Pub Date : 2024-09-30eCollection Date: 2024-09-01DOI: 10.1371/journal.pcbi.1012497
Biao Tang, Kexin Ma, Yan Liu, Xia Wang, Sanyi Tang, Yanni Xiao, Robert A Cheke
Accurate prediction of epidemics is pivotal for making well-informed decisions for the control of infectious diseases, but addressing heterogeneity in the system poses a challenge. In this study, we propose a novel modelling framework integrating the spatio-temporal heterogeneity of susceptible individuals into homogeneous models, by introducing a continuous recruitment process for the susceptibles. A neural network approximates the recruitment rate to develop a Universal Differential Equations (UDE) model. Simultaneously, we pre-set a specific form for the recruitment rate and develop a mechanistic model. Data from a COVID Omicron variant outbreak in Shanghai are used to train the UDE model using deep learning methods and to calibrate the mechanistic model using MCMC methods. Subsequently, we project the attack rate and peak of new infections for the first Omicron wave in China after the adjustment of the dynamic zero-COVID policy. Our projections indicate an attack rate and a peak of new infections of 80.06% and 3.17% of the population, respectively, compared with the homogeneous model's projections of 99.97% and 32.78%, thus providing an 18.6% improvement in the prediction accuracy based on the actual data. Our simulations demonstrate that heterogeneity in the susceptibles decreases herd immunity for ~37.36% of the population and prolongs the outbreak period from ~30 days to ~70 days, also aligning with the real case. We consider that this study lays the groundwork for the development of a new class of models and new insights for modelling heterogeneity.
{"title":"Managing spatio-temporal heterogeneity of susceptibles by embedding it into an homogeneous model: A mechanistic and deep learning study.","authors":"Biao Tang, Kexin Ma, Yan Liu, Xia Wang, Sanyi Tang, Yanni Xiao, Robert A Cheke","doi":"10.1371/journal.pcbi.1012497","DOIUrl":"10.1371/journal.pcbi.1012497","url":null,"abstract":"<p><p>Accurate prediction of epidemics is pivotal for making well-informed decisions for the control of infectious diseases, but addressing heterogeneity in the system poses a challenge. In this study, we propose a novel modelling framework integrating the spatio-temporal heterogeneity of susceptible individuals into homogeneous models, by introducing a continuous recruitment process for the susceptibles. A neural network approximates the recruitment rate to develop a Universal Differential Equations (UDE) model. Simultaneously, we pre-set a specific form for the recruitment rate and develop a mechanistic model. Data from a COVID Omicron variant outbreak in Shanghai are used to train the UDE model using deep learning methods and to calibrate the mechanistic model using MCMC methods. Subsequently, we project the attack rate and peak of new infections for the first Omicron wave in China after the adjustment of the dynamic zero-COVID policy. Our projections indicate an attack rate and a peak of new infections of 80.06% and 3.17% of the population, respectively, compared with the homogeneous model's projections of 99.97% and 32.78%, thus providing an 18.6% improvement in the prediction accuracy based on the actual data. Our simulations demonstrate that heterogeneity in the susceptibles decreases herd immunity for ~37.36% of the population and prolongs the outbreak period from ~30 days to ~70 days, also aligning with the real case. We consider that this study lays the groundwork for the development of a new class of models and new insights for modelling heterogeneity.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30eCollection Date: 2024-09-01DOI: 10.1371/journal.pcbi.1012491
Kevin Tsai, Zhen Zhou, Jiadong Yang, Zhiliang Xu, Shixin Xu, Roya Zandi, Nan Hao, Weitao Chen, Mark Alber
Understanding the mechanisms of the cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short cell cycle, and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. By analyzing experimental data, this study shows that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional multiscale chemical-mechanical model was developed and used to suggest and test hypothesized impacts of aging on bud morphogenesis. Experimentally calibrated model simulations showed that during the early stage of budding, tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip, a process guided by the polarized Cdc42 signal. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage as observed in experiments in this work. The model simulation results suggest that the localization of new cell surface material insertion, regulated by chemical signal polarization, could be weakened due to cellular aging in yeast and other cell types, leading to the change and stabilization of the bud aspect ratio.
{"title":"Study of impacts of two types of cellular aging on the yeast bud morphogenesis.","authors":"Kevin Tsai, Zhen Zhou, Jiadong Yang, Zhiliang Xu, Shixin Xu, Roya Zandi, Nan Hao, Weitao Chen, Mark Alber","doi":"10.1371/journal.pcbi.1012491","DOIUrl":"10.1371/journal.pcbi.1012491","url":null,"abstract":"<p><p>Understanding the mechanisms of the cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short cell cycle, and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. By analyzing experimental data, this study shows that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional multiscale chemical-mechanical model was developed and used to suggest and test hypothesized impacts of aging on bud morphogenesis. Experimentally calibrated model simulations showed that during the early stage of budding, tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip, a process guided by the polarized Cdc42 signal. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage as observed in experiments in this work. The model simulation results suggest that the localization of new cell surface material insertion, regulated by chemical signal polarization, could be weakened due to cellular aging in yeast and other cell types, leading to the change and stabilization of the bud aspect ratio.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30eCollection Date: 2024-09-01DOI: 10.1371/journal.pcbi.1012480
Yutaro Kumagai
Recent advances in measurement technologies, particularly single-cell RNA sequencing (scRNA-seq), have revolutionized our ability to acquire large amounts of omics-level data on cellular states. As measurement techniques evolve, there has been an increasing need for data analysis methodologies, especially those focused on cell-type identification and inference of gene regulatory networks (GRNs). We have developed a new method named BootCellNet, which employs smoothing and resampling to infer GRNs. Using the inferred GRNs, BootCellNet further infers the minimum dominating set (MDS), a set of genes that determines the dynamics of the entire network. We have demonstrated that BootCellNet robustly infers GRNs and their MDSs from scRNA-seq data and facilitates unsupervised identification of cell clusters using scRNA-seq datasets of peripheral blood mononuclear cells and hematopoiesis. It has also identified COVID-19 patient-specific cells and their potential regulatory transcription factors. BootCellNet not only identifies cell types in an unsupervised and explainable way but also provides insights into the characteristics of identified cell types through the inference of GRNs and MDS.
{"title":"BootCellNet, a resampling-based procedure, promotes unsupervised identification of cell populations via robust inference of gene regulatory networks.","authors":"Yutaro Kumagai","doi":"10.1371/journal.pcbi.1012480","DOIUrl":"10.1371/journal.pcbi.1012480","url":null,"abstract":"<p><p>Recent advances in measurement technologies, particularly single-cell RNA sequencing (scRNA-seq), have revolutionized our ability to acquire large amounts of omics-level data on cellular states. As measurement techniques evolve, there has been an increasing need for data analysis methodologies, especially those focused on cell-type identification and inference of gene regulatory networks (GRNs). We have developed a new method named BootCellNet, which employs smoothing and resampling to infer GRNs. Using the inferred GRNs, BootCellNet further infers the minimum dominating set (MDS), a set of genes that determines the dynamics of the entire network. We have demonstrated that BootCellNet robustly infers GRNs and their MDSs from scRNA-seq data and facilitates unsupervised identification of cell clusters using scRNA-seq datasets of peripheral blood mononuclear cells and hematopoiesis. It has also identified COVID-19 patient-specific cells and their potential regulatory transcription factors. BootCellNet not only identifies cell types in an unsupervised and explainable way but also provides insights into the characteristics of identified cell types through the inference of GRNs and MDS.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30eCollection Date: 2024-09-01DOI: 10.1371/journal.pcbi.1012489
Helder V Ribeiro-Filho, Gabriel E Jara, João V S Guerra, Melyssa Cheung, Nathaniel R Felbinger, José G C Pereira, Brian G Pierce, Paulo S Lopes-de-Oliveira
Deep learning methods, trained on the increasing set of available protein 3D structures and sequences, have substantially impacted the protein modeling and design field. These advancements have facilitated the creation of novel proteins, or the optimization of existing ones designed for specific functions, such as binding a target protein. Despite the demonstrated potential of such approaches in designing general protein binders, their application in designing immunotherapeutics remains relatively underexplored. A relevant application is the design of T cell receptors (TCRs). Given the crucial role of T cells in mediating immune responses, redirecting these cells to tumor or infected target cells through the engineering of TCRs has shown promising results in treating diseases, especially cancer. However, the computational design of TCR interactions presents challenges for current physics-based methods, particularly due to the unique natural characteristics of these interfaces, such as low affinity and cross-reactivity. For this reason, in this study, we explored the potential of two structure-based deep learning protein design methods, ProteinMPNN and ESM-IF1, in designing fixed-backbone TCRs for binding target antigenic peptides presented by the MHC through different design scenarios. To evaluate TCR designs, we employed a comprehensive set of sequence- and structure-based metrics, highlighting the benefits of these methods in comparison to classical physics-based design methods and identifying deficiencies for improvement.
在越来越多的可用蛋白质三维结构和序列集上训练的深度学习方法对蛋白质建模和设计领域产生了重大影响。这些进步促进了新型蛋白质的创造,或现有蛋白质针对特定功能(如结合目标蛋白质)的优化设计。尽管这些方法在设计一般蛋白质结合体方面的潜力已得到证实,但它们在设计免疫疗法方面的应用仍相对欠缺。一个相关的应用是 T 细胞受体(TCR)的设计。鉴于 T 细胞在介导免疫反应中的关键作用,通过 TCRs 工程设计将这些细胞重新定向到肿瘤或受感染的靶细胞,在治疗疾病(尤其是癌症)方面已显示出良好的效果。然而,TCR 相互作用的计算设计对目前基于物理学的方法提出了挑战,特别是由于这些界面的独特自然特性,如低亲和性和交叉反应性。为此,在本研究中,我们探索了两种基于结构的深度学习蛋白质设计方法--ProteinMPNN 和 ESM-IF1--在设计固定骨干 TCR 方面的潜力,以通过不同的设计方案结合 MHC 呈现的目标抗原肽。为了评估 TCR 设计,我们采用了一套全面的基于序列和结构的指标,突出了这些方法与基于物理的经典设计方法相比的优势,并找出了有待改进的不足之处。
{"title":"Exploring the potential of structure-based deep learning approaches for T cell receptor design.","authors":"Helder V Ribeiro-Filho, Gabriel E Jara, João V S Guerra, Melyssa Cheung, Nathaniel R Felbinger, José G C Pereira, Brian G Pierce, Paulo S Lopes-de-Oliveira","doi":"10.1371/journal.pcbi.1012489","DOIUrl":"10.1371/journal.pcbi.1012489","url":null,"abstract":"<p><p>Deep learning methods, trained on the increasing set of available protein 3D structures and sequences, have substantially impacted the protein modeling and design field. These advancements have facilitated the creation of novel proteins, or the optimization of existing ones designed for specific functions, such as binding a target protein. Despite the demonstrated potential of such approaches in designing general protein binders, their application in designing immunotherapeutics remains relatively underexplored. A relevant application is the design of T cell receptors (TCRs). Given the crucial role of T cells in mediating immune responses, redirecting these cells to tumor or infected target cells through the engineering of TCRs has shown promising results in treating diseases, especially cancer. However, the computational design of TCR interactions presents challenges for current physics-based methods, particularly due to the unique natural characteristics of these interfaces, such as low affinity and cross-reactivity. For this reason, in this study, we explored the potential of two structure-based deep learning protein design methods, ProteinMPNN and ESM-IF1, in designing fixed-backbone TCRs for binding target antigenic peptides presented by the MHC through different design scenarios. To evaluate TCR designs, we employed a comprehensive set of sequence- and structure-based metrics, highlighting the benefits of these methods in comparison to classical physics-based design methods and identifying deficiencies for improvement.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1371/journal.pcbi.1012462
Margherita Molaro, Sakshi Mohan, Bingling She, Martin Chalkley, Tim Colbourn, Joseph H Collins, Emilia Connolly, Matthew M Graham, Eva Janoušková, Ines Li Lin, Gerald Manthalu, Emmanuel Mnjowe, Dominic Nkhoma, Pakwanja D Twea, Andrew N Phillips, Paul Revill, Asif U Tamuri, Joseph Mfutso-Bengo, Tara D Mangal, Timothy B Hallett
An efficient allocation of limited resources in low-income settings offers the opportunity to improve population-health outcomes given the available health system capacity. Efforts to achieve this are often framed through the lens of "health benefits packages" (HBPs), which seek to establish which services the public healthcare system should include in its provision. Analytic approaches widely used to weigh evidence in support of different interventions and inform the broader HBP deliberative process however have limitations. In this work, we propose the individual-based Thanzi La Onse (TLO) model as a uniquely-tailored tool to assist in the evaluation of Malawi-specific HBPs while addressing these limitations. By mechanistically modelling-and calibrating to extensive, country-specific data-the incidence of disease, health-seeking behaviour, and the capacity of the healthcare system to meet the demand for care under realistic constraints on human resources for health available, we were able to simulate the health gains achievable under a number of plausible HBP strategies for the country. We found that the HBP emerging from a linear constrained optimisation analysis (LCOA) achieved the largest health gain-∼8% reduction in disability adjusted life years (DALYs) between 2023 and 2042 compared to the benchmark scenario-by concentrating resources on high-impact treatments. This HBP however incurred a relative excess in DALYs in the first few years of its implementation. Other feasible approaches to prioritisation were assessed, including service prioritisation based on patient characteristics, rather than service type. Unlike the LCOA-based HBP, this approach achieved consistent health gains relative to the benchmark scenario on a year- to-year basis, and a 5% reduction in DALYs over the whole period, which suggests an approach based upon patient characteristics might prove beneficial in the future.
{"title":"A new approach to Health Benefits Package design: an application of the Thanzi La Onse model in Malawi.","authors":"Margherita Molaro, Sakshi Mohan, Bingling She, Martin Chalkley, Tim Colbourn, Joseph H Collins, Emilia Connolly, Matthew M Graham, Eva Janoušková, Ines Li Lin, Gerald Manthalu, Emmanuel Mnjowe, Dominic Nkhoma, Pakwanja D Twea, Andrew N Phillips, Paul Revill, Asif U Tamuri, Joseph Mfutso-Bengo, Tara D Mangal, Timothy B Hallett","doi":"10.1371/journal.pcbi.1012462","DOIUrl":"https://doi.org/10.1371/journal.pcbi.1012462","url":null,"abstract":"<p><p>An efficient allocation of limited resources in low-income settings offers the opportunity to improve population-health outcomes given the available health system capacity. Efforts to achieve this are often framed through the lens of \"health benefits packages\" (HBPs), which seek to establish which services the public healthcare system should include in its provision. Analytic approaches widely used to weigh evidence in support of different interventions and inform the broader HBP deliberative process however have limitations. In this work, we propose the individual-based Thanzi La Onse (TLO) model as a uniquely-tailored tool to assist in the evaluation of Malawi-specific HBPs while addressing these limitations. By mechanistically modelling-and calibrating to extensive, country-specific data-the incidence of disease, health-seeking behaviour, and the capacity of the healthcare system to meet the demand for care under realistic constraints on human resources for health available, we were able to simulate the health gains achievable under a number of plausible HBP strategies for the country. We found that the HBP emerging from a linear constrained optimisation analysis (LCOA) achieved the largest health gain-∼8% reduction in disability adjusted life years (DALYs) between 2023 and 2042 compared to the benchmark scenario-by concentrating resources on high-impact treatments. This HBP however incurred a relative excess in DALYs in the first few years of its implementation. Other feasible approaches to prioritisation were assessed, including service prioritisation based on patient characteristics, rather than service type. Unlike the LCOA-based HBP, this approach achieved consistent health gains relative to the benchmark scenario on a year- to-year basis, and a 5% reduction in DALYs over the whole period, which suggests an approach based upon patient characteristics might prove beneficial in the future.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27eCollection Date: 2024-09-01DOI: 10.1371/journal.pcbi.1011632
Cecile Le Sueur, Magnus Rattray, Mikhail Savitski
Thermal proteome profiling (TPP) is a proteome wide technology that enables unbiased detection of protein drug interactions as well as changes in post-translational state of proteins between different biological conditions. Statistical analysis of temperature range TPP (TPP-TR) datasets relies on comparing protein melting curves, describing the amount of non-denatured proteins as a function of temperature, between different conditions (e.g. presence or absence of a drug). However, state-of-the-art models are restricted to sigmoidal melting behaviours while unconventional melting curves, representing up to 50% of TPP-TR datasets, have recently been shown to carry important biological information. We present a novel statistical framework, based on hierarchical Gaussian process models and named GPMelt, to make TPP-TR datasets analysis unbiased with respect to the melting profiles of proteins. GPMelt scales to multiple conditions, and extension of the model to deeper hierarchies (i.e. with additional sub-levels) allows to deal with complex TPP-TR protocols. Collectively, our statistical framework extends the analysis of TPP-TR datasets for both protein and peptide level melting curves, offering access to thousands of previously excluded melting curves and thus substantially increasing the coverage and the ability of TPP to uncover new biology.
{"title":"GPMelt: A hierarchical Gaussian process framework to explore the dark meltome of thermal proteome profiling experiments.","authors":"Cecile Le Sueur, Magnus Rattray, Mikhail Savitski","doi":"10.1371/journal.pcbi.1011632","DOIUrl":"10.1371/journal.pcbi.1011632","url":null,"abstract":"<p><p>Thermal proteome profiling (TPP) is a proteome wide technology that enables unbiased detection of protein drug interactions as well as changes in post-translational state of proteins between different biological conditions. Statistical analysis of temperature range TPP (TPP-TR) datasets relies on comparing protein melting curves, describing the amount of non-denatured proteins as a function of temperature, between different conditions (e.g. presence or absence of a drug). However, state-of-the-art models are restricted to sigmoidal melting behaviours while unconventional melting curves, representing up to 50% of TPP-TR datasets, have recently been shown to carry important biological information. We present a novel statistical framework, based on hierarchical Gaussian process models and named GPMelt, to make TPP-TR datasets analysis unbiased with respect to the melting profiles of proteins. GPMelt scales to multiple conditions, and extension of the model to deeper hierarchies (i.e. with additional sub-levels) allows to deal with complex TPP-TR protocols. Collectively, our statistical framework extends the analysis of TPP-TR datasets for both protein and peptide level melting curves, offering access to thousands of previously excluded melting curves and thus substantially increasing the coverage and the ability of TPP to uncover new biology.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463780/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27eCollection Date: 2024-09-01DOI: 10.1371/journal.pcbi.1012499
Mengze Zhang, Xia Wang, Sanyi Tang
Aedes mosquitoes, known as vectors of mosquito-borne diseases, pose significant risks to public health and safety. Modeling the population dynamics of Aedes mosquitoes requires comprehensive approaches due to the complex interplay between biological mechanisms and environmental factors. This study developed a model that couples differential equations with a neural network to simulate the dynamics of mosquito population, and explore the relationships between oviposition rate, temperature, and precipitation. Data from nine cities in Guangdong Province spanning four years were used for model training and parameter estimation, while data from the remaining three cities were reserved for model validation. The trained model successfully simulated the mosquito population dynamics across all twelve cities using the same set of parameters. Correlation coefficients between simulated results and observed data exceeded 0.7 across all cities, with some cities surpassing 0.85, demonstrating high model performance. The coupled neural network in the model effectively revealed the relationships among oviposition rate, temperature, and precipitation, aligning with biological patterns. Furthermore, symbolic regression was used to identify the optimal functional expression for these relationships. By integrating the traditional dynamic model with machine learning, our model can adhere to specific biological mechanisms while extracting patterns from data, thus enhancing its interpretability in biology. Our approach provides both accurate modeling and an avenue for uncovering potential unknown biological mechanisms. Our conclusions can provide valuable insights into designing strategies for controlling mosquito-borne diseases and developing related prediction and early warning systems.
{"title":"Integrating dynamic models and neural networks to discover the mechanism of meteorological factors on Aedes population.","authors":"Mengze Zhang, Xia Wang, Sanyi Tang","doi":"10.1371/journal.pcbi.1012499","DOIUrl":"10.1371/journal.pcbi.1012499","url":null,"abstract":"<p><p>Aedes mosquitoes, known as vectors of mosquito-borne diseases, pose significant risks to public health and safety. Modeling the population dynamics of Aedes mosquitoes requires comprehensive approaches due to the complex interplay between biological mechanisms and environmental factors. This study developed a model that couples differential equations with a neural network to simulate the dynamics of mosquito population, and explore the relationships between oviposition rate, temperature, and precipitation. Data from nine cities in Guangdong Province spanning four years were used for model training and parameter estimation, while data from the remaining three cities were reserved for model validation. The trained model successfully simulated the mosquito population dynamics across all twelve cities using the same set of parameters. Correlation coefficients between simulated results and observed data exceeded 0.7 across all cities, with some cities surpassing 0.85, demonstrating high model performance. The coupled neural network in the model effectively revealed the relationships among oviposition rate, temperature, and precipitation, aligning with biological patterns. Furthermore, symbolic regression was used to identify the optimal functional expression for these relationships. By integrating the traditional dynamic model with machine learning, our model can adhere to specific biological mechanisms while extracting patterns from data, thus enhancing its interpretability in biology. Our approach provides both accurate modeling and an avenue for uncovering potential unknown biological mechanisms. Our conclusions can provide valuable insights into designing strategies for controlling mosquito-borne diseases and developing related prediction and early warning systems.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463784/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27eCollection Date: 2024-09-01DOI: 10.1371/journal.pcbi.1012471
Carlos A Velázquez-Vargas, Nathaniel D Daw, Jordan A Taylor
A fundamental feature of the human brain is its capacity to learn novel motor skills. This capacity requires the formation of vastly different visuomotor mappings. Using a grid navigation task, we investigated whether training variability would enhance the flexible use of a visuomotor mapping (key-to-direction rule), leading to better generalization performance. Experiments 1 and 2 show that participants trained to move between multiple start-target pairs exhibited greater generalization to both distal and proximal targets compared to participants trained to move between a single pair. This finding suggests that limited variability can impair decisions even in simple tasks without planning. In addition, during the training phase, participants exposed to higher variability were more inclined to choose options that, counterintuitively, moved the cursor away from the target while minimizing its actual distance under the constrained mapping, suggesting a greater engagement in model-based computations. In Experiments 3 and 4, we showed that the limited generalization performance in participants trained with a single pair can be enhanced by a short period of variability introduced early in learning or by incorporating stochasticity into the visuomotor mapping. Our computational modeling analyses revealed that a hybrid model between model-free and model-based computations with different mixing weights for the training and generalization phases, best described participants' data. Importantly, the differences in the model-based weights between our experimental groups, paralleled the behavioral findings during training and generalization. Taken together, our results suggest that training variability enables the flexible use of the visuomotor mapping, potentially by preventing the consolidation of habits due to the continuous demand to change responses.
{"title":"The role of training variability for model-based and model-free learning of an arbitrary visuomotor mapping.","authors":"Carlos A Velázquez-Vargas, Nathaniel D Daw, Jordan A Taylor","doi":"10.1371/journal.pcbi.1012471","DOIUrl":"10.1371/journal.pcbi.1012471","url":null,"abstract":"<p><p>A fundamental feature of the human brain is its capacity to learn novel motor skills. This capacity requires the formation of vastly different visuomotor mappings. Using a grid navigation task, we investigated whether training variability would enhance the flexible use of a visuomotor mapping (key-to-direction rule), leading to better generalization performance. Experiments 1 and 2 show that participants trained to move between multiple start-target pairs exhibited greater generalization to both distal and proximal targets compared to participants trained to move between a single pair. This finding suggests that limited variability can impair decisions even in simple tasks without planning. In addition, during the training phase, participants exposed to higher variability were more inclined to choose options that, counterintuitively, moved the cursor away from the target while minimizing its actual distance under the constrained mapping, suggesting a greater engagement in model-based computations. In Experiments 3 and 4, we showed that the limited generalization performance in participants trained with a single pair can be enhanced by a short period of variability introduced early in learning or by incorporating stochasticity into the visuomotor mapping. Our computational modeling analyses revealed that a hybrid model between model-free and model-based computations with different mixing weights for the training and generalization phases, best described participants' data. Importantly, the differences in the model-based weights between our experimental groups, paralleled the behavioral findings during training and generalization. Taken together, our results suggest that training variability enables the flexible use of the visuomotor mapping, potentially by preventing the consolidation of habits due to the continuous demand to change responses.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463753/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27eCollection Date: 2024-09-01DOI: 10.1371/journal.pcbi.1012412
Jiaxin Jiang, Xiaona Meng, Yibo Wang, Ziqian Zhuang, Ting Du, Jing Yan
Most COVID-19 patients have a positive prognosis, but patients with additional underlying diseases are more likely to have severe illness and increased fatality rates. Numerous studies indicate that cancer patients are more prone to contract SARS-CoV-2 and develop severe COVID-19 or even dying. In the recent transcriptome investigations, it is demonstrated that the fructose metabolism is altered in patients with SARS-CoV-2 infection. However, cancer cells can use fructose as an extra source of energy for growth and metastasis. Furthermore, enhanced living conditions have resulted in a notable rise in fructose consumption in individuals' daily dietary habits. We therefore hypothesize that the poor prognosis of cancer patients caused by SARS-CoV-2 may therefore be mediated through fructose metabolism. Using CRC cases from four distinct cohorts, we built and validated a predictive model based on SARS-CoV-2 producing fructose metabolic anomalies by coupling Cox univariate regression and lasso regression feature selection algorithms to identify hallmark genes in colorectal cancer. We also developed a composite prognostic nomogram to improve clinical practice by integrating the characteristics of aberrant fructose metabolism produced by this novel coronavirus with age and tumor stage. To obtain the genes with the greatest potential prognostic values, LASSO regression analysis was performed, In the TCGA training cohort, patients were randomly separated into training and validation sets in the ratio of 4: 1, and the best risk score value for each sample was acquired by lasso regression analysis for further analysis, and the fifteen genes CLEC4A, FDFT1, CTNNB1, GPI, PMM2, PTPRD, IL7, ALDH3B1, AASS, AOC3, SEPINE1, PFKFB1, FTCD, TIMP1 and GATM were finally selected. In order to validate the model's accuracy, ROC curve analysis was performed on an external dataset, and the results indicated that the model had a high predictive power for the prognosis prediction of patients. Our study provides a theoretical foundation for the future targeted regulation of fructose metabolism in colorectal cancer patients, while simultaneously optimizing dietary guidance and therapeutic care for colorectal cancer patients in the context of the COVID-19 pandemic.
{"title":"Effect of aberrant fructose metabolism following SARS-CoV-2 infection on colorectal cancer patients' poor prognosis.","authors":"Jiaxin Jiang, Xiaona Meng, Yibo Wang, Ziqian Zhuang, Ting Du, Jing Yan","doi":"10.1371/journal.pcbi.1012412","DOIUrl":"10.1371/journal.pcbi.1012412","url":null,"abstract":"<p><p>Most COVID-19 patients have a positive prognosis, but patients with additional underlying diseases are more likely to have severe illness and increased fatality rates. Numerous studies indicate that cancer patients are more prone to contract SARS-CoV-2 and develop severe COVID-19 or even dying. In the recent transcriptome investigations, it is demonstrated that the fructose metabolism is altered in patients with SARS-CoV-2 infection. However, cancer cells can use fructose as an extra source of energy for growth and metastasis. Furthermore, enhanced living conditions have resulted in a notable rise in fructose consumption in individuals' daily dietary habits. We therefore hypothesize that the poor prognosis of cancer patients caused by SARS-CoV-2 may therefore be mediated through fructose metabolism. Using CRC cases from four distinct cohorts, we built and validated a predictive model based on SARS-CoV-2 producing fructose metabolic anomalies by coupling Cox univariate regression and lasso regression feature selection algorithms to identify hallmark genes in colorectal cancer. We also developed a composite prognostic nomogram to improve clinical practice by integrating the characteristics of aberrant fructose metabolism produced by this novel coronavirus with age and tumor stage. To obtain the genes with the greatest potential prognostic values, LASSO regression analysis was performed, In the TCGA training cohort, patients were randomly separated into training and validation sets in the ratio of 4: 1, and the best risk score value for each sample was acquired by lasso regression analysis for further analysis, and the fifteen genes CLEC4A, FDFT1, CTNNB1, GPI, PMM2, PTPRD, IL7, ALDH3B1, AASS, AOC3, SEPINE1, PFKFB1, FTCD, TIMP1 and GATM were finally selected. In order to validate the model's accuracy, ROC curve analysis was performed on an external dataset, and the results indicated that the model had a high predictive power for the prognosis prediction of patients. Our study provides a theoretical foundation for the future targeted regulation of fructose metabolism in colorectal cancer patients, while simultaneously optimizing dietary guidance and therapeutic care for colorectal cancer patients in the context of the COVID-19 pandemic.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27eCollection Date: 2024-09-01DOI: 10.1371/journal.pcbi.1012076
Ilaria Granata, Lucia Maddalena, Mario Manzo, Mario Rosario Guarracino, Maurizio Giordano
Machine learning-based approaches are particularly suitable for identifying essential genes as they allow the generation of predictive models trained on features from multi-source data. Gene essentiality is neither binary nor static but determined by the context. The databases for essential gene annotation do not permit the personalisation of the context, and their update can be slower than the publication of new experimental data. We propose HELP (Human Gene Essentiality Labelling & Prediction), a computational framework for labelling and predicting essential genes. Its double scope allows for identifying genes based on dependency or not on experimental data. The effectiveness of the labelling method was demonstrated by comparing it with other approaches in overlapping the reference sets of essential gene annotations, where HELP demonstrated the best compromise between false and true positive rates. The gene attributes, including multi-omics and network embedding features, lead to high-performance prediction of essential genes while confirming the existence of essentiality nuances.
基于机器学习的方法尤其适用于识别重要基因,因为这些方法可以根据多源数据的特征生成预测模型。基因本质既不是二元对立的,也不是一成不变的,而是由上下文决定的。基本基因注释数据库不允许对上下文进行个性化处理,而且其更新速度可能比新实验数据的发布还要慢。我们提出了 HELP(人类基因本质标记与预测),这是一个用于标记和预测本质基因的计算框架。它具有双重范围,可根据是否依赖实验数据来识别基因。通过在基本基因注释参考集重叠方面与其他方法的比较,证明了标记方法的有效性,其中 HELP 在假阳性率和真阳性率之间实现了最佳折衷。包括多组学和网络嵌入特征在内的基因属性在确认本质细微差别存在的同时,还能对本质基因进行高性能预测。
{"title":"HELP: A computational framework for labelling and predicting human common and context-specific essential genes.","authors":"Ilaria Granata, Lucia Maddalena, Mario Manzo, Mario Rosario Guarracino, Maurizio Giordano","doi":"10.1371/journal.pcbi.1012076","DOIUrl":"10.1371/journal.pcbi.1012076","url":null,"abstract":"<p><p>Machine learning-based approaches are particularly suitable for identifying essential genes as they allow the generation of predictive models trained on features from multi-source data. Gene essentiality is neither binary nor static but determined by the context. The databases for essential gene annotation do not permit the personalisation of the context, and their update can be slower than the publication of new experimental data. We propose HELP (Human Gene Essentiality Labelling & Prediction), a computational framework for labelling and predicting essential genes. Its double scope allows for identifying genes based on dependency or not on experimental data. The effectiveness of the labelling method was demonstrated by comparing it with other approaches in overlapping the reference sets of essential gene annotations, where HELP demonstrated the best compromise between false and true positive rates. The gene attributes, including multi-omics and network embedding features, lead to high-performance prediction of essential genes while confirming the existence of essentiality nuances.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}