Xindong Yao, Martin Pachner, Leopold Rittler, Volker Hahn, Willmar Leiser, Christine Riedel, Raluca Rezi, Claude‐Alain Bétrix, Jerzy Nawracała, Inna Temchenko, Vuk Đorđević, Li‐Juan Qiu, Johann Vollmann
Genetic adaptation of soybean phenological stages to high‐latitude long‐day environments is the major pre‐requisite for enhancing regional plant‐based protein production. Both E‐genes controlling flowering and growing environment determine timing of flowering and maturity, and E‐gene composition might differ between Chinese and European soybeans bearing the potential for improving adaptability. Therefore, 140 early maturity elite soybean cultivars of either Chinese or European origin were genotyped for the E1 to E4 flowering loci, and genotypes were tested across 17 European environments spanning a latitude range from 45 to 52°N in order to determine effects of various E‐allele combinations. Differences in E‐allele composition between Chinese and European cultivars were largest for the loci E1 and E3. Wild‐type alleles significantly delayed flowering, and effects of particular E‐alleles were depending on geographic latitude. Consequently, photoperiod‐insensitive E‐haplotypes carrying several non‐functional alleles proved to be suitable for cultivation in higher latitudes, whereas photoperiod‐sensitive late‐maturity E‐haplotypes are adapted to lower latitudes only. Thus, breeding for new E‐haplotypes through combining Chinese and European alleles could enhance the potential for further soybean adaptation to northern growing regions.
大豆物候期对高纬度长日照环境的遗传适应是提高地区植物性蛋白质产量的主要前提。控制开花的 E 基因和生长环境都决定了大豆开花和成熟的时间,而中国大豆和欧洲大豆的 E 基因组成可能存在差异,这有可能提高大豆的适应性。因此,对中国或欧洲的 140 个早熟优良大豆栽培品种的 E1 至 E4 开花基因座进行了基因分型,并在北纬 45 至 52° 的 17 个欧洲环境中对基因型进行了测试,以确定各种 E 基因等位基因组合的影响。中国和欧洲栽培品种之间的 E-等位基因组成差异在 E1 和 E3 位点上最大。野生型等位基因会明显延迟开花,而特定 E-等位基因的影响则取决于地理纬度。因此,携带多个无功能等位基因的对光周期不敏感的E单倍型被证明适合在较高纬度地区种植,而对光周期敏感的晚熟E单倍型只适应较低纬度地区。因此,通过结合中国和欧洲的等位基因培育新的 E 单倍型可提高大豆进一步适应北方种植区的潜力。
{"title":"Genetic adaptation of phenological stages in Chinese and European elite soybeans (Glycine max [L.] Merr.) across latitudes in Central Europe","authors":"Xindong Yao, Martin Pachner, Leopold Rittler, Volker Hahn, Willmar Leiser, Christine Riedel, Raluca Rezi, Claude‐Alain Bétrix, Jerzy Nawracała, Inna Temchenko, Vuk Đorđević, Li‐Juan Qiu, Johann Vollmann","doi":"10.1111/pbr.13197","DOIUrl":"https://doi.org/10.1111/pbr.13197","url":null,"abstract":"Genetic adaptation of soybean phenological stages to high‐latitude long‐day environments is the major pre‐requisite for enhancing regional plant‐based protein production. Both <jats:italic>E</jats:italic>‐genes controlling flowering and growing environment determine timing of flowering and maturity, and <jats:italic>E</jats:italic>‐gene composition might differ between Chinese and European soybeans bearing the potential for improving adaptability. Therefore, 140 early maturity elite soybean cultivars of either Chinese or European origin were genotyped for the <jats:italic>E1</jats:italic> to <jats:italic>E4</jats:italic> flowering loci, and genotypes were tested across 17 European environments spanning a latitude range from 45 to 52°N in order to determine effects of various <jats:italic>E</jats:italic>‐allele combinations. Differences in <jats:italic>E</jats:italic>‐allele composition between Chinese and European cultivars were largest for the loci <jats:italic>E1</jats:italic> and <jats:italic>E3</jats:italic>. Wild‐type alleles significantly delayed flowering, and effects of particular <jats:italic>E</jats:italic>‐alleles were depending on geographic latitude. Consequently, photoperiod‐insensitive <jats:italic>E</jats:italic>‐haplotypes carrying several non‐functional alleles proved to be suitable for cultivation in higher latitudes, whereas photoperiod‐sensitive late‐maturity <jats:italic>E</jats:italic>‐haplotypes are adapted to lower latitudes only. Thus, breeding for new <jats:italic>E</jats:italic>‐haplotypes through combining Chinese and European alleles could enhance the potential for further soybean adaptation to northern growing regions.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"31 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141572721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present study, the aim was to predict and validate putative candidate genes underlying drought‐tolerant quantitative trait loci (QTLs) in rice crop using in silico approaches and real‐time polymerase chain reaction (RT‐PCR). The genes underlying major drought‐tolerant QTLs which have been reported by data mining, sequence variation, gene ontology analysis, quantitative traits gene finder and gene expression analysis were subjected to RiceVarmap software to design primers, and only a few variants gave the SNP/InDel primers; thus, finally, 15 primers were ultimately selected, which were used in identification of differentially expressed genes (DEGs) among contrasting rice genotypes IR 64 and N 22 for drought tolerance trait using quantitative RT‐PCR studies by providing drought stress treatment during panicle initiation stage. In this investigation, we predicted 11 genes as candidate genes underlying drought‐tolerant QTLs. Out of these, only four QTLs were found responsible for the major effect in drought tolerance regions such as QTL‐Qsn‐4b, QTL‐rn7a, QTL‐Qtgw‐2a and QTL‐phc4.1 and 11 prioritized candidates were identified that expressed in leaf tissues. Only four primers belong to two QTLs, primer vg0712623096 from QTL‐rn7a (LOC_Os07g22450) located on chromosome‐7 encoding NAC domain‐containing protein and the primers vg0431750843(LOC_Os04g53310) encoding soluble starch synthase 3‐ chloroplast precursor, vg0432626757 (LOC_Os04g54850) encoding pectin acetylesterase domain‐containing protein and vg0433031562 (LOC_Os04g55520) encoding AP2 domain‐containing protein, from QTL‐Qsn‐4b, located on chromosome‐4 found to have higher differential expression in N 22 in comparison with IR 64 during drought stress as per quantitative RT‐PCR 2–ΔΔCt values. Considering the overall study, these four primers/genes were identified as candidate genes underlying genomic regions governing drought tolerance. Therefore, these putative candidate genes could be focussed for further functional analysis to exploit in rice breeding.
{"title":"Prediction and validation of putative candidate genes underlying drought‐tolerant QTLs through in silico and RT‐PCR approaches in rice (Oryza sativa)","authors":"Priyanka Veerala, Pooran Chand, Tapas Ranjan Das, Lokesh Kumar Gangwar","doi":"10.1111/pbr.13200","DOIUrl":"https://doi.org/10.1111/pbr.13200","url":null,"abstract":"In the present study, the aim was to predict and validate putative candidate genes underlying drought‐tolerant quantitative trait loci (QTLs) in rice crop using in silico approaches and real‐time polymerase chain reaction (RT‐PCR). The genes underlying major drought‐tolerant QTLs which have been reported by data mining, sequence variation, gene ontology analysis, quantitative traits gene finder and gene expression analysis were subjected to RiceVarmap software to design primers, and only a few variants gave the SNP/InDel primers; thus, finally, 15 primers were ultimately selected, which were used in identification of differentially expressed genes (DEGs) among contrasting rice genotypes IR 64 and N 22 for drought tolerance trait using quantitative RT‐PCR studies by providing drought stress treatment during panicle initiation stage. In this investigation, we predicted 11 genes as candidate genes underlying drought‐tolerant QTLs. Out of these, only four QTLs were found responsible for the major effect in drought tolerance regions such as QTL‐Qsn‐4b, QTL‐rn7a, QTL‐Qtgw‐2a and QTL‐phc4.1 and 11 prioritized candidates were identified that expressed in leaf tissues. Only four primers belong to two QTLs, primer vg0712623096 from QTL‐rn7a (LOC_Os07g22450) located on chromosome‐7 encoding NAC domain‐containing protein and the primers vg0431750843(LOC_Os04g53310) encoding soluble starch synthase 3‐ chloroplast precursor, vg0432626757 (LOC_Os04g54850) encoding pectin acetylesterase domain‐containing protein and vg0433031562 (LOC_Os04g55520) encoding AP2 domain‐containing protein, from QTL‐Qsn‐4b, located on chromosome‐4 found to have higher differential expression in N 22 in comparison with IR 64 during drought stress as per quantitative RT‐PCR 2<jats:sup>–ΔΔCt</jats:sup> values. Considering the overall study, these four primers/genes were identified as candidate genes underlying genomic regions governing drought tolerance. Therefore, these putative candidate genes could be focussed for further functional analysis to exploit in rice breeding.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"61 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141518568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. M. Rahevar, R. M. Chauhan, P. T. Patel, M. P. Patel, H. S. Bhadauria, S. D. Solanki, Y. A. Viradiya, R. A. Gami, S. J. Vaghela
Heterosis has long been harnessed in crop production, and while crop fertility lays the groundwork for leveraging heterosis, there remains a dearth of comprehensive data regarding genic male sterility in mungbean. Mungbean (Vigna radiata (L.) Wilczek), being a self‐pollinating crop, exhibits significant hybrid vigour in F1 hybrid seed yield, suggesting the potential for developing hybrid varieties to propel mungbean yield beyond existing plateaus. A new male sterile mutant was induced, isolated, stabilized and evaluated, via gamma irradiation at a rate of 600 Gy, identified in the M3 generation of the GM 4 accession. A uniform male sterile line was crossbred with the wild‐type parental plant to explore the inheritance pattern of male sterility. Pollen sterility was validated through the acetocarmine test, while stigma viability was ascertained using the hydrogen peroxide. While all F1 plants displayed fertile flowers, the F2 generation showed a clear 3:1 segregation ratio for fertile to male sterile plants, indicating the control of male sterility by a single recessive gene, mms. Also, a novel existence of a truncated stigma nestled within the anther column inhibits the effective reception of pollen during anthesis, offering potential in reducing emasculation time by a slight cut on the flower bud and enhancing cross pollination during hybrid seed production. The isolation of these two mutants is poised to significantly advance the global mungbean hybrid breeding programme.
长期以来,作物生产中一直在利用异交现象,而作物生育力为利用异交现象奠定了基础,但有关绿豆基因雄性不育的全面数据仍然匮乏。绿豆(Vigna radiata (L.) Wilczek)是一种自花授粉作物,在 F1 代杂交种子产量中表现出显著的杂种活力,这表明开发杂交品种有可能推动绿豆产量超越现有的高原水平。通过 600 Gy 伽马辐照,在转基因 4 号的 M3 代中诱导、分离、稳定和评估了一个新的雄性不育突变体。雄性不育系与野生型亲本杂交,以探索雄性不育的遗传模式。花粉不育是通过乙酰卡明试验验证的,而柱头活力则是通过过氧化氢来确定的。虽然所有 F1 植株都开出了可育花,但 F2 代可育株与雄性不育株的分离比为 3:1,表明雄性不育受单个隐性基因 mms 控制。此外,存在于花药柱内的截短柱头抑制了花粉在花期的有效接收,通过对花蕾的轻微切割缩短了退雄时间,并提高了杂交种子生产过程中的异花授粉。这两个突变体的分离将极大地推动全球绿豆杂交育种计划。
{"title":"Isolation and evaluation of novel male sterile and self‐incompatible mutant lines of mungbean (Vigna radiata L.)","authors":"P. M. Rahevar, R. M. Chauhan, P. T. Patel, M. P. Patel, H. S. Bhadauria, S. D. Solanki, Y. A. Viradiya, R. A. Gami, S. J. Vaghela","doi":"10.1111/pbr.13199","DOIUrl":"https://doi.org/10.1111/pbr.13199","url":null,"abstract":"Heterosis has long been harnessed in crop production, and while crop fertility lays the groundwork for leveraging heterosis, there remains a dearth of comprehensive data regarding genic male sterility in mungbean. Mungbean (<jats:styled-content style=\"fixed-case\"><jats:italic>Vigna radiata</jats:italic></jats:styled-content> (L.) Wilczek), being a self‐pollinating crop, exhibits significant hybrid vigour in F<jats:sub>1</jats:sub> hybrid seed yield, suggesting the potential for developing hybrid varieties to propel mungbean yield beyond existing plateaus. A new male sterile mutant was induced, isolated, stabilized and evaluated, via gamma irradiation at a rate of 600 Gy, identified in the M<jats:sub>3</jats:sub> generation of the GM 4 accession. A uniform male sterile line was crossbred with the wild‐type parental plant to explore the inheritance pattern of male sterility. Pollen sterility was validated through the acetocarmine test, while stigma viability was ascertained using the hydrogen peroxide. While all F<jats:sub>1</jats:sub> plants displayed fertile flowers, the F<jats:sub>2</jats:sub> generation showed a clear 3:1 segregation ratio for fertile to male sterile plants, indicating the control of male sterility by a single recessive gene, <jats:italic>mms</jats:italic>. Also, a novel existence of a truncated stigma nestled within the anther column inhibits the effective reception of pollen during anthesis, offering potential in reducing emasculation time by a slight cut on the flower bud and enhancing cross pollination during hybrid seed production. The isolation of these two mutants is poised to significantly advance the global mungbean hybrid breeding programme.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"9 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Poulomi Sen, Shampa Purkaystha, Somnath Bhattacharyya
Erect panicles with enhanced grain numbers can rationally utilize solar energy for dry matter accumulation. Only in japonica cultivars an inactive natural nonsense mutant allele of DEP1 has been reported to pleiotropically improve panicle architecture, nitrogen use efficiency, nitrogen and dry matter translocation and strength of the stem. Genomic sequence comparison of DEP1 in indica, aus and aromatic genotypes of West Bengal led to the identification of four natural allelic variants based on three single nucleotide polymorphisms (SNPs) on intron 1, two SNPs on exon 5 and two deletions on intron 2. Among them, a yield favourable missense mutant allele of DEP1 with two amino acid substitutions from Patnai 23 has been identified, and an allele‐specific co‐dominant marker based on the SNP (A/G) at 333rd position of exon 5 was designed. Assessment of DEP1Patnai 23 allele for yield improvement was examined in RILs and NILs developed from Patnai23 × N22 as N22 carries wild‐type allele. The relative abundance of DEP1 transcript in young panicles was twice as high in Patnai 23 than in N22. RIL‐DEP1Patnai 23 and NIL‐DEP1Patnai 23 showed enhanced grain number per panicle and total yield per plant compared to RIL‐DEP1N22 and NIL‐DEP1N22 allele. This newly identified DEP1 allele and marker will accelerate MAS to improve rice yield precisely.
{"title":"Evaluation of indica‐type DEP1 mutant allele for rice (Oryza sativa) yield improvement and development of allele‐specific co‐dominant marker","authors":"Poulomi Sen, Shampa Purkaystha, Somnath Bhattacharyya","doi":"10.1111/pbr.13195","DOIUrl":"https://doi.org/10.1111/pbr.13195","url":null,"abstract":"Erect panicles with enhanced grain numbers can rationally utilize solar energy for dry matter accumulation. Only in <jats:italic>japonica</jats:italic> cultivars an inactive natural nonsense mutant allele of <jats:italic>DEP1</jats:italic> has been reported to pleiotropically improve panicle architecture, nitrogen use efficiency, nitrogen and dry matter translocation and strength of the stem. Genomic sequence comparison of <jats:italic>DEP1</jats:italic> in <jats:italic>indica</jats:italic>, <jats:italic>aus</jats:italic> and <jats:italic>aromatic</jats:italic> genotypes of West Bengal led to the identification of four natural allelic variants based on three single nucleotide polymorphisms (SNPs) on intron 1, two SNPs on exon 5 and two deletions on intron 2. Among them, a yield favourable missense mutant allele of <jats:italic>DEP1</jats:italic> with two amino acid substitutions from Patnai 23 has been identified, and an allele‐specific co‐dominant marker based on the SNP (A/G) at 333rd position of exon 5 was designed. Assessment of <jats:italic>DEP1</jats:italic>Patnai 23 allele for yield improvement was examined in RILs and NILs developed from Patnai23 × N22 as N22 carries wild‐type allele. The relative abundance of <jats:italic>DEP1</jats:italic> transcript in young panicles was twice as high in Patnai 23 than in N22. RIL‐<jats:italic>DEP1</jats:italic>Patnai 23 and NIL‐<jats:italic>DEP1</jats:italic>Patnai 23 showed enhanced grain number per panicle and total yield per plant compared to RIL‐<jats:italic>DEP1</jats:italic>N22 and NIL‐<jats:italic>DEP1</jats:italic>N22 allele. This newly identified <jats:italic>DEP1</jats:italic> allele and marker will accelerate MAS to improve rice yield precisely.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"58 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. S. Shailaja, Hirenallur Chandappa Lohithaswa, M. S. Sowmya, Mallana Gowdra Mallikarjuna, Santhoshkumari Banakara, T. R. Likhithashree, R. Kirankumar, G. Basanagouda, Nagesh Patne, B. S. Vivek
Maize is an important agricultural crop ensuring food and nutritional security throughout the globe. It is highly sensitive to many of the biotic and abiotic stresses, and among them, drought is the most severe abiotic stress limiting maize production. Climate change tends to worsen this scenario by changing precipitation patterns and decreasing water availability. Hence, the present study was undertaken to identify drought‐tolerant inbred lines under well‐irrigated and managed stress conditions in the field toward developing drought‐resilient maize hybrids. The initial in vitro screening of 65 agronomically elite maize inbred lines was undertaken at 15%, 20%, and 25% polyethylene glycol (PEG) concentrations. Subsequently, the 15 inbreds selected for their promising performance under varying concentrations of PEG were evaluated in the pot (100%, 60%, and 40% of field capacity [FC]) and managed field experiments (moisture stress). Various physiological, biochemical, and yield attributing traits were measured among the inbreds to assess their drought tolerance potential. The analysis of variance in the pot and field experiments indicated significant genotypic differences among the inbreds and genotype × treatment interaction for different traits considered. In the pot experiment, the phenotypic correlation analysis showed a significant positive association of shoot fresh weight with plant height (r = .71), number of leaves (r = .58), relative water content (r = .60), root fresh weight (r = .58), shoot dry weight (r = .60), and SPAD meter readings under (r = .71) moisture stress condition. In the field experiment, the grain yield had a significant positive association with plant height, relative water content, SPAD before stress, ear length, ear girth, kernel rows per ear, kernels per row, and per day productivity under stress. Proline accumulation in inbreds during stress was found to be higher compared to nonstress conditions. The inbred lines CML 505, CML 444, CML 451, CML 504, QM 11408, and MAI 214 were promising for most of the drought tolerance imparting traits. These six inbreds along with four inbreds having low DRI (SKV 50, MAI E2‐163, MAI 16, and MAI E2‐241) were crossed in half diallel manner, and crosses involving low × high or high × low DRI inbreds showed higher grain yield. The current study also revealed the need of combining various physiological and yield attributing traits in drought breeding programmes.
{"title":"Identification of drought tolerant inbred lines and assessment of combining ability in maize (Zea mays L.)","authors":"D. S. Shailaja, Hirenallur Chandappa Lohithaswa, M. S. Sowmya, Mallana Gowdra Mallikarjuna, Santhoshkumari Banakara, T. R. Likhithashree, R. Kirankumar, G. Basanagouda, Nagesh Patne, B. S. Vivek","doi":"10.1111/pbr.13183","DOIUrl":"https://doi.org/10.1111/pbr.13183","url":null,"abstract":"Maize is an important agricultural crop ensuring food and nutritional security throughout the globe. It is highly sensitive to many of the biotic and abiotic stresses, and among them, drought is the most severe abiotic stress limiting maize production. Climate change tends to worsen this scenario by changing precipitation patterns and decreasing water availability. Hence, the present study was undertaken to identify drought‐tolerant inbred lines under well‐irrigated and managed stress conditions in the field toward developing drought‐resilient maize hybrids. The initial in vitro screening of 65 agronomically elite maize inbred lines was undertaken at 15%, 20%, and 25% polyethylene glycol (PEG) concentrations. Subsequently, the 15 inbreds selected for their promising performance under varying concentrations of PEG were evaluated in the pot (100%, 60%, and 40% of field capacity [FC]) and managed field experiments (moisture stress). Various physiological, biochemical, and yield attributing traits were measured among the inbreds to assess their drought tolerance potential. The analysis of variance in the pot and field experiments indicated significant genotypic differences among the inbreds and genotype × treatment interaction for different traits considered. In the pot experiment, the phenotypic correlation analysis showed a significant positive association of shoot fresh weight with plant height (<jats:italic>r</jats:italic> = .71), number of leaves (<jats:italic>r</jats:italic> = .58), relative water content (<jats:italic>r</jats:italic> = .60), root fresh weight (<jats:italic>r</jats:italic> = .58), shoot dry weight (<jats:italic>r</jats:italic> = .60), and SPAD meter readings under (<jats:italic>r</jats:italic> = .71) moisture stress condition. In the field experiment, the grain yield had a significant positive association with plant height, relative water content, SPAD before stress, ear length, ear girth, kernel rows per ear, kernels per row, and per day productivity under stress. Proline accumulation in inbreds during stress was found to be higher compared to nonstress conditions. The inbred lines CML 505, CML 444, CML 451, CML 504, QM 11408, and MAI 214 were promising for most of the drought tolerance imparting traits. These six inbreds along with four inbreds having low DRI (SKV 50, MAI E2‐163, MAI 16, and MAI E2‐241) were crossed in half diallel manner, and crosses involving low × high or high × low DRI inbreds showed higher grain yield. The current study also revealed the need of combining various physiological and yield attributing traits in drought breeding programmes.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"86 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The research reported here was conducted to follow up on observations of durable adult‐plant resistance to net form net blotch in several Australian varieties of barley (Hordeum vulgare L.). Over 11 years, isolates of Pyrenophora teres f. teres were collected and used to inoculate barley varieties. The resistance of five varieties (Clipper, Schooner, Sloop SA, Buloke and Scope) endured until the ninth year. To investigate the genetic control of this durable resistance, doubled haploid lines developed from the F1 generation of a cross between Sloop SA and the susceptible variety Fathom were inoculated with an isolate that appeared fully virulent on Fathom and were evaluated for adult plant resistance. Six quantitative trait loci were mapped: three with resistance from Sloop SA and three with resistance from Fathom. Effects were additive across loci and transgressive segregation provided a few lines with better resistance than Sloop SA. Although the resistance investigated here is no longer effective, insights gained from this research could help guide ongoing efforts in resistance breeding and disease control.
本文报告的研究是为了跟踪观察几个澳大利亚大麦(Hordeum vulgare L.)品种的成株对网斑病的持久抗性。在 11 年的时间里,研究人员收集了赤霉病菌(Pyrenophora teres f. teres)的分离株,并将其接种到大麦品种上。五个品种(Clipper、Schooner、Sloop SA、Buloke 和 Scope)的抗性一直持续到第九年。为了研究这种持久抗性的遗传控制,将 Sloop SA 与易感品种 Fathom 杂交的 F1 代培育出的双倍单倍体株系接种了在 Fathom 上表现出完全毒性的分离株,并对成株抗性进行了评估。绘制了六个数量性状位点:三个来自 Sloop SA 的抗性位点和三个来自 Fathom 的抗性位点。各基因位点的效应是相加的,转基因分离提供了一些抗性优于 Sloop SA 的品系。虽然本文所研究的抗性已不再有效,但从这项研究中获得的启示有助于指导当前的抗性育种和病害防治工作。
{"title":"Adult‐plant resistance to net form net blotch in barley (Hordeum vulgare L.): Durability and genetic control","authors":"Hugh Wallwork, Elysia Vassos, Tara Garrard, Mark Butt, Entesar Abood, Beata Sznajder, Diane Mather","doi":"10.1111/pbr.13191","DOIUrl":"https://doi.org/10.1111/pbr.13191","url":null,"abstract":"The research reported here was conducted to follow up on observations of durable adult‐plant resistance to net form net blotch in several Australian varieties of barley (<jats:styled-content style=\"fixed-case\"><jats:italic>Hordeum vulgare</jats:italic></jats:styled-content> L.). Over 11 years, isolates of <jats:italic>Pyrenophora teres</jats:italic> f. <jats:italic>teres</jats:italic> were collected and used to inoculate barley varieties. The resistance of five varieties (Clipper, Schooner, Sloop SA, Buloke and Scope) endured until the ninth year. To investigate the genetic control of this durable resistance, doubled haploid lines developed from the F<jats:sub>1</jats:sub> generation of a cross between Sloop SA and the susceptible variety Fathom were inoculated with an isolate that appeared fully virulent on Fathom and were evaluated for adult plant resistance. Six quantitative trait loci were mapped: three with resistance from Sloop SA and three with resistance from Fathom. Effects were additive across loci and transgressive segregation provided a few lines with better resistance than Sloop SA. Although the resistance investigated here is no longer effective, insights gained from this research could help guide ongoing efforts in resistance breeding and disease control.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"85 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blue honeysuckle, also named as haskap or honeyberry, an emerging fruit worldwide, with the species being Lonicera L., originating from the north hemisphere, exhibits high genetic heterogeneity and abundant genetic variation in fruit and leaf traits. However, there are few papers on the research progress of blue honeysuckle breeding and cultivars. The International Union for the Protection of New Varieties of Plants (UPOV) is an effective plant variety protection system, and blue honeysuckle cultivars from different countries and regions are registered in the UPOV database. In this review, we summarized the origin, domestication and germplasm collection, breeding categories and supporting techniques of blue honeysuckle, and the information on registered blue honeysuckle cultivars was analysed based on the UPOV database. Finally, the paper put forward the challenges of blue honeysuckle in development, breeding direction and perspectives to promote the development of blue honeysuckle.
{"title":"Breeding trends on blue honeysuckle (Lonicera caerulea L.)","authors":"Liangchuan Guo, Jinli Qiao, Artem Sorokin, Jichuan Li, Dongjun Han, Dong Qin, Junwei Huo","doi":"10.1111/pbr.13190","DOIUrl":"https://doi.org/10.1111/pbr.13190","url":null,"abstract":"Blue honeysuckle, also named as haskap or honeyberry, an emerging fruit worldwide, with the species being <jats:italic>Lonicera</jats:italic> L., originating from the north hemisphere, exhibits high genetic heterogeneity and abundant genetic variation in fruit and leaf traits. However, there are few papers on the research progress of blue honeysuckle breeding and cultivars. The International Union for the Protection of New Varieties of Plants (UPOV) is an effective plant variety protection system, and blue honeysuckle cultivars from different countries and regions are registered in the UPOV database. In this review, we summarized the origin, domestication and germplasm collection, breeding categories and supporting techniques of blue honeysuckle, and the information on registered blue honeysuckle cultivars was analysed based on the UPOV database. Finally, the paper put forward the challenges of blue honeysuckle in development, breeding direction and perspectives to promote the development of blue honeysuckle.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"45 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eunice Vasiter Kesiime, Stanley Tamusange Nkalubo, Mildred Ochwo Ssemakula, Isaac Onziga Dramadri, Clare Mukankusi, Dorothy Nakimbugwe, Richard Edema, Paul Gibson, Arfang Badji
Developing improved common bean varieties with short cooking time (CT) and good canning quality traits (CQTs) is very key for accelerating bean consumption among the urban and middle‐class population. The objective of this study was to assess the genotypic variability and identify single nucleotide polymorphism (SNP) markers associated with CT and CQTs in common bean. A total of 250 common bean accessions were evaluated under field conditions for two seasons using alpha lattice design with two replications. Three months post‐harvest, the dry bean grains were evaluated for CT and CQTs. Significant variation was observed among the 250 common bean accessions tested for both traits. CT ranged from 51 to 215 min, with 11 genotypes cooking in less than 60 min. The percentage total CQTs' score ranged from 41% to 84% with 31 genotypes scoring 76% and above. Forty‐seven significant GWAS signals were detected for CT on chromosomes Pv01, Pv04, Pv05 and Pv11 and CQTs on Pv01, Pv02, Pv03, Pv04, Pv05, Pv06, Pv07, Pv08, Pv10 and Pv11, respectively. Positional candidate genes including Phvul.005G161200 on chromosome Pv05, Phvul.007G2803001 and Phvul.007G280700 on chromosome Pv07 were associated with seed coat colour retention of the canned beans. Besides their usefulness in breeding research, the identified bean genotypes with shorter CT and good CQTs could enhance bean consumption and processing industries.
{"title":"Assessment of genotypic variability and genome‐wide association analysis of cooking time and canning quality traits in common bean (Phaseolus vulgaris L.)","authors":"Eunice Vasiter Kesiime, Stanley Tamusange Nkalubo, Mildred Ochwo Ssemakula, Isaac Onziga Dramadri, Clare Mukankusi, Dorothy Nakimbugwe, Richard Edema, Paul Gibson, Arfang Badji","doi":"10.1111/pbr.13172","DOIUrl":"https://doi.org/10.1111/pbr.13172","url":null,"abstract":"Developing improved common bean varieties with short cooking time (CT) and good canning quality traits (CQTs) is very key for accelerating bean consumption among the urban and middle‐class population. The objective of this study was to assess the genotypic variability and identify single nucleotide polymorphism (SNP) markers associated with CT and CQTs in common bean. A total of 250 common bean accessions were evaluated under field conditions for two seasons using alpha lattice design with two replications. Three months post‐harvest, the dry bean grains were evaluated for CT and CQTs. Significant variation was observed among the 250 common bean accessions tested for both traits. CT ranged from 51 to 215 min, with 11 genotypes cooking in less than 60 min. The percentage total CQTs' score ranged from 41% to 84% with 31 genotypes scoring 76% and above. Forty‐seven significant GWAS signals were detected for CT on chromosomes Pv01, Pv04, Pv05 and Pv11 and CQTs on Pv01, Pv02, Pv03, Pv04, Pv05, Pv06, Pv07, Pv08, Pv10 and Pv11, respectively. Positional candidate genes including Phvul.005G161200 on chromosome Pv05, Phvul.007G2803001 and Phvul.007G280700 on chromosome Pv07 were associated with seed coat colour retention of the canned beans. Besides their usefulness in breeding research, the identified bean genotypes with shorter CT and good CQTs could enhance bean consumption and processing industries.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"35 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fungal diseases cause significant yield loss to wheat production. Septoria tritici blotch (STB), caused by the ascomycete fungus Zymoseptoria trtici, is one of the major fungal diseases affecting wheat production worldwide. In Ethiopia, STB is a severe problem that causes significant yield loss in high and mid‐altitude wheat‐growing areas. The use of resistant varieties is one of the sustainable disease management strategies, particularly for resource‐poor farmers in developing countries. Two hundred and fifty bread wheat genotypes were evaluated to identify septoria tritici resistant genotypes and estimate the extent of genetic variability for resistance to STB and other economically important traits using alpha lattice design under natural infestation in two STB hotspot environments. Analysis of variance revealed highly significant differences among genotypes, environment, and genotype × environment interaction for all traits measured. The genetic coefficient of variance was lower than the phenotypic coefficient of variance for all traits studied, and both test environments showed the influence of the environment on trait expression. High and moderate heritability values were observed for the septoria disease severity parameters, indicating that the STB resistance trait was less influenced by the environment. The days to heading and plant height were inversely correlated with disease severity. This suggests that genotypes with tall plant height and long maturity period could be resistant to septoria tritici blotch through escape mechanisms. Four of the genotypes, namely, G‐215, G‐255, G‐257, and G‐258, were found to be resistant across all locations. These and other promising genotypes will be used in future breeding programmes to select or develop high‐yielding and STB‐resistant bread wheat genotypes that can be deployed in septoria tritici blotch‐prone areas. Highly susceptible genotypes will also be used as controls for STB resistance breeding programmes.
{"title":"Field response and genetic variability of elite spring bread wheat (Triticum aestivum L.) genotypes for septoria tritici blotch under natural infection in Northwest Ethiopia","authors":"Molla Mekonnen Kassie, Tiegist Dejene Abebe, Ermias Abate Desta, Tazebachew Aseress, Wuletaw Tadesse","doi":"10.1111/pbr.13175","DOIUrl":"https://doi.org/10.1111/pbr.13175","url":null,"abstract":"Fungal diseases cause significant yield loss to wheat production. Septoria tritici blotch (STB), caused by the ascomycete fungus <jats:italic>Zymoseptoria trtici</jats:italic>, is one of the major fungal diseases affecting wheat production worldwide. In Ethiopia, STB is a severe problem that causes significant yield loss in high and mid‐altitude wheat‐growing areas. The use of resistant varieties is one of the sustainable disease management strategies, particularly for resource‐poor farmers in developing countries. Two hundred and fifty bread wheat genotypes were evaluated to identify septoria tritici resistant genotypes and estimate the extent of genetic variability for resistance to STB and other economically important traits using alpha lattice design under natural infestation in two STB hotspot environments. Analysis of variance revealed highly significant differences among genotypes, environment, and genotype × environment interaction for all traits measured. The genetic coefficient of variance was lower than the phenotypic coefficient of variance for all traits studied, and both test environments showed the influence of the environment on trait expression. High and moderate heritability values were observed for the septoria disease severity parameters, indicating that the STB resistance trait was less influenced by the environment. The days to heading and plant height were inversely correlated with disease severity. This suggests that genotypes with tall plant height and long maturity period could be resistant to septoria tritici blotch through escape mechanisms. Four of the genotypes, namely, G‐215, G‐255, G‐257, and G‐258, were found to be resistant across all locations. These and other promising genotypes will be used in future breeding programmes to select or develop high‐yielding and STB‐resistant bread wheat genotypes that can be deployed in septoria tritici blotch‐prone areas. Highly susceptible genotypes will also be used as controls for STB resistance breeding programmes.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"59 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luis Carlos da Silva Soares, Jorcélio Cabral Moreira, Gustavo Pucci Botega, Vinicius Quintão Carneiro, Bruno Oliveira Lafetá, Izabel Cristina Rodrigues de Figueiredo, Flávia Maria Avelar Gonçalves
This study addresses the crucial consideration of log end splitting in breeding programmes for treated wood. There is a paucity of research focused on efficiently optimizing the phenotyping process for this particular trait. The study aimed to compare methodologies for log end splitting phenotyping and develop an image‐based crack evaluation approach. Initially, 32 eucalyptus clones underwent phenotyping using manual measurement, digital image analysis and visual evaluation. Results showed similar phenotypic values, but image analysis demonstrated better clone discrimination, reducing evaluation time to 78 h compared to manual measurement. The second part focused on testing convolutional neural network architectures (UNet, LinkNet and FPN) using real and synthetic images. U‐Net exhibited slight superiority based on higher Intersection over Union (IoU) values, exhibiting a high correlation (.89) with true values. This approach significantly reduced evaluation time to approximately 10.15 h, emphasizing its efficiency compared to traditional methods.
{"title":"Phenotyping methodologies of log end splitting in eucalyptus (Eucalyptus spp.)","authors":"Luis Carlos da Silva Soares, Jorcélio Cabral Moreira, Gustavo Pucci Botega, Vinicius Quintão Carneiro, Bruno Oliveira Lafetá, Izabel Cristina Rodrigues de Figueiredo, Flávia Maria Avelar Gonçalves","doi":"10.1111/pbr.13177","DOIUrl":"https://doi.org/10.1111/pbr.13177","url":null,"abstract":"This study addresses the crucial consideration of log end splitting in breeding programmes for treated wood. There is a paucity of research focused on efficiently optimizing the phenotyping process for this particular trait. The study aimed to compare methodologies for log end splitting phenotyping and develop an image‐based crack evaluation approach. Initially, 32 eucalyptus clones underwent phenotyping using manual measurement, digital image analysis and visual evaluation. Results showed similar phenotypic values, but image analysis demonstrated better clone discrimination, reducing evaluation time to 78 h compared to manual measurement. The second part focused on testing convolutional neural network architectures (UNet, LinkNet and FPN) using real and synthetic images. U‐Net exhibited slight superiority based on higher Intersection over Union (IoU) values, exhibiting a high correlation (.89) with true values. This approach significantly reduced evaluation time to approximately 10.15 h, emphasizing its efficiency compared to traditional methods.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"6 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}