The Indo-Burma Biodiversity Hotspot is renowned for its rich biodiversity, including that of vascular plants. However, the fern diversity and its endemism in this hotspot have not been well understood and so far, the diversity of very few groups of ferns in this region has been explored using combined molecular and morphological approaches. Here, we updated the plastid phylogeny of the Java fern genus Leptochilus with 226 (115% increase of the latest sampling) samples across the distribution range, specifically those of three phylogenetically significant species, Leptochilus ovatus, L. pedunculatus, and L. pothifolius. We also reconstructed the first nuclear phylogeny of the genus based on pgiC gene data. Based on molecular and morphological evidence, we identified three new major clades and six new subclades, redefined three existing species, discovered a number of cryptic species of the genus, and elucidated the evolution of the three most variable characters. Our divergence time analyses and ancestral area reconstruction showed that Leptochilus originated in the Oligocene and diversified from early Miocene and 15 dispersal events from lower to higher latitudes are identified. The evolution of three most important morphological characters is analyzed in a context of the new phylogeny. Our analysis showed that 30 (59% of total 51) species of Leptochilus occur in Indo-Burma hotspot, 24 (80% of the 30 species) of which are endemic to this hotspot. We argue that the Indo-Burma hotspot should be recognized as a diversity hotspot for ferns.
{"title":"The Indo-Burma biodiversity hotspot for ferns: Updated phylogeny, hidden diversity, and biogeography of the java fern genus <i>Leptochilus</i> (Polypodiaceae).","authors":"Liang Zhang, Zhen-Long Liang, Xue-Ping Fan, Ngan Thi Lu, Xin-Mao Zhou, Hong-Jin Wei, Li-Bing Zhang","doi":"10.1016/j.pld.2024.08.005","DOIUrl":"10.1016/j.pld.2024.08.005","url":null,"abstract":"<p><p>The Indo-Burma Biodiversity Hotspot is renowned for its rich biodiversity, including that of vascular plants. However, the fern diversity and its endemism in this hotspot have not been well understood and so far, the diversity of very few groups of ferns in this region has been explored using combined molecular and morphological approaches. Here, we updated the plastid phylogeny of the Java fern genus <i>Leptochilus</i> with 226 (115% increase of the latest sampling) samples across the distribution range, specifically those of three phylogenetically significant species, <i>Leptochilus ovatus</i>, <i>L</i>. <i>pedunculatus</i>, and <i>L</i>. <i>pothifolius</i>. We also reconstructed the first nuclear phylogeny of the genus based on <i>pgiC</i> gene data. Based on molecular and morphological evidence, we identified three new major clades and six new subclades, redefined three existing species, discovered a number of cryptic species of the genus, and elucidated the evolution of the three most variable characters. Our divergence time analyses and ancestral area reconstruction showed that <i>Leptochilus</i> originated in the Oligocene and diversified from early Miocene and 15 dispersal events from lower to higher latitudes are identified. The evolution of three most important morphological characters is analyzed in a context of the new phylogeny. Our analysis showed that 30 (59% of total 51) species of <i>Leptochilus</i> occur in Indo-Burma hotspot, 24 (80% of the 30 species) of which are endemic to this hotspot. We argue that the Indo-Burma hotspot should be recognized as a diversity hotspot for ferns.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 6","pages":"698-712"},"PeriodicalIF":4.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27eCollection Date: 2025-01-01DOI: 10.1016/j.pld.2024.08.004
Hong Qian, Shenhua Qian
Exploring the worldwide patterns of endemism and the processes that lead to the formation of high-endemism centers is crucial in biogeography. This study examines the geographic distribution and ecological influences on the endemism of liverworts across 390 regions worldwide. We assess phylogenetic endemism and relative phylogenetic endemism in relation to eleven environmental factors, which represent current and Quaternary climate variations, as well as topographic and environmental heterogeneity. Areas with higher endemism in liverworts tend to have higher temperatures, precipitation, and environmental heterogeneity, but lower temperature seasonality and lesser impacts from Quaternary climate changes. Regions exhibiting notably high endemism are predominantly found in tropical Asia, Madagascar, eastern Australia, and the Andes, while those with notably low endemism are generally in temperate Eurasia and North America, parts of Africa, and eastern South America. Centers of neo-endemism are mainly in southern Africa, whereas centers of paleo-endemism are in southern South America, tropical Asia, and New Zealand. Environment variability is a more significant predictor of phylogenetic endemism than current climate conditions, which are themselves more predictive than variables related to Quaternary climate changes. Nevertheless, these three types of explanatory variables combined explain only about one-third of the variance in phylogenetic endemism.
{"title":"Global patterns of taxonomic and phylogenetic endemism in liverwort assemblages.","authors":"Hong Qian, Shenhua Qian","doi":"10.1016/j.pld.2024.08.004","DOIUrl":"10.1016/j.pld.2024.08.004","url":null,"abstract":"<p><p>Exploring the worldwide patterns of endemism and the processes that lead to the formation of high-endemism centers is crucial in biogeography. This study examines the geographic distribution and ecological influences on the endemism of liverworts across 390 regions worldwide. We assess phylogenetic endemism and relative phylogenetic endemism in relation to eleven environmental factors, which represent current and Quaternary climate variations, as well as topographic and environmental heterogeneity. Areas with higher endemism in liverworts tend to have higher temperatures, precipitation, and environmental heterogeneity, but lower temperature seasonality and lesser impacts from Quaternary climate changes. Regions exhibiting notably high endemism are predominantly found in tropical Asia, Madagascar, eastern Australia, and the Andes, while those with notably low endemism are generally in temperate Eurasia and North America, parts of Africa, and eastern South America. Centers of neo-endemism are mainly in southern Africa, whereas centers of paleo-endemism are in southern South America, tropical Asia, and New Zealand. Environment variability is a more significant predictor of phylogenetic endemism than current climate conditions, which are themselves more predictive than variables related to Quaternary climate changes. Nevertheless, these three types of explanatory variables combined explain only about one-third of the variance in phylogenetic endemism.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 1","pages":"82-88"},"PeriodicalIF":4.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20eCollection Date: 2025-01-01DOI: 10.1016/j.pld.2024.08.003
Zhiliang Yao, Xia Pan, Xin Yang, Xiaona Shao, Bin Wang, Yun Deng, Zhiming Zhang, Qiaoming Li, Luxiang Lin
Patterns and drivers of species-genetic diversity correlations (SGDCs) have been broadly examined across taxa and ecosystems and greatly deepen our understanding of how biodiversity is maintained. However, few studies have examined the role of canopy structural heterogeneity, which is a defining feature of forests, in shaping SGDCs. Here, we determine what factors contribute to α- and β-species-genetic diversity correlations (i.e., α- and β-SGDCs) in a Chinese subtropical forest. For this purpose, we used neutral molecular markers to assess genetic variation in almost all adult individuals of the dominant tree species, Lithocarpus xylocarpus, across plots in the Ailaoshan National Natural Reserve. We also quantified microhabitat variation by quantifying canopy structure heterogeneity with airborne laser scanning on 20 1-ha subtropical forest plots. We found that species α-diversity was negatively correlated with genetic α-diversity. Canopy structural heterogeneity was positively correlated with species α-diversity but negatively correlated with genetic α-diversity. These contrasting effects contributed to the formation of a negative α-SGDC. Further, we found that canopy structural heterogeneity increases species α-diversity and decreases genetic α-diversity by reducing the population size of target species. Species β-diversity, in contrast, was positively correlated with genetic β-diversity. Differences in canopy structural heterogeneity between plots had non-linear parallel effects on the two levels of β-diversity, while geographic distance had a relatively weak effect on β-SGDC. Our study indicates that canopy structural heterogeneity simultaneously affects plot-level community species diversity and population genetic diversity, and species and genetic turnover across plots, thus driving α- and β-SGDCs.
{"title":"Canopy structural heterogeneity drives α and β species-genetic diversity correlations in a Chinese subtropical forest.","authors":"Zhiliang Yao, Xia Pan, Xin Yang, Xiaona Shao, Bin Wang, Yun Deng, Zhiming Zhang, Qiaoming Li, Luxiang Lin","doi":"10.1016/j.pld.2024.08.003","DOIUrl":"10.1016/j.pld.2024.08.003","url":null,"abstract":"<p><p>Patterns and drivers of species-genetic diversity correlations (SGDCs) have been broadly examined across taxa and ecosystems and greatly deepen our understanding of how biodiversity is maintained. However, few studies have examined the role of canopy structural heterogeneity, which is a defining feature of forests, in shaping SGDCs. Here, we determine what factors contribute to α- and β-species-genetic diversity correlations (i.e., α- and β-SGDCs) in a Chinese subtropical forest. For this purpose, we used neutral molecular markers to assess genetic variation in almost all adult individuals of the dominant tree species, <i>Lithocarpus xylocarpus</i>, across plots in the Ailaoshan National Natural Reserve. We also quantified microhabitat variation by quantifying canopy structure heterogeneity with airborne laser scanning on 20 1-ha subtropical forest plots. We found that species α-diversity was negatively correlated with genetic α-diversity. Canopy structural heterogeneity was positively correlated with species α-diversity but negatively correlated with genetic α-diversity. These contrasting effects contributed to the formation of a negative α-SGDC. Further, we found that canopy structural heterogeneity increases species α-diversity and decreases genetic α-diversity by reducing the population size of target species. Species β-diversity, in contrast, was positively correlated with genetic β-diversity. Differences in canopy structural heterogeneity between plots had non-linear parallel effects on the two levels of β-diversity, while geographic distance had a relatively weak effect on β-SGDC. Our study indicates that canopy structural heterogeneity simultaneously affects plot-level community species diversity and population genetic diversity, and species and genetic turnover across plots, thus driving α- and β-SGDCs.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 1","pages":"106-114"},"PeriodicalIF":4.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05eCollection Date: 2024-11-01DOI: 10.1016/j.pld.2024.08.002
Miao Liu, Tiancai Zhou, Quansheng Fu
Leaf nitrogen (N) and phosphorus (P) levels provide critical strategies for plant adaptions to changing environments. However, it is unclear whether leaf N and P levels of different plant functional groups (e.g., monocots and dicots) respond to environmental gradients in a generalizable pattern. Here, we used a global database of leaf N and P to determine whether monocots and dicots might have evolved contrasting strategies to balance N and P in response to changes in climate and soil nutrient availability. Specifically, we characterized global patterns of leaf N, P and N/P ratio in monocots and dicots, and explored the sensitivity of stoichiometry to environment factors in these plants. Our results indicate that leaf N and P levels responded to environmental factors differently in monocots than in dicots. In dicots, variations of leaf N, P and N/P ratio were significantly correlated to temperature and precipitation. In monocots, leaf N/P ratio was not significantly affected by temperature or precipitation. This indicates that leaf N, P and N/P ratio are less sensitive to environmental dynamics in monocots. We also found that in both monocots and dicots N/P ratios are associated with the availability of soil total P rather than soil total N, indicating that P limitation on plant growth is pervasive globally. In addition, there were significant phylogenetic signals for leaf N (λ = 0.65), P (λ = 0.57) and N/P ratio (λ = 0.46) in dicots, however, only significant phylogenetic signals for leaf P in monocots. Taken together, our findings indicate that monocots exhibit a "conservative" strategy (high stoichiometric homeostasis and weak phylogenetic signals in stoichiometry) to maintain their growth in stressful conditions with lower water and soil nutrients. In contrast, dicots exhibit lower stoichiometric homeostasis in changing environments because of their wide climate-soil niches and significant phylogenetic signals in stoichiometry.
{"title":"Leaf nitrogen and phosphorus are more sensitive to environmental factors in dicots than in monocots, globally.","authors":"Miao Liu, Tiancai Zhou, Quansheng Fu","doi":"10.1016/j.pld.2024.08.002","DOIUrl":"10.1016/j.pld.2024.08.002","url":null,"abstract":"<p><p>Leaf nitrogen (N) and phosphorus (P) levels provide critical strategies for plant adaptions to changing environments. However, it is unclear whether leaf N and P levels of different plant functional groups (e.g., monocots and dicots) respond to environmental gradients in a generalizable pattern. Here, we used a global database of leaf N and P to determine whether monocots and dicots might have evolved contrasting strategies to balance N and P in response to changes in climate and soil nutrient availability. Specifically, we characterized global patterns of leaf N, P and N/P ratio in monocots and dicots, and explored the sensitivity of stoichiometry to environment factors in these plants. Our results indicate that leaf N and P levels responded to environmental factors differently in monocots than in dicots. In dicots, variations of leaf N, P and N/P ratio were significantly correlated to temperature and precipitation. In monocots, leaf N/P ratio was not significantly affected by temperature or precipitation. This indicates that leaf N, P and N/P ratio are less sensitive to environmental dynamics in monocots. We also found that in both monocots and dicots N/P ratios are associated with the availability of soil total P rather than soil total N, indicating that P limitation on plant growth is pervasive globally. In addition, there were significant phylogenetic signals for leaf N (λ = 0.65), P (λ = 0.57) and N/P ratio (λ = 0.46) in dicots, however, only significant phylogenetic signals for leaf P in monocots. Taken together, our findings indicate that monocots exhibit a \"conservative\" strategy (high stoichiometric homeostasis and weak phylogenetic signals in stoichiometry) to maintain their growth in stressful conditions with lower water and soil nutrients. In contrast, dicots exhibit lower stoichiometric homeostasis in changing environments because of their wide climate-soil niches and significant phylogenetic signals in stoichiometry.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 6","pages":"804-811"},"PeriodicalIF":4.6,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30eCollection Date: 2025-01-01DOI: 10.1016/j.pld.2024.07.010
Zheng-Yu Zuo, Germinal Rouhan, Shi-Yong Dong, Hong-Mei Liu, Xin-Yu Du, Li-Bing Zhang, Jin-Mei Lu
Dryopteridaceae are the largest fern family and include nearly 20% of extant fern diversity, with 24 currently recognized genera. Recognition and delineation of genera within this family have varied greatly. The three-subfamily classification of Dryopteridaceae was based primarily on molecular phylogenetic relationships but lacked morphological evidence, and the phylogenetic relationships of the subfamilies and genera of Dryopteridaceae are only partially resolved. A comprehensive and robust phylogeny is urgently needed. The heterogeneous morphology of the current members of Dryopteridaceae makes the family and its subfamilies difficult to define by single morphological characteristics or even character combinations. We carried out phylogenetic analyses to reconstruct a highly supported phylogeny of Dryopteridaceae. Our analyses recovered 24 strongly supported clades grouped into seven major clades of Dryopteridaceae. Seven morphological characters including habit, rhizome shape, frond morphology, rachis-costae architecture, appendages on stipe base and lamina, and soral arrangement were found to be informative for identifying different major clades and clades in Dryopteridaceae. Based on phylogenetic reconstruction and morphological analysis, we presented an updated infra-familial classification of Dryopteridaceae with seven subfamilies and 24 genera including four newly proposed subfamilies (Ctenitidoideae, Lastreopsidoideae, Pleocnemioideae, and Polystichopsidoideae). Morphological character combinations of each subfamily are summarized, and a key is provided. Most genera sensu PPG I are recognized, with Stigmatopetris reclassified into Dryopteridoideae and Arthrobotrya considered a synonym of Teratophyllum. A new genus Pseudarachniodes is introduced. This revised classification will serve as a foundational framework for future investigations on taxonomy, biogeography, and diversification of the most species-rich Dryopteridaceae in ferns.
{"title":"A revised classification of Dryopteridaceae based on plastome phylogenomics and morphological evidence, with the description of a new genus, <i>Pseudarachniodes</i>.","authors":"Zheng-Yu Zuo, Germinal Rouhan, Shi-Yong Dong, Hong-Mei Liu, Xin-Yu Du, Li-Bing Zhang, Jin-Mei Lu","doi":"10.1016/j.pld.2024.07.010","DOIUrl":"10.1016/j.pld.2024.07.010","url":null,"abstract":"<p><p>Dryopteridaceae are the largest fern family and include nearly 20% of extant fern diversity, with 24 currently recognized genera. Recognition and delineation of genera within this family have varied greatly. The three-subfamily classification of Dryopteridaceae was based primarily on molecular phylogenetic relationships but lacked morphological evidence, and the phylogenetic relationships of the subfamilies and genera of Dryopteridaceae are only partially resolved. A comprehensive and robust phylogeny is urgently needed. The heterogeneous morphology of the current members of Dryopteridaceae makes the family and its subfamilies difficult to define by single morphological characteristics or even character combinations. We carried out phylogenetic analyses to reconstruct a highly supported phylogeny of Dryopteridaceae. Our analyses recovered 24 strongly supported clades grouped into seven major clades of Dryopteridaceae. Seven morphological characters including habit, rhizome shape, frond morphology, rachis-costae architecture, appendages on stipe base and lamina, and soral arrangement were found to be informative for identifying different major clades and clades in Dryopteridaceae. Based on phylogenetic reconstruction and morphological analysis, we presented an updated infra-familial classification of Dryopteridaceae with seven subfamilies and 24 genera including four newly proposed subfamilies (Ctenitidoideae, Lastreopsidoideae, Pleocnemioideae, and Polystichopsidoideae). Morphological character combinations of each subfamily are summarized, and a key is provided. Most genera sensu PPG I are recognized, with <i>Stigmatopetris</i> reclassified into Dryopteridoideae and <i>Arthrobotrya</i> considered a synonym of <i>Teratophyllum</i>. A new genus <i>Pseudarachniodes</i> is introduced. This revised classification will serve as a foundational framework for future investigations on taxonomy, biogeography, and diversification of the most species-rich Dryopteridaceae in ferns.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 1","pages":"34-52"},"PeriodicalIF":4.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873575/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21eCollection Date: 2024-11-01DOI: 10.1016/j.pld.2024.06.003
Han-Ning Duan, Yin-Zi Jiang, Jun-Bo Yang, Jie Cai, Jian-Li Zhao, Lu Li, Xiang-Qin Yu
Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants. However, conserved DNA barcoding markers, including complete plastid genome and nuclear ribosomal DNA (nrDNA) sequences, are inadequate for accurate species identification. Skmer, a recently proposed approach that estimates genetic distances among species based on unassembled genome skims, has been proposed to effectively improve species discrimination rate. In this study, we used Skmer to identify species based on genomic skims of 47 individuals representing 10 out of 13 species of Schima (Theaceae) from China. The unassembled reads identified six species, with a species identification rate of 60%, twice as high as previous efforts that used plastid genomes (27.27%). In addition, Skmer was able to identify Schima species with only 0.5× sequencing depth, as six species were well-supported with unassembled data sizes as small as 0.5 Gb. These findings demonstrate the potential for Skmer approach in species identification, where nuclear genomic data plays a crucial role. For taxonomically difficult taxa such as Schima, which have diverged recently and have low levels of genetic variation, Skmer is a promising alternative to next generation barcodes.
{"title":"Skmer approach improves species discrimination in taxonomically problematic genus <i>Schima</i> (Theaceae).","authors":"Han-Ning Duan, Yin-Zi Jiang, Jun-Bo Yang, Jie Cai, Jian-Li Zhao, Lu Li, Xiang-Qin Yu","doi":"10.1016/j.pld.2024.06.003","DOIUrl":"10.1016/j.pld.2024.06.003","url":null,"abstract":"<p><p>Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants. However, conserved DNA barcoding markers, including complete plastid genome and nuclear ribosomal DNA (nrDNA) sequences, are inadequate for accurate species identification. Skmer, a recently proposed approach that estimates genetic distances among species based on unassembled genome skims, has been proposed to effectively improve species discrimination rate. In this study, we used Skmer to identify species based on genomic skims of 47 individuals representing 10 out of 13 species of <i>Schima</i> (Theaceae) from China. The unassembled reads identified six species, with a species identification rate of 60%, twice as high as previous efforts that used plastid genomes (27.27%). In addition, Skmer was able to identify <i>Schima</i> species with only 0.5× sequencing depth, as six species were well-supported with unassembled data sizes as small as 0.5 Gb. These findings demonstrate the potential for Skmer approach in species identification, where nuclear genomic data plays a crucial role. For taxonomically difficult taxa such as <i>Schima</i>, which have diverged recently and have low levels of genetic variation, Skmer is a promising alternative to next generation barcodes.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 6","pages":"713-722"},"PeriodicalIF":4.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17eCollection Date: 2024-09-01DOI: 10.1016/j.pld.2024.06.001
Linjiang Ye, Robabeh Shahi Shavvon, Hailing Qi, Hongyu Wu, Pengzhen Fan, Mohammad Nasir Shalizi, Safiullah Khurram, Mamadzhanov Davletbek, Yerlan Turuspekov, Jie Liu
The common walnut (Juglans regia) is one of the most economically important nut trees cultivated worldwide. Despite its importance, no comprehensive evaluation of walnut tree population genetics has been undertaken across the range where it originated, Central Asia. In this study, we investigated the genetic diversity and population structure of 1082 individuals from 46 populations across Central Asia. We found moderate genetic diversity of J. regia across Central Asia, with 46 populations clustered into three groups with a weak relationship between genetic and geographic distance. Our findings reveal that the western Himalaya might be the core region of common walnut genetic diversity in Central Asia and that, except for two populations in Gongliu Wild Walnut Valley, humans might have introduced walnut populations to Xinjiang, China. The observed distribution of the genetic landscape has probably been affected by historical climate fluctuation, breeding system, and prolonged anthropogenic activity. We propose the conservation of the core genetic diversity resources in the western Himalaya and pay special attention to populations from Gongliu in Xinjiang. These findings enhance our understanding of the genetic variation throughout the distribution range of J. regia in Central Asia, which will provide a key prerequisite for evidence-based conservation and management.
{"title":"Population genetic insights into the conservation of common walnut (<i>Juglans regia</i>) in Central Asia.","authors":"Linjiang Ye, Robabeh Shahi Shavvon, Hailing Qi, Hongyu Wu, Pengzhen Fan, Mohammad Nasir Shalizi, Safiullah Khurram, Mamadzhanov Davletbek, Yerlan Turuspekov, Jie Liu","doi":"10.1016/j.pld.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.pld.2024.06.001","url":null,"abstract":"<p><p>The common walnut (<i>Juglans regia</i>) is one of the most economically important nut trees cultivated worldwide. Despite its importance, no comprehensive evaluation of walnut tree population genetics has been undertaken across the range where it originated, Central Asia. In this study, we investigated the genetic diversity and population structure of 1082 individuals from 46 populations across Central Asia. We found moderate genetic diversity of <i>J. regia</i> across Central Asia, with 46 populations clustered into three groups with a weak relationship between genetic and geographic distance. Our findings reveal that the western Himalaya might be the core region of common walnut genetic diversity in Central Asia and that, except for two populations in Gongliu Wild Walnut Valley, humans might have introduced walnut populations to Xinjiang, China. The observed distribution of the genetic landscape has probably been affected by historical climate fluctuation, breeding system, and prolonged anthropogenic activity. We propose the conservation of the core genetic diversity resources in the western Himalaya and pay special attention to populations from Gongliu in Xinjiang. These findings enhance our understanding of the genetic variation throughout the distribution range of <i>J</i>. <i>regia</i> in Central Asia, which will provide a key prerequisite for evidence-based conservation and management.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 5","pages":"600-610"},"PeriodicalIF":4.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-25eCollection Date: 2024-07-01DOI: 10.1016/j.pld.2024.05.005
Yanjun Du, Rongchen Zhang, Xinran Tang, Xinyang Wang, Lingfeng Mao, Guoke Chen, Jiangshan Lai, Keping Ma
The timing of flowering is an important driver of species distribution and community assembly patterns. However, we still have much to learn about the factors that shape flowering diversity (i.e., number of species flowering per period) in plant communities. One potential explanation of flowering diversity is the mid-domain effect, which states that geometric constraints on species ranges within a bounded domain (space or time) will yield a mid-domain peak in diversity regardless of ecological factors. Here, we determine whether the mid-domain effect explains peak flowering time (i.e., when most species of communities are flowering) across China. We used phenological data of 16,267 herbaceous and woody species from the provincial Flora in China and species distribution data from the Chinese Vascular Plant Distribution Database to determine relationships between the observed number of species flowering and the number of species flowering as predicted by the mid-domain effect model, as well as between three climatic variables (mean minimum monthly temperature, mean monthly precipitation, and mean monthly sunshine duration). We found that the mid-domain effect explained a significant proportion of the temporal variation in flowering diversity across all species in China. Further, the mid-domain effect explained a greater proportion of variance in flowering diversity at higher latitudes than at lower latitudes. The patterns of flowering diversity for both herbaceous and woody species were related to both the mid-domain effect and environmental variables. Our findings indicate that including geometric constraints in conjunction with abiotic and biotic predictors will improve predictions of flowering diversity patterns.
{"title":"The mid-domain effect in flowering phenology.","authors":"Yanjun Du, Rongchen Zhang, Xinran Tang, Xinyang Wang, Lingfeng Mao, Guoke Chen, Jiangshan Lai, Keping Ma","doi":"10.1016/j.pld.2024.05.005","DOIUrl":"https://doi.org/10.1016/j.pld.2024.05.005","url":null,"abstract":"<p><p>The timing of flowering is an important driver of species distribution and community assembly patterns. However, we still have much to learn about the factors that shape flowering diversity (i.e., number of species flowering per period) in plant communities. One potential explanation of flowering diversity is the mid-domain effect, which states that geometric constraints on species ranges within a bounded domain (space or time) will yield a mid-domain peak in diversity regardless of ecological factors. Here, we determine whether the mid-domain effect explains peak flowering time (i.e., when most species of communities are flowering) across China. We used phenological data of 16,267 herbaceous and woody species from the provincial <i>Flora</i> in China and species distribution data from the Chinese Vascular Plant Distribution Database to determine relationships between the observed number of species flowering and the number of species flowering as predicted by the mid-domain effect model, as well as between three climatic variables (mean minimum monthly temperature, mean monthly precipitation, and mean monthly sunshine duration). We found that the mid-domain effect explained a significant proportion of the temporal variation in flowering diversity across all species in China. Further, the mid-domain effect explained a greater proportion of variance in flowering diversity at higher latitudes than at lower latitudes. The patterns of flowering diversity for both herbaceous and woody species were related to both the mid-domain effect and environmental variables. Our findings indicate that including geometric constraints in conjunction with abiotic and biotic predictors will improve predictions of flowering diversity patterns.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 4","pages":"502-509"},"PeriodicalIF":4.6,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29eCollection Date: 2024-07-01DOI: 10.1016/j.pld.2024.04.011
Yue Zhao, Ya-Ping Chen, Bryan T Drew, Fei Zhao, Maryam Almasi, Orzimat T Turginov, Jin-Fei Xiao, Abdul G Karimi, Yasaman Salmaki, Xiang-Qin Yu, Chun-Lei Xiang
Phlomoides, with 150-170 species, is the second largest and perhaps most taxonomically challenging genus within the subfamily Lamioideae (Lamiaceae). With about 60 species, China is one of three major biodiversity centers of Phlomoides. Although some Phlomoides species from China have been included in previous molecular phylogenetic studies, a robust and broad phylogeny of this lineage has yet to be completed. Moreover, given the myriad new additions to the genus, the existing infrageneric classification needs to be evaluated and revised. Here, we combine molecular and morphological data to investigate relationships within Phlomoides, with a focus on Chinese species. We observed that plastid DNA sequences can resolve relationships within Phlomoides better than nuclear ribosomal internal and external transcribed spacer regions (nrITS and nrETS). Molecular phylogenetic analyses confirm the monophyly of Phlomoides, but most previously defined infrageneric groups are not monophyletic. In addition, morphological analysis demonstrates the significant taxonomic value of eight characters to the genus. Based on our molecular phylogenetic analyses and morphological data, we establish a novel section Notochaete within Phlomoides, and propose three new combinations as well as three new synonyms. This study presents the first molecular phylogenetic analyses of Phlomoides in which taxa representative of the entire genus are included, and highlights the phylogenetic and taxonomic value of several morphological characters from species of Phlomoides from China. Our study suggests that a taxonomic revision and reclassification for the entire genus is necessary in the future.
{"title":"Molecular phylogeny and taxonomy of <i>Phlomoides</i> (Lamiaceae subfamily Lamioideae) in China: Insights from molecular and morphological data.","authors":"Yue Zhao, Ya-Ping Chen, Bryan T Drew, Fei Zhao, Maryam Almasi, Orzimat T Turginov, Jin-Fei Xiao, Abdul G Karimi, Yasaman Salmaki, Xiang-Qin Yu, Chun-Lei Xiang","doi":"10.1016/j.pld.2024.04.011","DOIUrl":"https://doi.org/10.1016/j.pld.2024.04.011","url":null,"abstract":"<p><p><i>Phlomoides</i>, with 150-170 species, is the second largest and perhaps most taxonomically challenging genus within the subfamily Lamioideae (Lamiaceae). With about 60 species, China is one of three major biodiversity centers of <i>Phlomoides</i>. Although some <i>Phlomoides</i> species from China have been included in previous molecular phylogenetic studies, a robust and broad phylogeny of this lineage has yet to be completed. Moreover, given the myriad new additions to the genus, the existing infrageneric classification needs to be evaluated and revised. Here, we combine molecular and morphological data to investigate relationships within <i>Phlomoides</i>, with a focus on Chinese species. We observed that plastid DNA sequences can resolve relationships within <i>Phlomoides</i> better than nuclear ribosomal internal and external transcribed spacer regions (nrITS and nrETS). Molecular phylogenetic analyses confirm the monophyly of <i>Phlomoides</i>, but most previously defined infrageneric groups are not monophyletic. In addition, morphological analysis demonstrates the significant taxonomic value of eight characters to the genus. Based on our molecular phylogenetic analyses and morphological data, we establish a novel section <i>Notochaete</i> within <i>Phlomoides</i>, and propose three new combinations as well as three new synonyms. This study presents the first molecular phylogenetic analyses of <i>Phlomoides</i> in which taxa representative of the entire genus are included, and highlights the phylogenetic and taxonomic value of several morphological characters from species of <i>Phlomoides</i> from China. Our study suggests that a taxonomic revision and reclassification for the entire genus is necessary in the future.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 4","pages":"462-475"},"PeriodicalIF":4.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-26eCollection Date: 2024-09-01DOI: 10.1016/j.pld.2024.04.009
Tana Wuyun, Lu Zhang, Tiina Tosens, Bin Liu, Kristiina Mark, José Ángel Morales-Sánchez, Jesamine Jöneva Rikisahedew, Vivian Kuusk, Ülo Niinemets
Leaf economics spectrum (LES) describes the fundamental trade-offs between leaf structural, chemical, and physiological investments. Generally, structurally robust thick leaves with high leaf dry mass per unit area (LMA) exhibit lower photosynthetic capacity per dry mass (Amass). Paradoxically, "soft and thin-leaved" mosses and spikemosses have very low Amass, but due to minute-size foliage elements, their LMA and its components, leaf thickness (LT) and density (LD), have not been systematically estimated. Here, we characterized LES and associated traits in cryptogams in unprecedented details, covering five evolutionarily different lineages. We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants. Across a broad range of species from different lineages, Amass and LD were negatively correlated. In contrast, Amass was only related to LMA when LMA was greater than 14 g cm-2. In fact, low Amass reflected high LD and cell wall thickness in the studied cryptogams. We conclude that evolutionarily old plant lineages attained poorly differentiated, ultrathin mesophyll by increasing LD. Across plant lineages, LD, not LMA, is the trait that represents the trade-off between leaf robustness and physiology in the LES.
叶片经济光谱(LES)描述了叶片结构、化学和生理投资之间的基本权衡。一般来说,结构坚固的厚叶单位面积干重(LMA)较高,单位干重的光合能力(A 重)较低。矛盾的是,"柔弱薄叶 "苔藓和尖叶苔藓的单位干重很低,但由于叶片元素的微小尺寸,它们的单位干重及其组成部分--叶片厚度(LT)和密度(LD)--尚未得到系统的估算。在这里,我们对隐花植物的 LES 及其相关性状进行了前所未有的详细描述,涵盖了五个进化上不同的品系。我们发现,苔藓和尖叶苔藓的 LMA 和 LT 值是陆生植物中最低的。在不同品系的众多物种中,A质量和LD呈负相关。事实上,在所研究的隐花植物中,低 A 质量反映了高 LD 和细胞壁厚度。我们的结论是,进化过程中的古老植物种系通过增加 LD 获得了分化程度低的超薄叶肉。在所有植物品系中,LD 而不是 LMA 是代表叶片坚固性和 LES 生理机能之间权衡的特征。
{"title":"Extremely thin but very robust: Surprising cryptogam trait combinations at the end of the leaf economics spectrum.","authors":"Tana Wuyun, Lu Zhang, Tiina Tosens, Bin Liu, Kristiina Mark, José Ángel Morales-Sánchez, Jesamine Jöneva Rikisahedew, Vivian Kuusk, Ülo Niinemets","doi":"10.1016/j.pld.2024.04.009","DOIUrl":"https://doi.org/10.1016/j.pld.2024.04.009","url":null,"abstract":"<p><p>Leaf economics spectrum (LES) describes the fundamental trade-offs between leaf structural, chemical, and physiological investments. Generally, structurally robust thick leaves with high leaf dry mass per unit area (LMA) exhibit lower photosynthetic capacity per dry mass (<i>A</i> <sub>mass</sub>). Paradoxically, \"soft and thin-leaved\" mosses and spikemosses have very low <i>A</i> <sub>mass</sub>, but due to minute-size foliage elements, their LMA and its components, leaf thickness (LT) and density (LD), have not been systematically estimated. Here, we characterized LES and associated traits in cryptogams in unprecedented details, covering five evolutionarily different lineages. We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants. Across a broad range of species from different lineages, <i>A</i> <sub>mass</sub> and LD were negatively correlated. In contrast, <i>A</i> <sub>mass</sub> was only related to LMA when LMA was greater than 14 g cm<sup>-</sup> <sup>2</sup>. In fact, low <i>A</i> <sub>mass</sub> reflected high LD and cell wall thickness in the studied cryptogams. We conclude that evolutionarily old plant lineages attained poorly differentiated, ultrathin mesophyll by increasing LD. Across plant lineages, LD, not LMA, is the trait that represents the trade-off between leaf robustness and physiology in the LES.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"46 5","pages":"621-629"},"PeriodicalIF":4.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}