cell growth-related genes GhXTH16 and Gh3.6, while down-regulated GhSAUR12 expression. Ectopic expression of GhMAC3e in Arabidopsis significantly enhanced its resistance to Verticillium wilt (VW) in terms of decreased pathogen biomass and lowered plant mortality. Overexpression of GhMAC3e dramatically upregulated AtPR1 by around 15 fold and more than 262 fold under basal and VD inoculation condition, respectively. This change was not associated with the expression of GhNPR1. In conclusion, GhMAC3e may not only regulate plant growth by influencing auxin distribution and growth-related gene expression, but also play important roles in VW resistance via mediating SA signaling independent of NPR1 transcription level.
{"title":"GhMAC3e is involved in plant growth and defense response to Verticillium dahliae.","authors":"Zhenghong Han, Yuanyuan Qiu, Ting Pan, Longjie Wang, Jing Wang, Kang Liu","doi":"10.1007/s00299-024-03348-y","DOIUrl":"10.1007/s00299-024-03348-y","url":null,"abstract":"<p><strong>Key message: </strong>GhMAC3e expression was induced by various stresses and hormones. GhMAC3e may regulate plant growth by influencing auxin distribution, and play important roles in Verticillium wilt resistance via mediating SA signaling. The MOS4-Associated Complex (MAC) is a highly conserved protein complex involved in pre-mRNA splicing and spliceosome assembly, which plays a vital role in plant immunity. It comprises key components such as MOS4, CDC5, and PRL1. MAC3A/B, as U-box E3 ubiquitin ligases, are crucial for various plant processes including development, stress responses, and disease resistance. However, their roles in cotton remain largely unknown. In this study, we first cloned the GhMAC3e gene from cotton and explored its biological functions by using virus-induced gene silencing (VIGS) in cotton and transgenic overexpression in Arabidopsis. The results showed that GhMAC3e is ubiquitously expressed in cotton tissues and could be induced by salt stress, Verticillium dahliae (VD) infection, PEG, ABA, ETH, GA3, MeJA, and SA. Silencing GhMAC3e retarded primary stem growth and reduced biomass of cotton coupled with the reduced auxin content in the petioles and veins. Silencing GhMAC3e up-regulated expression of cell growth-related genes GhXTH16 and Gh3.6, while down-regulated GhSAUR12 expression. Ectopic expression of GhMAC3e in Arabidopsis significantly enhanced its resistance to Verticillium wilt (VW) in terms of decreased pathogen biomass and lowered plant mortality. Overexpression of GhMAC3e dramatically upregulated AtPR1 by around 15 fold and more than 262 fold under basal and VD inoculation condition, respectively. This change was not associated with the expression of GhNPR1. In conclusion, GhMAC3e may not only regulate plant growth by influencing auxin distribution and growth-related gene expression, but also play important roles in VW resistance via mediating SA signaling independent of NPR1 transcription level.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Key message: Hydrogen peroxide promoted leaf senescence by sulfenylating the magnesium chelating protease I subunit (CHLI1) in the chlorophyll synthesis pathway, and inhibited its activity to reduce chlorophyll synthesis. Leaf senescence is the final and crucial stage of plant growth and development, during which chlorophyll experiences varying degrees of destruction. It is well-known that the higher ROS accumulation is a key factor for leaf senescence, but whether and how ROS regulates chlorophyll synthesis in the process are unknown. Here, we report that H2O2 inhibits chlorophyll synthesis during leaf senescence via the I subunit of magnesium-chelatase (CHLI1). During leaf senescence, the decrease of chlorophyll content is accompanied by the increase of H2O2 accumulation, as well as the inhibition of catalase (CAT) genes expression. The mutant cat2-1, with increased H2O2 shows an accelerated senescence phenotype and decreased CHLI1 activity compared with the wild type. H2O2 inhibits CHLI1 activity by sulfenylating CHLI1 during leaf senescence. Consistent with this, the chli1 knockout mutant displays the same premature leaf senescence symptom as cat2-1, while overexpression of CHLI1 in cat2-1 can partially restore its early senescence phenotype. Taken together, these results illustrate that CAT2-mediated H2O2 accumulation during leaf senescence represses chlorophyll synthesis through sulfenylating CHLI1, and thus inhibits its activity, providing a new insight into the pivotal role of chlorophyll synthesis as a participant in orchestrating the leaf senescence.
{"title":"Hydrogen peroxide participates in leaf senescence by inhibiting CHLI1 activity.","authors":"Shi-Jia Wang, Shuang Zhai, Xin-Tong Xu, Ying-Tang Lu, Ting-Ting Yuan","doi":"10.1007/s00299-024-03350-4","DOIUrl":"10.1007/s00299-024-03350-4","url":null,"abstract":"<p><strong>Key message: </strong>Hydrogen peroxide promoted leaf senescence by sulfenylating the magnesium chelating protease I subunit (CHLI1) in the chlorophyll synthesis pathway, and inhibited its activity to reduce chlorophyll synthesis. Leaf senescence is the final and crucial stage of plant growth and development, during which chlorophyll experiences varying degrees of destruction. It is well-known that the higher ROS accumulation is a key factor for leaf senescence, but whether and how ROS regulates chlorophyll synthesis in the process are unknown. Here, we report that H<sub>2</sub>O<sub>2</sub> inhibits chlorophyll synthesis during leaf senescence via the I subunit of magnesium-chelatase (CHLI1). During leaf senescence, the decrease of chlorophyll content is accompanied by the increase of H<sub>2</sub>O<sub>2</sub> accumulation, as well as the inhibition of catalase (CAT) genes expression. The mutant cat2-1, with increased H<sub>2</sub>O<sub>2</sub> shows an accelerated senescence phenotype and decreased CHLI1 activity compared with the wild type. H<sub>2</sub>O<sub>2</sub> inhibits CHLI1 activity by sulfenylating CHLI1 during leaf senescence. Consistent with this, the chli1 knockout mutant displays the same premature leaf senescence symptom as cat2-1, while overexpression of CHLI1 in cat2-1 can partially restore its early senescence phenotype. Taken together, these results illustrate that CAT2-mediated H<sub>2</sub>O<sub>2</sub> accumulation during leaf senescence represses chlorophyll synthesis through sulfenylating CHLI1, and thus inhibits its activity, providing a new insight into the pivotal role of chlorophyll synthesis as a participant in orchestrating the leaf senescence.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1007/s00299-024-03347-z
Chun-Wei Yu, Van C Nguyen, Niña Alyssa M Barroga, Yuki Nakamura, Hsou-Min Li
Key message: The N-terminal transmembrane domain of LPAT1 crosses the inner membrane placing the N terminus in the intermembrane space and the C-terminal enzymatic domain in the stroma. Galactolipids mono- and di-galactosyl diacylglycerol are the major and vital lipids of photosynthetic membranes. They are synthesized by five enzymes hosted at different sub-chloroplast locations. However, localization and topology of the second-acting enzyme, lysophosphatidic acid acyltransferase 1 (LPAT1), which acylates the sn-2 position of glycerol-3-phosphate (G3P) to produce phosphatidic acid (PA), remain unclear. It is not known whether LPAT1 is located at the outer or the inner envelope membrane and whether its enzymatic domain faces the cytosol, the intermembrane space, or the stroma. Even the size of mature LPAT1 in chloroplasts is not known. More information is essential for understanding the pathways of metabolite flow and for future engineering endeavors to modify glycerolipid biosynthesis. We used LPAT1 preproteins translated in vitro for import assays to determine the precise size of the mature protein and found that the LPAT1 transit peptide is at least 85 residues in length, substantially longer than previously predicted. A construct comprising LPAT1 fused to the Venus fluorescent protein and driven by the LPAT1 promoter was used to complement an Arabidopsis lpat1 knockout mutant. To determine the sub-chloroplast location and topology of LPAT1, we performed protease treatment and alkaline extraction using chloroplasts containing in vitro-imported LPAT1 and chloroplasts isolated from LPAT1-Venus-complemented transgenic plants. We show that LPAT1 traverses the inner membrane via an N-terminal transmembrane domain, with its N terminus protruding into the intermembrane space and the C-terminal enzymatic domain residing in the stroma, hence displaying a different membrane topology from its bacterial homolog, PlsC.
关键信息:LPAT1 的 N 端跨膜结构域穿过内膜,将 N 端置于膜间隙,将 C 端酶结构域置于基质。半乳糖脂一半乳糖基和二半乳糖基二酰甘油是光合膜的主要重要脂质。它们由五种酶合成,分别位于叶绿体下的不同位置。然而,第二作用酶溶血磷脂酸酰基转移酶 1(LPAT1)的定位和拓扑结构仍不清楚,该酶将甘油-3-磷酸(G3P)的 sn-2 位酰化,生成磷脂酸(PA)。目前尚不清楚 LPAT1 位于外包膜还是内包膜,其酶域是面向细胞膜、膜间隙还是基质。甚至叶绿体中成熟的 LPAT1 的大小也不清楚。更多的信息对于了解代谢物流动的途径以及未来改造甘油酯生物合成的工程努力至关重要。我们使用体外翻译的 LPAT1 前蛋白进行导入试验,以确定成熟蛋白的精确大小,结果发现 LPAT1 过境肽的长度至少为 85 个残基,大大长于之前的预测。由 LPAT1 与金星荧光蛋白融合并由 LPAT1 启动子驱动的构建体被用来补充拟南芥 lpat1 基因敲除突变体。为了确定 LPAT1 的亚叶绿体位置和拓扑结构,我们使用含有体外导入的 LPAT1 的叶绿体和从 LPAT1-Venus 互补转基因植物中分离的叶绿体进行了蛋白酶处理和碱性提取。我们发现 LPAT1 通过 N 端跨膜结构域穿过内膜,其 N 端突出于膜间隙,C 端酶结构域位于基质中,因此显示出与其细菌同源物 PlsC 不同的膜拓扑结构。
{"title":"Plastid LPAT1 is an integral inner envelope membrane protein with the acyltransferase domain located in the stroma.","authors":"Chun-Wei Yu, Van C Nguyen, Niña Alyssa M Barroga, Yuki Nakamura, Hsou-Min Li","doi":"10.1007/s00299-024-03347-z","DOIUrl":"10.1007/s00299-024-03347-z","url":null,"abstract":"<p><strong>Key message: </strong>The N-terminal transmembrane domain of LPAT1 crosses the inner membrane placing the N terminus in the intermembrane space and the C-terminal enzymatic domain in the stroma. Galactolipids mono- and di-galactosyl diacylglycerol are the major and vital lipids of photosynthetic membranes. They are synthesized by five enzymes hosted at different sub-chloroplast locations. However, localization and topology of the second-acting enzyme, lysophosphatidic acid acyltransferase 1 (LPAT1), which acylates the sn-2 position of glycerol-3-phosphate (G3P) to produce phosphatidic acid (PA), remain unclear. It is not known whether LPAT1 is located at the outer or the inner envelope membrane and whether its enzymatic domain faces the cytosol, the intermembrane space, or the stroma. Even the size of mature LPAT1 in chloroplasts is not known. More information is essential for understanding the pathways of metabolite flow and for future engineering endeavors to modify glycerolipid biosynthesis. We used LPAT1 preproteins translated in vitro for import assays to determine the precise size of the mature protein and found that the LPAT1 transit peptide is at least 85 residues in length, substantially longer than previously predicted. A construct comprising LPAT1 fused to the Venus fluorescent protein and driven by the LPAT1 promoter was used to complement an Arabidopsis lpat1 knockout mutant. To determine the sub-chloroplast location and topology of LPAT1, we performed protease treatment and alkaline extraction using chloroplasts containing in vitro-imported LPAT1 and chloroplasts isolated from LPAT1-Venus-complemented transgenic plants. We show that LPAT1 traverses the inner membrane via an N-terminal transmembrane domain, with its N terminus protruding into the intermembrane space and the C-terminal enzymatic domain residing in the stroma, hence displaying a different membrane topology from its bacterial homolog, PlsC.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1007/s00299-024-03339-z
Jiaqian Huang, Yanze Jia, Yan Pan, Huiyuan Lin, Shuzuo Lv, Mohsin Nawaz, Baoxing Song, Xiaojun Nie
Key message: The genomic organization, phylogenetic relationship, expression patterns, and genetic variations of m6A-related genes were systematically investigated in wild emmer wheat and the function of TdFIP37 regulating salt tolerance was preliminarily determined. m6A modification is one of the most abundant and crucial RNA modifications in eukaryotics, playing the indispensable role in growth and development as well as stress response in plants. However, its significance in wild emmer wheat remains elusive. Here, a genome-wide search of m6A-related genes was conducted in wild emmer wheat to obtain 64 candidates, including 21 writers, 17 erasers, and 26 readers. Phylogenetic and collinearity analysis demonstrated that segmental duplication and polyploidization contributed mainly to the expansion of m6A-related genes in wild emmer. A number of cis-acting elements involving in stress and hormonal regulation were found in the promoter regions of them, such as MBS, LTR, and ABRE. Genetic variation of them was also investigated using resequencing data and obvious genetic bottleneck was occurred on them during wild emmer wheat domestication process. Furthermore, the salt-responsive candidates were investigated through RNA-seq data and qRT-PCR validation using the salt-tolerant and -sensitive genotypes and the co-expression analysis showed that they played the hub role in regulating salt stress response. Finally, the loss-function mutant of Tdfip37 displayed the significantly higher salt-sensitive compared to WT and then RNA-seq analysis demonstrated that FIP37 mediated the MAPK pathway, hormone signal transduction, as well as transcription factor to regulate salt tolerance. This study provided the potential m6A genes for functional analysis, which will contribute to better understand the regulatory roles of m6A modification and also improve the salt tolerance from the perspective of epigenetic approach in emmer wheat and other crops.
{"title":"Genome-wide identification of m6A-related gene family and the involvement of TdFIP37 in salt stress in wild emmer wheat.","authors":"Jiaqian Huang, Yanze Jia, Yan Pan, Huiyuan Lin, Shuzuo Lv, Mohsin Nawaz, Baoxing Song, Xiaojun Nie","doi":"10.1007/s00299-024-03339-z","DOIUrl":"https://doi.org/10.1007/s00299-024-03339-z","url":null,"abstract":"<p><strong>Key message: </strong>The genomic organization, phylogenetic relationship, expression patterns, and genetic variations of m6A-related genes were systematically investigated in wild emmer wheat and the function of TdFIP37 regulating salt tolerance was preliminarily determined. m6A modification is one of the most abundant and crucial RNA modifications in eukaryotics, playing the indispensable role in growth and development as well as stress response in plants. However, its significance in wild emmer wheat remains elusive. Here, a genome-wide search of m6A-related genes was conducted in wild emmer wheat to obtain 64 candidates, including 21 writers, 17 erasers, and 26 readers. Phylogenetic and collinearity analysis demonstrated that segmental duplication and polyploidization contributed mainly to the expansion of m6A-related genes in wild emmer. A number of cis-acting elements involving in stress and hormonal regulation were found in the promoter regions of them, such as MBS, LTR, and ABRE. Genetic variation of them was also investigated using resequencing data and obvious genetic bottleneck was occurred on them during wild emmer wheat domestication process. Furthermore, the salt-responsive candidates were investigated through RNA-seq data and qRT-PCR validation using the salt-tolerant and -sensitive genotypes and the co-expression analysis showed that they played the hub role in regulating salt stress response. Finally, the loss-function mutant of Tdfip37 displayed the significantly higher salt-sensitive compared to WT and then RNA-seq analysis demonstrated that FIP37 mediated the MAPK pathway, hormone signal transduction, as well as transcription factor to regulate salt tolerance. This study provided the potential m6A genes for functional analysis, which will contribute to better understand the regulatory roles of m6A modification and also improve the salt tolerance from the perspective of epigenetic approach in emmer wheat and other crops.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1007/s00299-024-03342-4
Yihang Ning, Daxin Shang, Haoyang Xin, Runxin Ni, Ziyue Wang, Yan Zhen, Guangxin Liu, Mengli Xi
Key message: Fluorescence in situ hybridization with frozen sections of root tips showed difference of chromosome territories distribution between autosome and sex-chromosome homologous pairs in Populus trichocarpa. The spatial organization of chromatin within the interphase nucleus and the interactions between chromosome territories (CTs) are essential for various biologic processes. Three-dimensional fluorescence in situ hybridization (3D-FISH) is a powerful tool for analyzing CTs, but its application in plants is limited. In this study, we established a 3D-FISH technique using frozen sections of Populus trichocarpa root tips, which was an improvement over the use of paraffin sections and enabled us to acquire good FISH signals. Using chromosome-specific oligo probes, we were able to analyze CTs in interphase nuclei in three dimensions. The distribution of chromosome pairs 17 and 19 in the 3D-preserved nuclei of P. trichocarpa root tip cells were analyzed and showed that the autosome pair 17 associated more often than sex chromosome 19. This research lays a foundation for further study of the spatial position of chromosomes in the nucleus and the relationship between gene expression and spatial localization of chromosomes in poplar.
{"title":"Establishing of 3D-FISH on frozen section and its applying in chromosome territories analysis in Populus trichocarpa.","authors":"Yihang Ning, Daxin Shang, Haoyang Xin, Runxin Ni, Ziyue Wang, Yan Zhen, Guangxin Liu, Mengli Xi","doi":"10.1007/s00299-024-03342-4","DOIUrl":"https://doi.org/10.1007/s00299-024-03342-4","url":null,"abstract":"<p><strong>Key message: </strong>Fluorescence in situ hybridization with frozen sections of root tips showed difference of chromosome territories distribution between autosome and sex-chromosome homologous pairs in Populus trichocarpa. The spatial organization of chromatin within the interphase nucleus and the interactions between chromosome territories (CTs) are essential for various biologic processes. Three-dimensional fluorescence in situ hybridization (3D-FISH) is a powerful tool for analyzing CTs, but its application in plants is limited. In this study, we established a 3D-FISH technique using frozen sections of Populus trichocarpa root tips, which was an improvement over the use of paraffin sections and enabled us to acquire good FISH signals. Using chromosome-specific oligo probes, we were able to analyze CTs in interphase nuclei in three dimensions. The distribution of chromosome pairs 17 and 19 in the 3D-preserved nuclei of P. trichocarpa root tip cells were analyzed and showed that the autosome pair 17 associated more often than sex chromosome 19. This research lays a foundation for further study of the spatial position of chromosomes in the nucleus and the relationship between gene expression and spatial localization of chromosomes in poplar.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}