首页 > 最新文献

PLoS Biology最新文献

英文 中文
Human neuronal excitation/inhibition balance explains and predicts neurostimulation induced learning benefits. 人类神经元兴奋/抑制平衡解释并预测神经刺激诱导的学习益处。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-31 eCollection Date: 2023-08-01 DOI: 10.1371/journal.pbio.3002193
Nienke E R van Bueren, Sanne H G van der Ven, Shachar Hochman, Francesco Sella, Roi Cohen Kadosh

Previous research has highlighted the role of the excitation/inhibition (E/I) ratio for typical and atypical development, mental health, cognition, and learning. Other research has highlighted the benefits of high-frequency transcranial random noise stimulation (tRNS)-an excitatory form of neurostimulation-on learning. We examined the E/I as a potential mechanism and studied whether tRNS effect on learning depends on E/I as measured by the aperiodic exponent as its putative marker. In addition to manipulating E/I using tRNS, we also manipulated the level of learning (learning/overlearning) that has been shown to influence E/I. Participants (n = 102) received either sham stimulation or 20-minute tRNS over the dorsolateral prefrontal cortex (DLPFC) during a mathematical learning task. We showed that tRNS increased E/I, as reflected by the aperiodic exponent, and that lower E/I predicted greater benefit from tRNS specifically for the learning task. In contrast to previous magnetic resonance spectroscopy (MRS)-based E/I studies, we found no effect of the level of learning on E/I. A further analysis using a different data set suggest that both measures of E/I (EEG versus MRS) may reflect, at least partly, different biological mechanisms. Our results highlight the role of E/I as a marker for neurostimulation efficacy and learning. This mechanistic understanding provides better opportunities for augmented learning and personalized interventions.

先前的研究强调了兴奋/抑制(E/I)比率在典型和非典型发展、心理健康、认知和学习中的作用。其他研究强调了高频经颅随机噪声刺激(tRNS)的好处,tRNS是一种对学习的兴奋性神经刺激形式。我们研究了E/I作为一种潜在机制,并研究了tRNS对学习的影响是否取决于作为其假定标记的非周期指数所测量的E/I。除了使用tRNS操纵E/I外,我们还操纵了已被证明会影响E/I的学习水平(学习/过度学习)。参与者(n=102)在数学学习任务中通过背外侧前额叶皮层(DLPFC)接受假刺激或20分钟tRNS。我们发现,正如非周期指数所反映的那样,tRNS增加了E/I,而较低的E/I预测了tRNS对学习任务的更大益处。与之前基于磁共振波谱(MRS)的E/I研究相比,我们没有发现学习水平对E/I的影响。使用不同数据集的进一步分析表明,E/I(EEG与MRS)的两种测量可能至少部分反映了不同的生物学机制。我们的研究结果强调了E/I作为神经刺激疗效和学习标志物的作用。这种机械的理解为强化学习和个性化干预提供了更好的机会。
{"title":"Human neuronal excitation/inhibition balance explains and predicts neurostimulation induced learning benefits.","authors":"Nienke E R van Bueren,&nbsp;Sanne H G van der Ven,&nbsp;Shachar Hochman,&nbsp;Francesco Sella,&nbsp;Roi Cohen Kadosh","doi":"10.1371/journal.pbio.3002193","DOIUrl":"10.1371/journal.pbio.3002193","url":null,"abstract":"<p><p>Previous research has highlighted the role of the excitation/inhibition (E/I) ratio for typical and atypical development, mental health, cognition, and learning. Other research has highlighted the benefits of high-frequency transcranial random noise stimulation (tRNS)-an excitatory form of neurostimulation-on learning. We examined the E/I as a potential mechanism and studied whether tRNS effect on learning depends on E/I as measured by the aperiodic exponent as its putative marker. In addition to manipulating E/I using tRNS, we also manipulated the level of learning (learning/overlearning) that has been shown to influence E/I. Participants (n = 102) received either sham stimulation or 20-minute tRNS over the dorsolateral prefrontal cortex (DLPFC) during a mathematical learning task. We showed that tRNS increased E/I, as reflected by the aperiodic exponent, and that lower E/I predicted greater benefit from tRNS specifically for the learning task. In contrast to previous magnetic resonance spectroscopy (MRS)-based E/I studies, we found no effect of the level of learning on E/I. A further analysis using a different data set suggest that both measures of E/I (EEG versus MRS) may reflect, at least partly, different biological mechanisms. Our results highlight the role of E/I as a marker for neurostimulation efficacy and learning. This mechanistic understanding provides better opportunities for augmented learning and personalized interventions.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470965/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10153178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rapid structural remodeling of peripheral taste neurons is independent of taste cell turnover. 外周味觉神经元的快速结构重塑与味觉细胞的周转无关。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-31 eCollection Date: 2023-08-01 DOI: 10.1371/journal.pbio.3002271
Zachary D Whiddon, Jaleia B Marshall, David C Alston, Aaron W McGee, Robin F Krimm

Taste bud cells are constantly replaced in taste buds as old cells die and new cells migrate into the bud. The perception of taste relies on new taste bud cells integrating with existing neural circuitry, yet how these new cells connect with a taste ganglion neuron is unknown. Do taste ganglion neurons remodel to accommodate taste bud cell renewal? If so, how much of the structure of taste axons is fixed and how much remodels? Here, we measured the motility and branching of individual taste arbors (the portion of the axon innervating taste buds) in mice over time with two-photon in vivo microscopy. Terminal branches of taste arbors continuously and rapidly remodel within the taste bud. This remodeling is faster than predicted by taste bud cell renewal, with terminal branches added and lost concurrently. Surprisingly, blocking entry of new taste bud cells with chemotherapeutic agents revealed that remodeling of the terminal branches on taste arbors does not rely on the renewal of taste bud cells. Although terminal branch remodeling was fast and intrinsically controlled, no new arbors were added to taste buds, and few were lost over 100 days. Taste ganglion neurons maintain a stable number of arbors that are each capable of high-speed remodeling. We propose that terminal branch plasticity permits arbors to locate new taste bud cells, while stability of arbor number supports constancy in the degree of connectivity and function for each neuron over time.

随着老细胞的死亡和新细胞迁移到味蕾中,味蕾细胞在味蕾中不断被替换。味觉的感知依赖于新的味蕾细胞与现有的神经回路的整合,然而这些新细胞如何与味觉神经节神经元连接尚不清楚。味觉神经节神经元是否会重塑以适应味蕾细胞的更新?如果是这样,味觉轴突的结构有多少是固定的,有多少是重塑的?在这里,我们用双光子体内显微镜测量了小鼠单个味觉轴(支配味蕾的轴突部分)随时间的运动和分支。味觉乔木的末端分支在味蕾内持续而快速地重塑。这种重塑比味蕾细胞更新预测的要快,末端分支同时增加和减少。令人惊讶的是,用化学治疗剂阻断新味蕾细胞的进入表明,味蕾末端分支的重塑并不依赖于味蕾细胞更新。尽管末端分支重塑是快速且内在可控的,但味蕾中没有添加新的乔木,在100天内几乎没有损失。味觉神经节神经元维持着稳定数量的心轴,每个心轴都能够高速重塑。我们提出,末端分支的可塑性允许乔木定位新的味蕾细胞,而乔木数量的稳定性支持每个神经元的连接程度和功能随时间的推移保持不变。
{"title":"Rapid structural remodeling of peripheral taste neurons is independent of taste cell turnover.","authors":"Zachary D Whiddon,&nbsp;Jaleia B Marshall,&nbsp;David C Alston,&nbsp;Aaron W McGee,&nbsp;Robin F Krimm","doi":"10.1371/journal.pbio.3002271","DOIUrl":"10.1371/journal.pbio.3002271","url":null,"abstract":"<p><p>Taste bud cells are constantly replaced in taste buds as old cells die and new cells migrate into the bud. The perception of taste relies on new taste bud cells integrating with existing neural circuitry, yet how these new cells connect with a taste ganglion neuron is unknown. Do taste ganglion neurons remodel to accommodate taste bud cell renewal? If so, how much of the structure of taste axons is fixed and how much remodels? Here, we measured the motility and branching of individual taste arbors (the portion of the axon innervating taste buds) in mice over time with two-photon in vivo microscopy. Terminal branches of taste arbors continuously and rapidly remodel within the taste bud. This remodeling is faster than predicted by taste bud cell renewal, with terminal branches added and lost concurrently. Surprisingly, blocking entry of new taste bud cells with chemotherapeutic agents revealed that remodeling of the terminal branches on taste arbors does not rely on the renewal of taste bud cells. Although terminal branch remodeling was fast and intrinsically controlled, no new arbors were added to taste buds, and few were lost over 100 days. Taste ganglion neurons maintain a stable number of arbors that are each capable of high-speed remodeling. We propose that terminal branch plasticity permits arbors to locate new taste bud cells, while stability of arbor number supports constancy in the degree of connectivity and function for each neuron over time.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10604259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An interactive deep learning-based approach reveals mitochondrial cristae topologies. 一种基于交互式深度学习的方法揭示了线粒体嵴的拓扑结构。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-31 eCollection Date: 2023-08-01 DOI: 10.1371/journal.pbio.3002246
Shogo Suga, Koki Nakamura, Yu Nakanishi, Bruno M Humbel, Hiroki Kawai, Yusuke Hirabayashi

The convolution of membranes called cristae is a critical structural and functional feature of mitochondria. Crista structure is highly diverse between different cell types, reflecting their role in metabolic adaptation. However, their precise three-dimensional (3D) arrangement requires volumetric analysis of serial electron microscopy and has therefore been limiting for unbiased quantitative assessment. Here, we developed a novel, publicly available, deep learning (DL)-based image analysis platform called Python-based human-in-the-loop workflow (PHILOW) implemented with a human-in-the-loop (HITL) algorithm. Analysis of dense, large, and isotropic volumes of focused ion beam-scanning electron microscopy (FIB-SEM) using PHILOW reveals the complex 3D nanostructure of both inner and outer mitochondrial membranes and provides deep, quantitative, structural features of cristae in a large number of individual mitochondria. This nanometer-scale analysis in micrometer-scale cellular contexts uncovers fundamental parameters of cristae, such as total surface area, orientation, tubular/lamellar cristae ratio, and crista junction density in individual mitochondria. Unbiased clustering analysis of our structural data unraveled a new function for the dynamin-related GTPase Optic Atrophy 1 (OPA1) in regulating the balance between lamellar versus tubular cristae subdomains.

称为嵴的膜的卷积是线粒体的一个关键结构和功能特征。Crista结构在不同细胞类型之间高度多样,反映了它们在代谢适应中的作用。然而,它们精确的三维(3D)排列需要连续电子显微镜的体积分析,因此限制了无偏定量评估。在这里,我们开发了一个新颖的、公开可用的、基于深度学习(DL)的图像分析平台,称为基于Python的人在环工作流(PHILOW),该平台使用人在环(HITL)算法实现。使用PHILOW对密集、大体积和各向同性体积的聚焦离子束扫描电子显微镜(FIB-SEM)进行分析,揭示了线粒体内膜和外膜的复杂3D纳米结构,并提供了大量单个线粒体嵴的深层、定量和结构特征。这种在微米级细胞背景下的纳米级分析揭示了嵴的基本参数,如总表面积、取向、管状/片状嵴比率和单个线粒体中的嵴连接密度。对我们的结构数据进行无偏聚类分析,揭示了动力蛋白相关的GTP酶-视神经萎缩1(OPA1)在调节板层嵴与管状嵴亚结构域之间的平衡方面的新功能。
{"title":"An interactive deep learning-based approach reveals mitochondrial cristae topologies.","authors":"Shogo Suga,&nbsp;Koki Nakamura,&nbsp;Yu Nakanishi,&nbsp;Bruno M Humbel,&nbsp;Hiroki Kawai,&nbsp;Yusuke Hirabayashi","doi":"10.1371/journal.pbio.3002246","DOIUrl":"10.1371/journal.pbio.3002246","url":null,"abstract":"<p><p>The convolution of membranes called cristae is a critical structural and functional feature of mitochondria. Crista structure is highly diverse between different cell types, reflecting their role in metabolic adaptation. However, their precise three-dimensional (3D) arrangement requires volumetric analysis of serial electron microscopy and has therefore been limiting for unbiased quantitative assessment. Here, we developed a novel, publicly available, deep learning (DL)-based image analysis platform called Python-based human-in-the-loop workflow (PHILOW) implemented with a human-in-the-loop (HITL) algorithm. Analysis of dense, large, and isotropic volumes of focused ion beam-scanning electron microscopy (FIB-SEM) using PHILOW reveals the complex 3D nanostructure of both inner and outer mitochondrial membranes and provides deep, quantitative, structural features of cristae in a large number of individual mitochondria. This nanometer-scale analysis in micrometer-scale cellular contexts uncovers fundamental parameters of cristae, such as total surface area, orientation, tubular/lamellar cristae ratio, and crista junction density in individual mitochondria. Unbiased clustering analysis of our structural data unraveled a new function for the dynamin-related GTPase Optic Atrophy 1 (OPA1) in regulating the balance between lamellar versus tubular cristae subdomains.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470929/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10153179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The microbiota conditions a gut milieu that selects for wild-type Salmonella Typhimurium virulence. 微生物群调节肠道环境,选择野生型鼠伤寒沙门氏菌的毒力。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-31 eCollection Date: 2023-08-01 DOI: 10.1371/journal.pbio.3002253
Ersin Gül, Erik Bakkeren, Guillem Salazar, Yves Steiger, Andrew Abi Younes, Melanie Clerc, Philipp Christen, Stefan A Fattinger, Bidong D Nguyen, Patrick Kiefer, Emma Slack, Martin Ackermann, Julia A Vorholt, Shinichi Sunagawa, Médéric Diard, Wolf-Dietrich Hardt

Salmonella Typhimurium elicits gut inflammation by the costly expression of HilD-controlled virulence factors. This inflammation alleviates colonization resistance (CR) mediated by the microbiota and thereby promotes pathogen blooms. However, the inflamed gut-milieu can also select for hilD mutants, which cannot elicit or maintain inflammation, therefore causing a loss of the pathogen's virulence. This raises the question of which conditions support the maintenance of virulence in S. Typhimurium. Indeed, it remains unclear why the wild-type hilD allele is dominant among natural isolates. Here, we show that microbiota transfer from uninfected or recovered hosts leads to rapid clearance of hilD mutants that feature attenuated virulence, and thereby contributes to the preservation of the virulent S. Typhimurium genotype. Using mouse models featuring a range of microbiota compositions and antibiotic- or inflammation-inflicted microbiota disruptions, we found that irreversible disruption of the microbiota leads to the accumulation of hilD mutants. In contrast, in models with a transient microbiota disruption, selection for hilD mutants was prevented by the regrowing microbiota community dominated by Lachnospirales and Oscillospirales. Strikingly, even after an irreversible microbiota disruption, microbiota transfer from uninfected donors prevented the rise of hilD mutants. Our results establish that robust S. Typhimurium gut colonization hinges on optimizing its manipulation of the host: A transient and tempered microbiota perturbation is favorable for the pathogen to both flourish in the inflamed gut and also minimize loss of virulence. Moreover, besides conferring CR, the microbiota may have the additional consequence of maintaining costly enteropathogen virulence mechanisms.

鼠伤寒沙门氏菌通过昂贵的HilD控制的毒力因子的表达引发肠道炎症。这种炎症减轻了由微生物群介导的定植抗性(CR),从而促进了病原体的繁殖。然而,发炎的肠道环境也可以选择hilD突变体,这些突变体不能引发或维持炎症,因此导致病原体毒力的丧失。这就提出了一个问题,即哪些条件支持鼠伤寒杆菌毒力的维持。事实上,目前尚不清楚为什么野生型hilD等位基因在天然分离株中占主导地位。在这里,我们表明,从未感染或恢复的宿主转移微生物群会导致以毒力减弱为特征的hilD突变体的快速清除,从而有助于毒力鼠伤寒沙门氏菌基因型的保存。使用具有一系列微生物群组成和抗生素或炎症引起的微生物群破坏的小鼠模型,我们发现微生物群的不可逆破坏会导致hilD突变体的积累。相反,在具有短暂微生物群破坏的模型中,由Lachnospirales和Oscillospirales主导的再生微生物群群落阻止了对hilD突变体的选择。引人注目的是,即使在不可逆的微生物群破坏之后,来自未感染供体的微生物群转移也阻止了hilD突变体的增加。我们的研究结果表明,鼠伤寒沙门氏菌强大的肠道定殖取决于优化其对宿主的操作:短暂而温和的微生物群扰动有利于病原体在发炎的肠道中繁殖,并将毒力损失降至最低。此外,除了赋予CR外,微生物群还可能具有维持昂贵的肠道病原体毒力机制的额外后果。
{"title":"The microbiota conditions a gut milieu that selects for wild-type Salmonella Typhimurium virulence.","authors":"Ersin Gül,&nbsp;Erik Bakkeren,&nbsp;Guillem Salazar,&nbsp;Yves Steiger,&nbsp;Andrew Abi Younes,&nbsp;Melanie Clerc,&nbsp;Philipp Christen,&nbsp;Stefan A Fattinger,&nbsp;Bidong D Nguyen,&nbsp;Patrick Kiefer,&nbsp;Emma Slack,&nbsp;Martin Ackermann,&nbsp;Julia A Vorholt,&nbsp;Shinichi Sunagawa,&nbsp;Médéric Diard,&nbsp;Wolf-Dietrich Hardt","doi":"10.1371/journal.pbio.3002253","DOIUrl":"10.1371/journal.pbio.3002253","url":null,"abstract":"<p><p>Salmonella Typhimurium elicits gut inflammation by the costly expression of HilD-controlled virulence factors. This inflammation alleviates colonization resistance (CR) mediated by the microbiota and thereby promotes pathogen blooms. However, the inflamed gut-milieu can also select for hilD mutants, which cannot elicit or maintain inflammation, therefore causing a loss of the pathogen's virulence. This raises the question of which conditions support the maintenance of virulence in S. Typhimurium. Indeed, it remains unclear why the wild-type hilD allele is dominant among natural isolates. Here, we show that microbiota transfer from uninfected or recovered hosts leads to rapid clearance of hilD mutants that feature attenuated virulence, and thereby contributes to the preservation of the virulent S. Typhimurium genotype. Using mouse models featuring a range of microbiota compositions and antibiotic- or inflammation-inflicted microbiota disruptions, we found that irreversible disruption of the microbiota leads to the accumulation of hilD mutants. In contrast, in models with a transient microbiota disruption, selection for hilD mutants was prevented by the regrowing microbiota community dominated by Lachnospirales and Oscillospirales. Strikingly, even after an irreversible microbiota disruption, microbiota transfer from uninfected donors prevented the rise of hilD mutants. Our results establish that robust S. Typhimurium gut colonization hinges on optimizing its manipulation of the host: A transient and tempered microbiota perturbation is favorable for the pathogen to both flourish in the inflamed gut and also minimize loss of virulence. Moreover, besides conferring CR, the microbiota may have the additional consequence of maintaining costly enteropathogen virulence mechanisms.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10587087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TOR complex 1 negatively regulates NDR kinase Cbk1 to control cell separation in budding yeast. TOR复合物1负调控NDR激酶Cbk1以控制出芽酵母中的细胞分离。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-30 eCollection Date: 2023-08-01 DOI: 10.1371/journal.pbio.3002263
Magdalena Foltman, Iván Mendez, Joan J Bech-Serra, Carolina de la Torre, Jennifer L Brace, Eric L Weiss, María Lucas, Ethel Queralt, Alberto Sanchez-Diaz

The target of rapamycin (TOR) signalling pathway plays a key role in the coordination between cellular growth and the cell cycle machinery in eukaryotes. The underlying molecular mechanisms by which TOR might regulate events after anaphase remain unknown. We show for the first time that one of the 2 TOR complexes in budding yeast, TORC1, blocks the separation of cells following cytokinesis by phosphorylation of a member of the NDR (nuclear Dbf2-related) protein-kinase family, the protein Cbk1. We observe that TORC1 alters the phosphorylation pattern of Cbk1 and we identify a residue within Cbk1 activation loop, T574, for which a phosphomimetic substitution makes Cbk1 catalytically inactive and, indeed, reproduces TORC1 control over cell separation. In addition, we identify the exocyst component Sec3 as a key substrate of Cbk1, since Sec3 activates the SNARE complex to promote membrane fusion. TORC1 activity ultimately compromises the interaction between Sec3 and a t-SNARE component. Our data indicate that TORC1 negatively regulates cell separation in budding yeast by participating in Cbk1 phosphorylation, which in turn controls the fusion of secretory vesicles transporting hydrolase at the site of division.

雷帕霉素靶点(TOR)信号通路在真核生物细胞生长和细胞周期机制之间的协调中起着关键作用。TOR调节后期事件的潜在分子机制尚不清楚。我们首次表明,出芽酵母中的2种TOR复合物之一TORC1通过NDR(核Dbf2相关)蛋白激酶家族成员Cbk1蛋白的磷酸化来阻断胞质分裂后细胞的分离。我们观察到TORC1改变了Cbk1的磷酸化模式,我们在Cbk1激活环T574中鉴定了一个残基,对于该残基,拟磷酸取代使Cbk1具有催化活性,并且实际上再现了TORC1对细胞分离的控制。此外,我们确定胞外成分Sec3是Cbk1的关键底物,因为Sec3激活SNARE复合物以促进膜融合。TORC1活性最终损害Sec3和t-SNARE成分之间的相互作用。我们的数据表明,TORC1通过参与Cbk1磷酸化来负调控出芽酵母中的细胞分离,从而控制在分裂位点运输水解酶的分泌囊泡的融合。
{"title":"TOR complex 1 negatively regulates NDR kinase Cbk1 to control cell separation in budding yeast.","authors":"Magdalena Foltman,&nbsp;Iván Mendez,&nbsp;Joan J Bech-Serra,&nbsp;Carolina de la Torre,&nbsp;Jennifer L Brace,&nbsp;Eric L Weiss,&nbsp;María Lucas,&nbsp;Ethel Queralt,&nbsp;Alberto Sanchez-Diaz","doi":"10.1371/journal.pbio.3002263","DOIUrl":"10.1371/journal.pbio.3002263","url":null,"abstract":"<p><p>The target of rapamycin (TOR) signalling pathway plays a key role in the coordination between cellular growth and the cell cycle machinery in eukaryotes. The underlying molecular mechanisms by which TOR might regulate events after anaphase remain unknown. We show for the first time that one of the 2 TOR complexes in budding yeast, TORC1, blocks the separation of cells following cytokinesis by phosphorylation of a member of the NDR (nuclear Dbf2-related) protein-kinase family, the protein Cbk1. We observe that TORC1 alters the phosphorylation pattern of Cbk1 and we identify a residue within Cbk1 activation loop, T574, for which a phosphomimetic substitution makes Cbk1 catalytically inactive and, indeed, reproduces TORC1 control over cell separation. In addition, we identify the exocyst component Sec3 as a key substrate of Cbk1, since Sec3 activates the SNARE complex to promote membrane fusion. TORC1 activity ultimately compromises the interaction between Sec3 and a t-SNARE component. Our data indicate that TORC1 negatively regulates cell separation in budding yeast by participating in Cbk1 phosphorylation, which in turn controls the fusion of secretory vesicles transporting hydrolase at the site of division.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10149776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
In vivo recording of suprachiasmatic nucleus dynamics reveals a dominant role of arginine vasopressin neurons in circadian pacesetting. 视交叉上核动力学的体内记录揭示了精氨酸加压素神经元在昼夜节律起搏中的主导作用。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-29 eCollection Date: 2023-08-01 DOI: 10.1371/journal.pbio.3002281
Yusuke Tsuno, Yubo Peng, Shin-Ichi Horike, Mohan Wang, Ayako Matsui, Kanato Yamagata, Mizuki Sugiyama, Takahiro J Nakamura, Takiko Daikoku, Takashi Maejima, Michihiro Mieda

The central circadian clock of the suprachiasmatic nucleus (SCN) is a network consisting of various types of neurons and glial cells. Individual cells have the autonomous molecular machinery of a cellular clock, but their intrinsic periods vary considerably. Here, we show that arginine vasopressin (AVP) neurons set the ensemble period of the SCN network in vivo to control the circadian behavior rhythm. Artificial lengthening of cellular periods by deleting casein kinase 1 delta (CK1δ) in the whole SCN lengthened the free-running period of behavior rhythm to an extent similar to CK1δ deletion specific to AVP neurons. However, in SCN slices, PER2::LUC reporter rhythms of these mice only partially and transiently recapitulated the period lengthening, showing a dissociation between the SCN shell and core with a period instability in the shell. In contrast, in vivo calcium rhythms of both AVP and vasoactive intestinal peptide (VIP) neurons in the SCN of freely moving mice demonstrated stably lengthened periods similar to the behavioral rhythm upon AVP neuron-specific CK1δ deletion, without changing the phase relationships between each other. Furthermore, optogenetic activation of AVP neurons acutely induced calcium increase in VIP neurons in vivo. These results indicate that AVP neurons regulate other SCN neurons, such as VIP neurons, in vivo and thus act as a primary determinant of the SCN ensemble period.

视交叉上核(SCN)的中枢昼夜节律时钟是一个由各种类型的神经元和神经胶质细胞组成的网络。单个细胞具有细胞时钟的自主分子机制,但其固有周期差异很大。在这里,我们发现精氨酸加压素(AVP)神经元在体内设置SCN网络的集合期,以控制昼夜节律。通过删除整个SCN中的酪蛋白激酶1δ(CK1δ)来人工延长细胞周期,将行为节律的自由运行期延长到类似于AVP神经元特有的CK1δ缺失的程度。然而,在SCN切片中,这些小鼠的PER2::LUC报告基因节律仅部分和短暂地再现了周期延长,显示SCN外壳和核心之间的解离,外壳中的周期不稳定。相反,在自由运动小鼠的SCN中,AVP和血管活性肠肽(VIP)神经元的体内钙节律表现出稳定延长的周期,类似于AVP神经元特异性CK1δ缺失时的行为节律,而不改变彼此之间的相位关系。此外,AVP神经元的光遗传学激活在体内急性诱导VIP神经元的钙增加。这些结果表明,AVP神经元在体内调节其他SCN神经元,如VIP神经元,从而作为SCN集合期的主要决定因素。
{"title":"In vivo recording of suprachiasmatic nucleus dynamics reveals a dominant role of arginine vasopressin neurons in circadian pacesetting.","authors":"Yusuke Tsuno,&nbsp;Yubo Peng,&nbsp;Shin-Ichi Horike,&nbsp;Mohan Wang,&nbsp;Ayako Matsui,&nbsp;Kanato Yamagata,&nbsp;Mizuki Sugiyama,&nbsp;Takahiro J Nakamura,&nbsp;Takiko Daikoku,&nbsp;Takashi Maejima,&nbsp;Michihiro Mieda","doi":"10.1371/journal.pbio.3002281","DOIUrl":"10.1371/journal.pbio.3002281","url":null,"abstract":"<p><p>The central circadian clock of the suprachiasmatic nucleus (SCN) is a network consisting of various types of neurons and glial cells. Individual cells have the autonomous molecular machinery of a cellular clock, but their intrinsic periods vary considerably. Here, we show that arginine vasopressin (AVP) neurons set the ensemble period of the SCN network in vivo to control the circadian behavior rhythm. Artificial lengthening of cellular periods by deleting casein kinase 1 delta (CK1δ) in the whole SCN lengthened the free-running period of behavior rhythm to an extent similar to CK1δ deletion specific to AVP neurons. However, in SCN slices, PER2::LUC reporter rhythms of these mice only partially and transiently recapitulated the period lengthening, showing a dissociation between the SCN shell and core with a period instability in the shell. In contrast, in vivo calcium rhythms of both AVP and vasoactive intestinal peptide (VIP) neurons in the SCN of freely moving mice demonstrated stably lengthened periods similar to the behavioral rhythm upon AVP neuron-specific CK1δ deletion, without changing the phase relationships between each other. Furthermore, optogenetic activation of AVP neurons acutely induced calcium increase in VIP neurons in vivo. These results indicate that AVP neurons regulate other SCN neurons, such as VIP neurons, in vivo and thus act as a primary determinant of the SCN ensemble period.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10493504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Relationship between journal impact factor and the thoroughness and helpfulness of peer reviews. 期刊影响因素与同行评审的彻底性和有用性之间的关系。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-29 eCollection Date: 2023-08-01 DOI: 10.1371/journal.pbio.3002238
Anna Severin, Michaela Strinzel, Matthias Egger, Tiago Barros, Alexander Sokolov, Julia Vilstrup Mouatt, Stefan Müller

The Journal Impact Factor is often used as a proxy measure for journal quality, but the empirical evidence is scarce. In particular, it is unclear how peer review characteristics for a journal relate to its impact factor. We analysed 10,000 peer review reports submitted to 1,644 biomedical journals with impact factors ranging from 0.21 to 74.7. Two researchers hand-coded sentences using categories of content related to the thoroughness of the review (Materials and Methods, Presentation and Reporting, Results and Discussion, Importance and Relevance) and helpfulness (Suggestion and Solution, Examples, Praise, Criticism). We fine-tuned and validated transformer machine learning language models to classify sentences. We then examined the association between the number and percentage of sentences addressing different content categories and 10 groups defined by the Journal Impact Factor. The median length of reviews increased with higher impact factor, from 185 words (group 1) to 387 words (group 10). The percentage of sentences addressing Materials and Methods was greater in the highest Journal Impact Factor journals than in the lowest Journal Impact Factor group. The results for Presentation and Reporting went in the opposite direction, with the highest Journal Impact Factor journals giving less emphasis to such content. For helpfulness, reviews for higher impact factor journals devoted relatively less attention to Suggestion and Solution than lower impact factor journals. In conclusion, peer review in journals with higher impact factors tends to be more thorough, particularly in addressing study methods while giving relatively less emphasis to presentation or suggesting solutions. Differences were modest and variability high, indicating that the Journal Impact Factor is a bad predictor of the quality of peer review of an individual manuscript.

期刊影响因子通常被用作衡量期刊质量的指标,但经验证据很少。特别是,目前尚不清楚期刊的同行评审特征与其影响因素之间的关系。我们分析了提交给1644份生物医学期刊的10000份同行评审报告,影响因素从0.21到74.7不等。两名研究人员使用与审查的彻底性相关的内容类别(材料和方法、陈述和报告、结果和讨论、重要性和相关性)和有用性(建议和解决方案、示例、赞扬、批评)手工编码句子。我们对transformer机器学习语言模型进行了微调和验证,以对句子进行分类。然后,我们研究了针对不同内容类别和期刊影响因子定义的10组的句子数量和百分比之间的关联。评论的中位长度随着影响因素的增加而增加,从185个单词(第一组)增加到387个单词(第十组)。在期刊影响因子最高的期刊中,涉及材料和方法的句子百分比高于期刊影响因子最低的期刊组。Presentation and Reporting的结果正好相反,期刊影响因子最高的期刊对此类内容的重视程度较低。为了提供帮助,与影响因子较低的期刊相比,影响因子较高的期刊的评论对建议和解决方案的关注相对较少。总之,影响因素较高的期刊的同行评审往往更彻底,尤其是在研究方法方面,而相对较少强调陈述或建议解决方案。差异不大,变异性很高,这表明期刊影响因素对单个稿件的同行评审质量是一个糟糕的预测因素。
{"title":"Relationship between journal impact factor and the thoroughness and helpfulness of peer reviews.","authors":"Anna Severin,&nbsp;Michaela Strinzel,&nbsp;Matthias Egger,&nbsp;Tiago Barros,&nbsp;Alexander Sokolov,&nbsp;Julia Vilstrup Mouatt,&nbsp;Stefan Müller","doi":"10.1371/journal.pbio.3002238","DOIUrl":"10.1371/journal.pbio.3002238","url":null,"abstract":"<p><p>The Journal Impact Factor is often used as a proxy measure for journal quality, but the empirical evidence is scarce. In particular, it is unclear how peer review characteristics for a journal relate to its impact factor. We analysed 10,000 peer review reports submitted to 1,644 biomedical journals with impact factors ranging from 0.21 to 74.7. Two researchers hand-coded sentences using categories of content related to the thoroughness of the review (Materials and Methods, Presentation and Reporting, Results and Discussion, Importance and Relevance) and helpfulness (Suggestion and Solution, Examples, Praise, Criticism). We fine-tuned and validated transformer machine learning language models to classify sentences. We then examined the association between the number and percentage of sentences addressing different content categories and 10 groups defined by the Journal Impact Factor. The median length of reviews increased with higher impact factor, from 185 words (group 1) to 387 words (group 10). The percentage of sentences addressing Materials and Methods was greater in the highest Journal Impact Factor journals than in the lowest Journal Impact Factor group. The results for Presentation and Reporting went in the opposite direction, with the highest Journal Impact Factor journals giving less emphasis to such content. For helpfulness, reviews for higher impact factor journals devoted relatively less attention to Suggestion and Solution than lower impact factor journals. In conclusion, peer review in journals with higher impact factors tends to be more thorough, particularly in addressing study methods while giving relatively less emphasis to presentation or suggesting solutions. Differences were modest and variability high, indicating that the Journal Impact Factor is a bad predictor of the quality of peer review of an individual manuscript.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464996/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10251476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
To avoid carbon degradation in tropical forests, conserve wildlife. 为了避免热带森林中的碳降解,保护野生动物。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-29 eCollection Date: 2023-08-01 DOI: 10.1371/journal.pbio.3002262
Elizabeth L Bennett, John G Robinson

Loss of large-bodied wildlife, typically from hunting, degrades the ecological processes in tropical forests that sequester and store carbon. Carbon-based markets that incentivize wildlife conservation can generate revenues to support necessary forest and hunting management.

大型野生动物的消失,通常是由于狩猎,会破坏热带森林中吸收和储存碳的生态过程。激励野生动物保护的碳市场可以产生收入,支持必要的森林和狩猎管理。
{"title":"To avoid carbon degradation in tropical forests, conserve wildlife.","authors":"Elizabeth L Bennett,&nbsp;John G Robinson","doi":"10.1371/journal.pbio.3002262","DOIUrl":"10.1371/journal.pbio.3002262","url":null,"abstract":"<p><p>Loss of large-bodied wildlife, typically from hunting, degrades the ecological processes in tropical forests that sequester and store carbon. Carbon-based markets that incentivize wildlife conservation can generate revenues to support necessary forest and hunting management.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10493500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation. 酵母的衰老与染色体XII的扩增线性片段有关,而不是核糖体DNA圈的积累。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-29 eCollection Date: 2023-08-01 DOI: 10.1371/journal.pbio.3002250
Andre Zylstra, Hanane Hadj-Moussa, Dorottya Horkai, Alex J Whale, Baptiste Piguet, Jonathan Houseley

The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.

长期以来,酵母母细胞中染色体外核糖体DNA圈(ERCs)的大量积累一直被认为是复制衰老的主要驱动因素。ERC是通过核糖体DNA(rDNA)重组产生的,大量遗传数据将导致ERC的rDNA不稳定事件与寿命缩短和其他衰老病理联系起来。然而,我们对ERC积累的分子效应知之甚少。在这里,我们研究了存在和不存在ERCs的情况下的衰老,出乎意料地发现没有证据表明基因表达差异可能表明ERCs引起的应激反应或代谢反馈。我们也没有观察到伴随酵母衰老的基因表达普遍中断的任何全球变化,这完全表明ERC在很大程度上是惰性的。酵母中伴随衰老的许多差异基因表达实际上与衰老进入点(SEP)的标志物有关,这表明衰老而不是衰老是这些变化的基础。细胞通过SEP而与ERC无关,但我们发现SEP与rDNA和端粒(ChrXIIr)之间的染色体XII区域的拷贝数扩增有关,形成高达约1.8Mb大小的线性片段,这是由于rDNA的不稳定性而在老化细胞中产生的,但其机制与ERC不同。因此,尽管由于ERC的积累,rDNA拷贝数随着年龄的增长而急剧增加,但我们的研究结果表明,在芽酵母衰老过程中,ChrXIIr而不是ERCs是衰老的主要驱动因素。
{"title":"Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation.","authors":"Andre Zylstra,&nbsp;Hanane Hadj-Moussa,&nbsp;Dorottya Horkai,&nbsp;Alex J Whale,&nbsp;Baptiste Piguet,&nbsp;Jonathan Houseley","doi":"10.1371/journal.pbio.3002250","DOIUrl":"10.1371/journal.pbio.3002250","url":null,"abstract":"<p><p>The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10117734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dietary change without caloric restriction maintains a youthful profile in ageing yeast. 在不限制热量的情况下改变饮食可以使老化酵母保持年轻状态。
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2023-08-29 eCollection Date: 2023-08-01 DOI: 10.1371/journal.pbio.3002245
Dorottya Horkai, Hanane Hadj-Moussa, Alex J Whale, Jonathan Houseley

Caloric restriction increases lifespan and improves ageing health, but it is unknown whether these outcomes can be separated or achieved through less severe interventions. Here, we show that an unrestricted galactose diet in early life minimises change during replicative ageing in budding yeast, irrespective of diet later in life. Average mother cell division rate is comparable between glucose and galactose diets, and lifespan is shorter on galactose, but markers of senescence and the progressive dysregulation of gene expression observed on glucose are minimal on galactose, showing that these are not intrinsic aspects of replicative ageing but rather associated processes. Respiration on galactose is critical for minimising hallmarks of ageing, and forced respiration during ageing on glucose by overexpression of the mitochondrial biogenesis factor Hap4 also has the same effect though only in a fraction of cells. This fraction maintains Hap4 activity to advanced age with low senescence and a youthful gene expression profile, whereas other cells in the same population lose Hap4 activity, undergo dramatic dysregulation of gene expression and accumulate fragments of chromosome XII (ChrXIIr), which are tightly associated with senescence. Our findings support the existence of two separable ageing trajectories in yeast. We propose that a complete shift to the healthy ageing mode can be achieved in wild-type cells through dietary change in early life without caloric restriction.

热量限制可以延长寿命并改善衰老健康,但尚不清楚这些结果是否可以通过不那么严重的干预措施来分离或实现。在这里,我们发现,无论以后的饮食如何,早期不受限制的半乳糖饮食都能最大限度地减少萌芽酵母复制衰老过程中的变化。葡萄糖和半乳糖饮食的平均母细胞分裂率相当,半乳糖的寿命更短,但在葡萄糖上观察到的衰老和基因表达的进行性失调的标志物在半乳糖上是最小的,这表明这些不是复制衰老的内在方面,而是相关的过程。对半乳糖的呼吸对于最大限度地减少衰老特征至关重要,而在葡萄糖衰老过程中,通过线粒体生物发生因子Hap4的过度表达进行的强迫呼吸也具有相同的效果,尽管只是在一小部分细胞中。该部分保持Hap4活性至衰老晚期,具有低衰老和年轻的基因表达谱,而同一群体中的其他细胞失去Hap4活力,经历基因表达的显著失调,并积累与衰老密切相关的染色体XII(ChrXIIr)片段。我们的发现支持酵母中存在两个可分离的衰老轨迹。我们提出,在没有热量限制的情况下,通过在早期改变饮食,可以在野生型细胞中实现向健康衰老模式的完全转变。
{"title":"Dietary change without caloric restriction maintains a youthful profile in ageing yeast.","authors":"Dorottya Horkai,&nbsp;Hanane Hadj-Moussa,&nbsp;Alex J Whale,&nbsp;Jonathan Houseley","doi":"10.1371/journal.pbio.3002245","DOIUrl":"10.1371/journal.pbio.3002245","url":null,"abstract":"<p><p>Caloric restriction increases lifespan and improves ageing health, but it is unknown whether these outcomes can be separated or achieved through less severe interventions. Here, we show that an unrestricted galactose diet in early life minimises change during replicative ageing in budding yeast, irrespective of diet later in life. Average mother cell division rate is comparable between glucose and galactose diets, and lifespan is shorter on galactose, but markers of senescence and the progressive dysregulation of gene expression observed on glucose are minimal on galactose, showing that these are not intrinsic aspects of replicative ageing but rather associated processes. Respiration on galactose is critical for minimising hallmarks of ageing, and forced respiration during ageing on glucose by overexpression of the mitochondrial biogenesis factor Hap4 also has the same effect though only in a fraction of cells. This fraction maintains Hap4 activity to advanced age with low senescence and a youthful gene expression profile, whereas other cells in the same population lose Hap4 activity, undergo dramatic dysregulation of gene expression and accumulate fragments of chromosome XII (ChrXIIr), which are tightly associated with senescence. Our findings support the existence of two separable ageing trajectories in yeast. We propose that a complete shift to the healthy ageing mode can be achieved in wild-type cells through dietary change in early life without caloric restriction.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10124945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
PLoS Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1