Pub Date : 2023-09-01DOI: 10.1016/j.pld.2023.01.004
Sampa Kundu , Taposhi Hazra , Tapan Chakraborty , Subir Bera , Mahasin Ali Khan
Equisetum (Equisetaceae) has long been a focus of attention for botanists and palaeontologists because, given its extensive and well-documented fossil record, it is considered the oldest extant vascular plant and a key element in understanding vascular plant evolution. However, to date, no authentic fossil evidence of Equisetum has been found from the Indian Cenozoic. Here, we describe a new fossil species, namely, E. siwalikum sp. nov., recovered from the middle Siwalik (Late Miocene) sediments of Himachal Pradesh, western Himalaya. We identified fossil specimens based on morphological and epidermal characters. In addition, X-Ray diffraction (XRD) analysis was used to determine the mineral composition of compressed stems of Equisetum. The close affinity of our recovered Siwalik fossils to Equisetum is supported by the presence of both macromorphological and epidermal characters. Because Equisetum generally grows in wet conditions around water reservoirs, our findings indicate that the fossil locality was humid and surrounded by swamp and lowland regions during deposition. Ample fossil evidence indicates that this sphenopsid once existed in the western Himalaya during the Siwalik period. However, at present Equisetum is confined to a particular area of our fossil locality, probably a consequence of severe environmental changes coupled with competition from opportunistic angiosperms. Our discovery of Equisetum fossils in appreciable numbers from the Siwalik sediments of the Himachal Himalayas is unique and constitutes the first reliable recognition of Equisetum from the Indian Cenozoic.
{"title":"Evidence of the oldest extant vascular plant (horsetails) from the Indian Cenozoic","authors":"Sampa Kundu , Taposhi Hazra , Tapan Chakraborty , Subir Bera , Mahasin Ali Khan","doi":"10.1016/j.pld.2023.01.004","DOIUrl":"https://doi.org/10.1016/j.pld.2023.01.004","url":null,"abstract":"<div><p><em>Equisetum</em> (Equisetaceae) has long been a focus of attention for botanists and palaeontologists because, given its extensive and well-documented fossil record, it is considered the oldest extant vascular plant and a key element in understanding vascular plant evolution. However, to date, no authentic fossil evidence of <em>Equisetum</em> has been found from the Indian Cenozoic. Here, we describe a new fossil species<em>,</em> namely, <em>E. siwalikum</em> sp. nov., recovered from the middle Siwalik (Late Miocene) sediments of Himachal Pradesh, western Himalaya. We identified fossil specimens based on morphological and epidermal characters. In addition, X-Ray diffraction (XRD) analysis was used to determine the mineral composition of compressed stems of <em>Equisetum</em>. The close affinity of our recovered Siwalik fossils to <em>Equisetum</em> is supported by the presence of both macromorphological and epidermal characters. Because <em>Equisetum</em> generally grows in wet conditions around water reservoirs, our findings indicate that the fossil locality was humid and surrounded by swamp and lowland regions during deposition. Ample fossil evidence indicates that this sphenopsid once existed in the western Himalaya during the Siwalik period. However, at present <em>Equisetum</em> is confined to a particular area of our fossil locality, probably a consequence of severe environmental changes coupled with competition from opportunistic angiosperms. Our discovery of <em>Equisetum</em> fossils in appreciable numbers from the Siwalik sediments of the Himachal Himalayas is unique and constitutes the first reliable recognition of <em>Equisetum</em> from the Indian Cenozoic.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 5","pages":"Pages 569-589"},"PeriodicalIF":4.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49810902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.pld.2022.09.002
Amarpreet Kaur , Shalinder Kaur , Harminder Pal Singh , Daizy R. Batish
Of the various strategies adopted by an invasive plant species for expanding its niche breadth, phenotypic differentiation (either due to plasticity and/or adaptive evolution) is proven to be the most successful. Lately, we studied the persistence of substantial morpho-functional variations within the individuals of alien invasive plant, Parthenium hysterophorus in Chandigarh, India, through field surveys. Based on observed differences, the individuals were categorized into two morphotypes, PA and PB. PA had higher leaf area, leaf biomass, and chlorophyll content as compared with PB. However, PB had a higher stem circumference, stem specific density, twig dry matter content, profuse branching, bigger canopy, and better reproductive output than PA. To substantiate the persistence of intraspecific variations in P. hysterophorus and to deduce the possible genesis of these variations, we propagated both the morphotypes under experimental conditions in winter and summer. Apart from the key morpho-functional differences observed during the field studies, protein and carbohydrate metabolism were studied in leaves and roots of the propagated plants. Differences in plant metabolism were observed only during the early growth period, whereas the morpho-functional traits varied in the mature flowering plants. The effect of growth season was highly significant on all the studied morpho-functional and biochemical parameters (p ≤ 0.05). Parent morphotypes (P) and interactions between morphotypes and seasons significantly affected several growth parameters (p ≤ 0.05). The analyses revealed that the contrasting growth conditions at the time of transplantation and early growth may regulate the phenotype of P. hysterophorus. The pattern of intraspecific variations observed during the study is justified to consider morphotype PA as winter biotype and morphotype PB as summer biotype of P. hysterophorus. The study points towards the role of plasticity or a combination of genetic and environmental (G × E) factors in producing the phenotypic variability observed in the population of P. hysterophorus.
{"title":"Is intraspecific trait differentiation in Parthenium hysterophorus a consequence of hereditary factors and/or phenotypic plasticity?","authors":"Amarpreet Kaur , Shalinder Kaur , Harminder Pal Singh , Daizy R. Batish","doi":"10.1016/j.pld.2022.09.002","DOIUrl":"https://doi.org/10.1016/j.pld.2022.09.002","url":null,"abstract":"<div><p>Of the various strategies adopted by an invasive plant species for expanding its niche breadth, phenotypic differentiation (either due to plasticity and/or adaptive evolution) is proven to be the most successful. Lately, we studied the persistence of substantial morpho-functional variations within the individuals of alien invasive plant, <em>Parthenium hysterophorus</em> in Chandigarh, India, through field surveys. Based on observed differences, the individuals were categorized into two morphotypes, P<sub>A</sub> and P<sub>B</sub>. P<sub>A</sub> had higher leaf area, leaf biomass, and chlorophyll content as compared with P<sub>B</sub>. However, P<sub>B</sub> had a higher stem circumference, stem specific density, twig dry matter content, profuse branching, bigger canopy, and better reproductive output than P<sub>A</sub>. To substantiate the persistence of intraspecific variations in <em>P</em>. <em>hysterophorus</em> and to deduce the possible genesis of these variations, we propagated both the morphotypes under experimental conditions in winter and summer. Apart from the key morpho-functional differences observed during the field studies, protein and carbohydrate metabolism were studied in leaves and roots of the propagated plants. Differences in plant metabolism were observed only during the early growth period, whereas the morpho-functional traits varied in the mature flowering plants. The effect of growth season was highly significant on all the studied morpho-functional and biochemical parameters (<em>p</em> ≤ 0.05). Parent morphotypes (P) and interactions between morphotypes and seasons significantly affected several growth parameters (<em>p</em> ≤ 0.05). The analyses revealed that the contrasting growth conditions at the time of transplantation and early growth may regulate the phenotype of <em>P</em>. <em>hysterophorus</em>. The pattern of intraspecific variations observed during the study is justified to consider morphotype P<sub>A</sub> as winter biotype and morphotype P<sub>B</sub> as summer biotype of <em>P</em>. <em>hysterophorus</em>. The study points towards the role of plasticity or a combination of genetic and environmental (G × E) factors in producing the phenotypic variability observed in the population of <em>P</em>. <em>hysterophorus</em>.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 5","pages":"Pages 611-620"},"PeriodicalIF":4.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49853231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.pld.2023.01.006
Yan Ke , Feng-Ping Zhang , Yun-Bing Zhang , Wei Li , Qin Wang , Da Yang , Jiao-Lin Zhang , Kun-Fang Cao
Maintaining open flowers is critical for successful pollination and depends on long-term water and carbon balance. Yet the relationship between how flower hydraulic traits are coordinated in different habitats is poorly understood. Here, we hypothesize that the coordination and trade-offs between floral hydraulics and economics traits are independent of environmental conditions. To test this hypothesis, we investigated a total of 27 flower economics and hydraulic traits in six aquatic and six terrestrial herbaceous species grown in a tropical botanical garden. We found that although there were a few significant differences, most flower hydraulics and economics traits did not differ significantly between aquatic and terrestrial herbaceous plants. Both flower mass per area and floral longevity were significantly positively correlated with the time required for drying full-hydrated flowers to 70% relative water content. Flower dry matter content was strongly and positively related to drought tolerance of the flowers as indicated by flower water potential at the turgor loss point. In addition, there was a trade-off between hydraulic efficiency and the construction cost of a flower across species. Our results show that flowers of aquatic and terrestrial plants follow the same economics spectrum pattern. These results suggest a convergent flower economics design across terrestrial and aquatic plants, providing new insights into the mechanisms by which floral organs adapt to aquatic and terrestrial habitats.
{"title":"Convergent relationships between flower economics and hydraulic traits across aquatic and terrestrial herbaceous plants","authors":"Yan Ke , Feng-Ping Zhang , Yun-Bing Zhang , Wei Li , Qin Wang , Da Yang , Jiao-Lin Zhang , Kun-Fang Cao","doi":"10.1016/j.pld.2023.01.006","DOIUrl":"https://doi.org/10.1016/j.pld.2023.01.006","url":null,"abstract":"<div><p>Maintaining open flowers is critical for successful pollination and depends on long-term water and carbon balance. Yet the relationship between how flower hydraulic traits are coordinated in different habitats is poorly understood. Here, we hypothesize that the coordination and trade-offs between floral hydraulics and economics traits are independent of environmental conditions. To test this hypothesis, we investigated a total of 27 flower economics and hydraulic traits in six aquatic and six terrestrial herbaceous species grown in a tropical botanical garden. We found that although there were a few significant differences, most flower hydraulics and economics traits did not differ significantly between aquatic and terrestrial herbaceous plants. Both flower mass per area and floral longevity were significantly positively correlated with the time required for drying full-hydrated flowers to 70% relative water content. Flower dry matter content was strongly and positively related to drought tolerance of the flowers as indicated by flower water potential at the turgor loss point. In addition, there was a trade-off between hydraulic efficiency and the construction cost of a flower across species. Our results show that flowers of aquatic and terrestrial plants follow the same economics spectrum pattern. These results suggest a convergent flower economics design across terrestrial and aquatic plants, providing new insights into the mechanisms by which floral organs adapt to aquatic and terrestrial habitats.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 5","pages":"Pages 601-610"},"PeriodicalIF":4.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49853239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.pld.2023.08.005
Georg Miehe, M.A.O. Kangshan, S. Hasson, J. Böhner, U. Schickhoff
{"title":"What do we know about treelines of the Anthropocene in High Asia?","authors":"Georg Miehe, M.A.O. Kangshan, S. Hasson, J. Böhner, U. Schickhoff","doi":"10.1016/j.pld.2023.08.005","DOIUrl":"https://doi.org/10.1016/j.pld.2023.08.005","url":null,"abstract":"","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"60 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80564311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.pld.2023.02.001
Xien Wu , Dengli Luo , Yingmin Zhang , Ling Jin , M. James C. Crabbe , Qin Qiao , Guodong Li , Ticao Zhang
Hawthorns are important medicinal and edible plants with a long history of health protection in China. Besides cultivated hawthorn, other wild hawthorns may also have excellent medicinal and edible value, such as Crataeguschungtienensis, an endemic species distributed in the Southwest of China. In this study, by integrating the flavor-related metabolome and transcriptome data of the ripening fruit of C. chungtienensis, we have developed an understanding of the formation of hawthorn fruit quality. The results show that a total of 849 metabolites were detected in the young and mature fruit of C. chungtienensis, of which flavonoids were the most detected metabolites. Among the differentially accumulated metabolites, stachyose, maltotetraose and cis-aconitic acid were significantly increased during fruit ripening, and these may be important metabolites affecting fruit flavor change. Moreover, several flavonoids and terpenoids were reduced after fruit ripening compared with young fruit. Therefore, using the unripe fruit of C. chungtienensis may allow us to obtain more medicinal active ingredients such as flavonoids and terpenoids. Furthermore, we screened out some differentially expressed genes (DEGs) related to fruit quality formation, which had important relationships with differentially accumulated sugars, acids, flavonoids and terpenoids. Our study provides new insights into flavor formation in wild hawthorn during fruit development and ripening, and at the same time this study lays the foundation for the improvement of hawthorn fruit flavor.
{"title":"Integrative analysis of the metabolome and transcriptome reveals the potential mechanism of fruit flavor formation in wild hawthorn (Crataegus chungtienensis)","authors":"Xien Wu , Dengli Luo , Yingmin Zhang , Ling Jin , M. James C. Crabbe , Qin Qiao , Guodong Li , Ticao Zhang","doi":"10.1016/j.pld.2023.02.001","DOIUrl":"https://doi.org/10.1016/j.pld.2023.02.001","url":null,"abstract":"<div><p>Hawthorns are important medicinal and edible plants with a long history of health protection in China. Besides cultivated hawthorn, other wild hawthorns may also have excellent medicinal and edible value, such as <em>Crataegus</em> <em>chungtienensis</em>, an endemic species distributed in the Southwest of China. In this study, by integrating the flavor-related metabolome and transcriptome data of the ripening fruit of <em>C. chungtienensis</em>, we have developed an understanding of the formation of hawthorn fruit quality. The results show that a total of 849 metabolites were detected in the young and mature fruit of <em>C. chungtienensis</em>, of which flavonoids were the most detected metabolites. Among the differentially accumulated metabolites, stachyose, maltotetraose and cis-aconitic acid were significantly increased during fruit ripening, and these may be important metabolites affecting fruit flavor change. Moreover, several flavonoids and terpenoids were reduced after fruit ripening compared with young fruit. Therefore, using the unripe fruit of <em>C. chungtienensis</em> may allow us to obtain more medicinal active ingredients such as flavonoids and terpenoids. Furthermore, we screened out some differentially expressed genes (DEGs) related to fruit quality formation, which had important relationships with differentially accumulated sugars, acids, flavonoids and terpenoids. Our study provides new insights into flavor formation in wild hawthorn during fruit development and ripening, and at the same time this study lays the foundation for the improvement of hawthorn fruit flavor.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 5","pages":"Pages 590-600"},"PeriodicalIF":4.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49810903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.pld.2023.03.012
Hai-Su Hu , Jiu-Yang Mao , Xue Wang , Yu-Ze Liang , Bei Jiang , De-Quan Zhang
Roscoea is an alpine or subalpine genus from the pan-tropical family Zingiberaceae, which consists of two disjunct groups in geography, namely the “Chinese” clade and the “Himalayan” clade. Despite extensive research on the genus, Roscoea species remain poorly defined and relationships between these species are not well resolved. In this study, we used plastid genomes of nine species and one variety to resolve phylogenetic relationships within the “Chinese” clade of Roscoea and as DNA super barcodes for species discrimination. We found that Roscoea plastid genomes ranged in length from 163,063 to 163,796 bp, and encoded 113 genes, including 79 protein-coding genes, 30 tRNA genes, four rRNA genes. In addition, expansion and contraction of the IR regions showed obvious infraspecific conservatism and interspecific differentiation. Plastid phylogenomics revealed that species belonging to the “Chinese” clade of Roscoea can be divided into four distinct subclades. Furthermore, our analysis supported the independence of R. cautleoides var. pubescens, the recovery of Roscoea pubescens Z.Y. Zhu, and a close relationship between R. humeana and R. cautloides. When we used the plastid genome as a super barcode, we found that it possessed strong discriminatory power (90%) with high support values. Intergenic regions provided similar resolution, which was much better than that of protein-coding regions, hypervariable regions, and DNA universal barcodes. However, plastid genomes could not completely resolve Roscoea phylogeny or definitively discriminate species. These limitations are likely related to the complex history of Roscoea speciation, poorly defined species within the genus, and the maternal inheritance of plastid genomes.
{"title":"Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae)","authors":"Hai-Su Hu , Jiu-Yang Mao , Xue Wang , Yu-Ze Liang , Bei Jiang , De-Quan Zhang","doi":"10.1016/j.pld.2023.03.012","DOIUrl":"https://doi.org/10.1016/j.pld.2023.03.012","url":null,"abstract":"<div><p><em>Roscoea</em> is an alpine or subalpine genus from the pan-tropical family Zingiberaceae, which consists of two disjunct groups in geography, namely the “Chinese” clade and the “Himalayan” clade. Despite extensive research on the genus, <em>Roscoea</em> species remain poorly defined and relationships between these species are not well resolved. In this study, we used plastid genomes of nine species and one variety to resolve phylogenetic relationships within the “Chinese” clade of <em>Roscoea</em> and as DNA super barcodes for species discrimination. We found that <em>Roscoea</em> plastid genomes ranged in length from 163,063 to 163,796 bp, and encoded 113 genes, including 79 protein-coding genes, 30 tRNA genes, four rRNA genes. In addition, expansion and contraction of the IR regions showed obvious infraspecific conservatism and interspecific differentiation. Plastid phylogenomics revealed that species belonging to the “Chinese” clade of <em>Roscoea</em> can be divided into four distinct subclades. Furthermore, our analysis supported the independence of <em>R</em>. <em>cautleoides</em> var. <em>pubescens</em>, the recovery of <em>Roscoea pubescens</em> Z.Y. Zhu, and a close relationship between <em>R</em>. <em>humeana</em> and <em>R</em>. <em>cautloides</em>. When we used the plastid genome as a super barcode, we found that it possessed strong discriminatory power (90%) with high support values. Intergenic regions provided similar resolution, which was much better than that of protein-coding regions, hypervariable regions, and DNA universal barcodes. However, plastid genomes could not completely resolve <em>Roscoea</em> phylogeny or definitively discriminate species. These limitations are likely related to the complex history of <em>Roscoea</em> speciation, poorly defined species within the genus, and the maternal inheritance of plastid genomes.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 5","pages":"Pages 523-534"},"PeriodicalIF":4.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49810897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.pld.2022.12.008
Yi Jin , Hong Qian
In eastern Asian subtropical forests, leaf habit shifts from evergreen to deciduous broad-leaved woody plants toward higher latitudes. This shift has been largely explained by the greater capacity of deciduous broad-leaved plants to respond to harsh climatic conditions (e.g., greater seasonality). The advantages of deciduous leaf habit over evergreen leaf habit in more seasonal climates have led us to hypothesize that leaf habits would shift in response to climate changes more conspicuously in forest canopy trees than in forest understory shrubs. Furthermore, we hypothesize that in the forests of the subtropics, plants at higher latitudes, regardless of growth form, would better tolerate seasonal harsh climates, and hence show less differentiation in leaf habit shift, compared to those at lower latitudes. To test these two hypotheses, we modelled the proportion of deciduous broad-leaved species and the incidence of deciduous and evergreen broad-leaved species in woody angiosperm species compositions of ten large-sized forest plots distributed in the Chinese subtropics. We found that the rate of leaf habit shift along a latitudinal gradient was higher in forest trees than in forest shrubs. We also found that the differentiation in leaf habit shift between trees and shrubs is greater at lower latitudes (i.e., warmer climates) than at higher latitudes (i.e., colder climates). These findings indicate that specialized forest plants are differentially affected by climate in distinct forest strata in a manner dependent on latitudinal distribution. These differences in forest plant response to changes in climate suggest that global climate warming will alter growth forms and geographical distributions and ranges of forests.
{"title":"Drivers of the differentiation between broad-leaved trees and shrubs in the shift from evergreen to deciduous leaf habit in forests of eastern Asian subtropics","authors":"Yi Jin , Hong Qian","doi":"10.1016/j.pld.2022.12.008","DOIUrl":"https://doi.org/10.1016/j.pld.2022.12.008","url":null,"abstract":"<div><p>In eastern Asian subtropical forests, leaf habit shifts from evergreen to deciduous broad-leaved woody plants toward higher latitudes. This shift has been largely explained by the greater capacity of deciduous broad-leaved plants to respond to harsh climatic conditions (e.g., greater seasonality). The advantages of deciduous leaf habit over evergreen leaf habit in more seasonal climates have led us to hypothesize that leaf habits would shift in response to climate changes more conspicuously in forest canopy trees than in forest understory shrubs. Furthermore, we hypothesize that in the forests of the subtropics, plants at higher latitudes, regardless of growth form, would better tolerate seasonal harsh climates, and hence show less differentiation in leaf habit shift, compared to those at lower latitudes. To test these two hypotheses, we modelled the proportion of deciduous broad-leaved species and the incidence of deciduous and evergreen broad-leaved species in woody angiosperm species compositions of ten large-sized forest plots distributed in the Chinese subtropics. We found that the rate of leaf habit shift along a latitudinal gradient was higher in forest trees than in forest shrubs. We also found that the differentiation in leaf habit shift between trees and shrubs is greater at lower latitudes (i.e., warmer climates) than at higher latitudes (i.e., colder climates). These findings indicate that specialized forest plants are differentially affected by climate in distinct forest strata in a manner dependent on latitudinal distribution. These differences in forest plant response to changes in climate suggest that global climate warming will alter growth forms and geographical distributions and ranges of forests.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 5","pages":"Pages 535-543"},"PeriodicalIF":4.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49810901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flowering phenology of plants, which is important for reproductive growth, has been shown to be influenced by climate change. Understanding how flowering phenology responds to climate change and exploring the variation of this response across plant groups can help predict structural and functional changes in plant communities in response to ongoing climate change. Here, we used long-term collections of 33 flowering plant species from the Gongga Mountains (Mt. Gongga hereafter), a biodiversity hotspot, to investigate how plant flowering phenology changed over the past 70 years in response to climate change. We found that mean flowering times in Mt. Gongga were delayed in all vegetation types and elevations over the last 70 years. Furthermore, flowering time was delayed more in lowlands than at high elevations. Interestingly, we observed that spring-flowering plants show earlier flowering times whereas summer/autumn plants show delayed flowering times. Non-synchronous flowering phenology across species was mainly driven by changes in temperature and precipitation. We also found that the flowering phenology of 78.8% plant species was delayed in response to warming temperatures. Our findings also indicate that the magnitude and direction of variation in plant flowering times vary significantly among species along elevation gradients. Shifts in flowering time might cause trophic mismatches with co-occurring and related species, affecting both forest ecosystem structure and function.
{"title":"Climate change impacts flowering phenology in Gongga Mountains, Southwest China.","authors":"Kuiling Zu, Fusheng Chen, Yaoqi Li, Nawal Shrestha, Xiangmin Fang, Shahid Ahmad, Ghulam Nabi, Zhiheng Wang","doi":"10.1016/j.pld.2023.07.007","DOIUrl":"10.1016/j.pld.2023.07.007","url":null,"abstract":"<p><p>Flowering phenology of plants, which is important for reproductive growth, has been shown to be influenced by climate change. Understanding how flowering phenology responds to climate change and exploring the variation of this response across plant groups can help predict structural and functional changes in plant communities in response to ongoing climate change. Here, we used long-term collections of 33 flowering plant species from the Gongga Mountains (Mt. Gongga hereafter), a biodiversity hotspot, to investigate how plant flowering phenology changed over the past 70 years in response to climate change. We found that mean flowering times in Mt. Gongga were delayed in all vegetation types and elevations over the last 70 years. Furthermore, flowering time was delayed more in lowlands than at high elevations. Interestingly, we observed that spring-flowering plants show earlier flowering times whereas summer/autumn plants show delayed flowering times. Non-synchronous flowering phenology across species was mainly driven by changes in temperature and precipitation. We also found that the flowering phenology of 78.8% plant species was delayed in response to warming temperatures. Our findings also indicate that the magnitude and direction of variation in plant flowering times vary significantly among species along elevation gradients. Shifts in flowering time might cause trophic mismatches with co-occurring and related species, affecting both forest ecosystem structure and function.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"63 1","pages":"774-782"},"PeriodicalIF":4.6,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89770697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.pld.2022.11.007
Korina Ocampo-Zuleta , Ángela Parrado-Rosselli
Recently, the Andean subpáramo in Colombia has experienced severe wildfires, but little is known about the functional composition of recovering or not after a wildfire. Therefore, we examined the functional community composition subpáramo affected by fire in 2016. We documented how functional traits changed 31 months after the disturbance and compared them with an unburned site. We sampled from one to two years after the fire every four months, then registered all recruits in 16 5 × 5m plots. New individuals were classified into strategy functional groups based on the traits of persistence and dispersal. The first group was stem type and regeneration mechanism (seedling and resprout), and the second was fruit type and dispersal mode. We investigated the degree to which functional diversity changes plant communities over time (woody and non-woody), and we compared it with an unburned site. The most relevant results showed that resprouts and seed regenerated increased post-fire time and significant differences between sampling periods. The anemochory is the most relevant dispersal mode that indicates the community capacity to colonize the new gaps opened by the fire rapidly. We discuss how wildfire appears to be a triggering factor for persistence and dispersal strategy groups in subpáramo burned given their characteristics of tolerance to stress. For this reason, a greater functional divergence between the ecosystems studied post-fire recovery has been related to higher levels of biodiversity at the landscape scale due to the high degree of endemism and significant differences in species composition between páramos.
{"title":"Functional diversity in an Andean subpáramo affected by wildfire in Colombia","authors":"Korina Ocampo-Zuleta , Ángela Parrado-Rosselli","doi":"10.1016/j.pld.2022.11.007","DOIUrl":"10.1016/j.pld.2022.11.007","url":null,"abstract":"<div><p>Recently, the Andean subpáramo in Colombia has experienced severe wildfires, but little is known about the functional composition of recovering or not after a wildfire. Therefore, we examined the functional community composition subpáramo affected by fire in 2016. We documented how functional traits changed 31 months after the disturbance and compared them with an unburned site. We sampled from one to two years after the fire every four months, then registered all recruits in 16 5 × 5m plots. New individuals were classified into strategy functional groups based on the traits of persistence and dispersal. The first group was stem type and regeneration mechanism (seedling and resprout), and the second was fruit type and dispersal mode. We investigated the degree to which functional diversity changes plant communities over time (woody and non-woody), and we compared it with an unburned site. The most relevant results showed that resprouts and seed regenerated increased post-fire time and significant differences between sampling periods. The anemochory is the most relevant dispersal mode that indicates the community capacity to colonize the new gaps opened by the fire rapidly. We discuss how wildfire appears to be a triggering factor for persistence and dispersal strategy groups in subpáramo burned given their characteristics of tolerance to stress. For this reason, a greater functional divergence between the ecosystems studied post-fire recovery has been related to higher levels of biodiversity at the landscape scale due to the high degree of endemism and significant differences in species composition between páramos.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 4","pages":"Pages 385-396"},"PeriodicalIF":4.8,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7e/9a/main.PMC10436060.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10052160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.pld.2023.03.004
Xue-Min Xu , Dan-Hui Liu , Shi-Xin Zhu , Zhen-Long Wang , Zhen Wei , Quan-Ru Liu
The genus Trigonotis comprises nearly 60 species mainly distributed in East and Southeast Asia. China has the largest number of Trigonotis species in the world, with a total of 44 species, of which 38 are endemic. Nutlet morphology is useful for the taxonomic delimitation of Trigonotis. However, there are still controversial circumscriptions of nutlet shape in some species. In previous studies, interspecies phylogenetic relationships were inferred using few DNA markers and very few taxa, which possibly led to erroneous or incomplete conclusions. In this study, the nutlet morphology of 39 Trigonotis taxa and the characteristics of 34 complete chloroplast genomes (29 taxa) were investigated and analyzed. Then, the phylogenetic relationships were discussed within this genus based on complete chloroplast genomes. To the best of our knowledge, this study is the first comprehensive analysis of nutlet morphology and complete chloroplast genome of Trigonotis. Based on nutlet morphology, Trigonotis can be divided into two groups: Group 1, hemispherical or oblique tetrahedron with carpopodiums, and Group 2, inverted tetrahedron without carpopodiums. The chloroplast genome of Trigonotis exhibited a typical quadripartite structure, including 84–86 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes, with a total length of 147,247–148,986 bp. Genes in the junctions were well conserved in Trigonotis, similar to those in other Boraginaceae s.str. species. Furthermore, Trigonotis chloroplast genomes showed relatively high diversity, with more conserved genic regions than intergenic regions; in addition, we detected 14 hot spots (Pi > 0.005) in non-coding regions. Phylogenetic analyses based on chloroplast genome data identified highly resolved relationships between Trigonotis species. Specifically, Trigonotis was divided into two clades with strong support: one clade included species with hemispherical or oblique tetrahedron nutlets with carpopodiums and bracts, whereas the other clade included species with inverted tetrahedron nutlets without carpopodiums or bracts. Our results may inform future taxonomic, phylogenetic, and evolutionary studies on Boraginaceae.
{"title":"Phylogeny of Trigonotis in China—with a special reference to its nutlet morphology and plastid genome","authors":"Xue-Min Xu , Dan-Hui Liu , Shi-Xin Zhu , Zhen-Long Wang , Zhen Wei , Quan-Ru Liu","doi":"10.1016/j.pld.2023.03.004","DOIUrl":"https://doi.org/10.1016/j.pld.2023.03.004","url":null,"abstract":"<div><p>The genus <em>Trigonotis</em> comprises nearly 60 species mainly distributed in East and Southeast Asia. China has the largest number of <em>Trigonotis</em> species in the world, with a total of 44 species, of which 38 are endemic. Nutlet morphology is useful for the taxonomic delimitation of <em>Trigonotis</em>. However, there are still controversial circumscriptions of nutlet shape in some species. In previous studies, interspecies phylogenetic relationships were inferred using few DNA markers and very few taxa, which possibly led to erroneous or incomplete conclusions. In this study, the nutlet morphology of 39 <em>Trigonotis</em> taxa and the characteristics of 34 complete chloroplast genomes (29 taxa) were investigated and analyzed. Then, the phylogenetic relationships were discussed within this genus based on complete chloroplast genomes. To the best of our knowledge, this study is the first comprehensive analysis of nutlet morphology and complete chloroplast genome of <em>Trigonotis</em>. Based on nutlet morphology, <em>Trigonotis</em> can be divided into two groups: Group 1, hemispherical or oblique tetrahedron with carpopodiums, and Group 2, inverted tetrahedron without carpopodiums<em>.</em> The chloroplast genome of <em>Trigonotis</em> exhibited a typical quadripartite structure, including 84–86 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes, with a total length of 147,247–148,986 bp. Genes in the junctions were well conserved in <em>Trigonotis</em>, similar to those in other Boraginaceae s.str. species. Furthermore, <em>Trigonotis</em> chloroplast genomes showed relatively high diversity, with more conserved genic regions than intergenic regions; in addition, we detected 14 hot spots (Pi > 0.005) in non-coding regions. Phylogenetic analyses based on chloroplast genome data identified highly resolved relationships between <em>Trigonotis</em> species. Specifically, <em>Trigonotis</em> was divided into two clades with strong support: one clade included species with hemispherical or oblique tetrahedron nutlets with carpopodiums and bracts, whereas the other clade included species with inverted tetrahedron nutlets without carpopodiums or bracts. Our results may inform future taxonomic, phylogenetic, and evolutionary studies on Boraginaceae.</p></div>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"45 4","pages":"Pages 409-421"},"PeriodicalIF":4.8,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49894973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}