首页 > 最新文献

Polymers最新文献

英文 中文
Green and Mild Fabrication of Magnetic Poly(trithiocyanuric acid) Polymers for Rapid and Selective Separation of Mercury(II) Ions in Aqueous Samples. 绿色低成本制造磁性聚(三硫氰尿酸)聚合物,用于快速选择性分离水样中的汞(II)离子。
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2024-10-31 DOI: 10.3390/polym16213067
Qianqian Li, Boxian Ruan, Yue Yu, Linshu Ye, Aoxiong Dai, Sasha You, Bingshan Zhao, Limin Ren

The removal and detection of highly toxic mercury(II) ions (Hg2+) in water used daily is essential for human health and monitoring environmental pollution. Efficient porous organic polymers (POPs) can provide a strong adsorption capacity toward heavy metal ions, although the complex synthetic process and inconvenient phase separation steps limit their application. Hence, a combination of POPs and magnetic nanomaterials was proposed and a new magnetic porous organic polymer adsorbent was fabricated by a green and mild redox reaction in the aqueous phase with trithiocyanuric acid (TA) and its sodium salts acting as reductive monomers and iodine acting as an oxidant. In the preparation steps, no additional harmful organic solvent is required and the byproducts of sodium iodine are generally considered to be non-toxic. The resulting magnetic poly(trithiocyanuric acid) polymers (MPTAPs) are highly porous, have large surface areas, are rich in sulfhydryl groups and show easy magnetic separation ability. The experimental results show that MPTAPs exhibit good adsorption affinity toward Hg2+ with high selectivity, rapid adsorption kinetics (10 min), a large adsorption capacity (211 mg g-1) and wide adsorption applicability under various pH environments (pH 2~8). Additionally, MPTAPs can be reused for up to 10 cycles, and the magnetic separation step of MPTAPs is fast and convenient, reducing energy consumption compared to centrifugation and filtration steps required for non-magnetic adsorbents. These results demonstrate the promising capability of MPTAPs as superior adsorbents for effective adsorption and separation of Hg2+. Based on this, the prepared MPTAPs were adopted as magnetic solid-phase extraction (MSPE) materials for isolation of trace Hg2+ from aqueous samples. Under optimized conditions, the extraction and quantification of trace Hg2+ in water samples were accomplished using inductively coupled plasma mass spectrometry (ICP-MS) detection after MSPE procedures. The proposed MPTAPs-based MSPE-ICP-MS method is efficient, rapid, sensitive and selective for the determination of trace Hg2+, and was successfully employed for the accurate analysis of trace Hg2+ in tap water, wastewater, lake water and river water samples.

去除和检测日常用水中的剧毒汞(II)离子(Hg2+)对人类健康和监测环境污染至关重要。高效多孔有机聚合物(POPs)对重金属离子具有很强的吸附能力,但其复杂的合成过程和不便的相分离步骤限制了其应用。因此,有人提出将持久性有机污染物与磁性纳米材料相结合,并以三硫氰尿酸(TA)及其钠盐作为还原单体,以碘作为氧化剂,通过水相中绿色温和的氧化还原反应制备出一种新型磁性多孔有机聚合物吸附剂。在制备步骤中,不需要额外的有害有机溶剂,碘钠的副产物通常被认为是无毒的。制备出的磁性聚(三硫氰尿酸)聚合物(MPTAPs)多孔性强、比表面积大、富含巯基,并且易于磁分离。实验结果表明,MPTAPs 对 Hg2+ 具有良好的吸附亲和力,选择性高,吸附动力学快(10 分钟),吸附容量大(211 mg g-1),在各种 pH 环境(pH 2~8)下都有广泛的吸附适用性。此外,MPTAPs 可重复使用多达 10 次,而且与非磁性吸附剂所需的离心和过滤步骤相比,MPTAPs 的磁性分离步骤快捷方便,降低了能耗。这些结果表明,MPTAPs 具有良好的吸附能力,可有效吸附和分离 Hg2+。在此基础上,制备的 MPTAPs 被用作磁性固相萃取(MSPE)材料,用于分离水样中的痕量 Hg2+。在优化的条件下,采用电感耦合等离子体质谱法(ICP-MS)检测了 MSPE 程序后水样中的痕量 Hg2+。所提出的基于 MPTAPs 的 MSPE-ICP-MS 方法具有高效、快速、灵敏和选择性强等特点,可用于自来水、废水、湖水和河水样品中痕量 Hg2+ 的准确分析。
{"title":"Green and Mild Fabrication of Magnetic Poly(trithiocyanuric acid) Polymers for Rapid and Selective Separation of Mercury(II) Ions in Aqueous Samples.","authors":"Qianqian Li, Boxian Ruan, Yue Yu, Linshu Ye, Aoxiong Dai, Sasha You, Bingshan Zhao, Limin Ren","doi":"10.3390/polym16213067","DOIUrl":"10.3390/polym16213067","url":null,"abstract":"<p><p>The removal and detection of highly toxic mercury(II) ions (Hg<sup>2+</sup>) in water used daily is essential for human health and monitoring environmental pollution. Efficient porous organic polymers (POPs) can provide a strong adsorption capacity toward heavy metal ions, although the complex synthetic process and inconvenient phase separation steps limit their application. Hence, a combination of POPs and magnetic nanomaterials was proposed and a new magnetic porous organic polymer adsorbent was fabricated by a green and mild redox reaction in the aqueous phase with trithiocyanuric acid (TA) and its sodium salts acting as reductive monomers and iodine acting as an oxidant. In the preparation steps, no additional harmful organic solvent is required and the byproducts of sodium iodine are generally considered to be non-toxic. The resulting magnetic poly(trithiocyanuric acid) polymers (MPTAPs) are highly porous, have large surface areas, are rich in sulfhydryl groups and show easy magnetic separation ability. The experimental results show that MPTAPs exhibit good adsorption affinity toward Hg<sup>2+</sup> with high selectivity, rapid adsorption kinetics (10 min), a large adsorption capacity (211 mg g<sup>-1</sup>) and wide adsorption applicability under various pH environments (pH 2~8). Additionally, MPTAPs can be reused for up to 10 cycles, and the magnetic separation step of MPTAPs is fast and convenient, reducing energy consumption compared to centrifugation and filtration steps required for non-magnetic adsorbents. These results demonstrate the promising capability of MPTAPs as superior adsorbents for effective adsorption and separation of Hg<sup>2+</sup>. Based on this, the prepared MPTAPs were adopted as magnetic solid-phase extraction (MSPE) materials for isolation of trace Hg<sup>2+</sup> from aqueous samples. Under optimized conditions, the extraction and quantification of trace Hg<sup>2+</sup> in water samples were accomplished using inductively coupled plasma mass spectrometry (ICP-MS) detection after MSPE procedures. The proposed MPTAPs-based MSPE-ICP-MS method is efficient, rapid, sensitive and selective for the determination of trace Hg<sup>2+</sup>, and was successfully employed for the accurate analysis of trace Hg<sup>2+</sup> in tap water, wastewater, lake water and river water samples.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of the Elastocaloric Performance of Natural Rubber by Forced Air Convection. 通过强制空气对流提高天然橡胶的弹性热性能
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2024-10-31 DOI: 10.3390/polym16213078
Emma Valdés, Enric Stern-Taulats, Nicolas Candau, Lluís Mañosa, Eduard Vives

We study the enhancement of the elastocaloric effect in natural rubber by using forced air convection to favour heat extraction during the elongation stage of a stretching-unstretching cycle. Elastocaloric performance is quantified by means of the adiabatic undercooling that occurs after fast removal of the stress, measured by infrared thermography. To ensure accuracy, spatial averaging on thermal maps of the sample surface is performed since undercooled samples display heterogeneities caused by various factors. The influence of the stretching velocity and the air velocity is analysed. The findings indicate that there is an optimal air velocity that maximises adiabatic undercooling, with stretching velocities needing to be high enough to enhance cooling power. Our experiments allowed the characterisation of the dependence of the Newton heat transfer coefficient on the air convection velocity, which revealed an enhancement up to 600% for air velocities around 4 m/s.

我们研究了在拉伸-拉伸循环的伸长阶段,利用强制空气对流促进热量提取,从而增强天然橡胶的弹性热效应。通过红外热成像技术测量快速消除应力后出现的绝热过冷度,对弹性热效应进行量化。为了确保准确性,对样品表面的热图进行了空间平均处理,因为过冷样品会因各种因素而显示出异质性。分析了拉伸速度和空气速度的影响。研究结果表明,有一个最佳的空气速度可以最大限度地提高绝热过冷度,拉伸速度需要足够高以提高冷却能力。通过实验,我们可以确定牛顿传热系数与空气对流速度的关系,结果表明,当空气速度在 4 米/秒左右时,牛顿传热系数可提高 600%。
{"title":"Enhancement of the Elastocaloric Performance of Natural Rubber by Forced Air Convection.","authors":"Emma Valdés, Enric Stern-Taulats, Nicolas Candau, Lluís Mañosa, Eduard Vives","doi":"10.3390/polym16213078","DOIUrl":"10.3390/polym16213078","url":null,"abstract":"<p><p>We study the enhancement of the elastocaloric effect in natural rubber by using forced air convection to favour heat extraction during the elongation stage of a stretching-unstretching cycle. Elastocaloric performance is quantified by means of the adiabatic undercooling that occurs after fast removal of the stress, measured by infrared thermography. To ensure accuracy, spatial averaging on thermal maps of the sample surface is performed since undercooled samples display heterogeneities caused by various factors. The influence of the stretching velocity and the air velocity is analysed. The findings indicate that there is an optimal air velocity that maximises adiabatic undercooling, with stretching velocities needing to be high enough to enhance cooling power. Our experiments allowed the characterisation of the dependence of the Newton heat transfer coefficient on the air convection velocity, which revealed an enhancement up to 600% for air velocities around 4 m/s.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142627061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiopaque Polyurethanes Containing Barium Sulfate: A Survey on Thermal, Rheological, Physical, and Structural Properties. 含硫酸钡的不透射线聚氨酯:关于热学、流变学、物理和结构特性的调查。
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2024-10-31 DOI: 10.3390/polym16213086
Heitor Luiz Ornaghi Júnior, Benoit Duchemin, Sanae Azzaye, Márcio Ronaldo Farias Soares, Bárbara Schneider, Carlos Henrique Romoaldo

Radiopaque polyurethanes are extensively used in biomedical fields owing to their favorable balance of properties. This research aims to investigate the influence of particle concentration on various properties, including rheological, radiopacity, structural, thermal, and mechanical attributes, with a thorough analysis. The findings are benchmarked against a commercial product (PL 8500 A) that contains 10% weight barium sulfate. Two more thermoplastic polyurethanes (TPU) were formulated with two different concentrations of barium sulfate (10 wt.% and 20 wt.%) and compared to the commercially available product. FTIR demonstrated similar absorption bands among all samples, indicating that the fabrication method did not impact the TPU matrix. DSC indicated a predominantly amorphous structure for PL 8500 A compared to the other samples, while the kinetic degradation was more influenced by the higher barium sulfate content. The rheological analysis showed a decrease in the complex viscosity and storage modulus with the radiopacifier and an increase in the radiopacity, as demonstrated by the X-radiography. X-ray microtomography showed a more spherical particle format with a heterogeneous particle structure for PL 8500 A compared to the other polyurethanes. These findings enhance the comprehension of the structure-property relationships inherent in these materials and facilitate the development of customized materials for targeted applications.

不透射线聚氨酯因其良好的性能平衡而被广泛应用于生物医学领域。本研究旨在通过全面分析,研究颗粒浓度对各种性能(包括流变性、不透射线性、结构性、热性能和机械性能)的影响。研究结果以含有 10% 重量硫酸钡的商用产品(PL 8500 A)为基准。此外,还使用两种不同浓度的硫酸钡(10 wt.% 和 20 wt.%)配制了两种热塑性聚氨酯 (TPU),并与市售产品进行了比较。傅立叶变换红外光谱(FTIR)显示所有样品的吸收带相似,表明制造方法对热塑性聚氨酯基质没有影响。DSC 显示,与其他样品相比,PL 8500 A 主要为无定形结构,而动力学降解受硫酸钡含量较高的影响更大。流变学分析表明,添加了增塑剂后,复合粘度和储存模量降低,而 X 射线照相术则表明,不透明度增加。X 射线显微层析技术显示,与其他聚氨酯相比,PL 8500 A 的颗粒结构更不均匀,呈球形。这些发现加深了人们对这些材料固有的结构-性能关系的理解,有助于为目标应用开发定制材料。
{"title":"Radiopaque Polyurethanes Containing Barium Sulfate: A Survey on Thermal, Rheological, Physical, and Structural Properties.","authors":"Heitor Luiz Ornaghi Júnior, Benoit Duchemin, Sanae Azzaye, Márcio Ronaldo Farias Soares, Bárbara Schneider, Carlos Henrique Romoaldo","doi":"10.3390/polym16213086","DOIUrl":"10.3390/polym16213086","url":null,"abstract":"<p><p>Radiopaque polyurethanes are extensively used in biomedical fields owing to their favorable balance of properties. This research aims to investigate the influence of particle concentration on various properties, including rheological, radiopacity, structural, thermal, and mechanical attributes, with a thorough analysis. The findings are benchmarked against a commercial product (PL 8500 A) that contains 10% weight barium sulfate. Two more thermoplastic polyurethanes (TPU) were formulated with two different concentrations of barium sulfate (10 wt.% and 20 wt.%) and compared to the commercially available product. FTIR demonstrated similar absorption bands among all samples, indicating that the fabrication method did not impact the TPU matrix. DSC indicated a predominantly amorphous structure for PL 8500 A compared to the other samples, while the kinetic degradation was more influenced by the higher barium sulfate content. The rheological analysis showed a decrease in the complex viscosity and storage modulus with the radiopacifier and an increase in the radiopacity, as demonstrated by the X-radiography. X-ray microtomography showed a more spherical particle format with a heterogeneous particle structure for PL 8500 A compared to the other polyurethanes. These findings enhance the comprehension of the structure-property relationships inherent in these materials and facilitate the development of customized materials for targeted applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Highly Sensitive Porous Polydimethylsiloxane Pressure Sensor Through Control of Rheological Properties. 通过控制流变特性制造高灵敏度多孔聚二甲基硅氧烷压力传感器
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2024-10-31 DOI: 10.3390/polym16213075
Yunseok Jang, Seung-Hyun Lee, Youn-Ki Lee, Inyoung Kim, Taik-Min Lee, Sin Kwon, Boseok Kang

In order to enhance the sensitivity of elastomers, pores were integrated into their structure. These pores facilitate the adjustment of thickness in response to external pressure variations, thereby improving the sensitivity of pressure sensors. Pores were introduced by emulsifying immiscible polydimethylsiloxane (PDMS) and water with a surfactant. By controlling the water content in the PDMS and water emulsion, we controlled the size, density, uniformity, and spatial distribution (2D or 3D) of the pores within the PDMS matrix. The presence of these pores significantly improved the sensitivity of PDMS under low external pressure conditions compared to high pressures. Specifically, porous PDMS exhibited approximately 10-times greater sensitivity under low-pressure conditions than non-porous PDMS. The effectiveness of porous PDMS was demonstrated through dynamic loading and unloading detection of a small Lego toy and monitoring of human heartbeats. These results highlight the efficacy of our pressure sensor based on porous PDMS, which is fabricated through a simple and cost-effective process using a PDMS and water emulsion. This approach is highly suitable for developing the ability to detect applied pressures or contact forces.

为了提高弹性体的灵敏度,在其结构中加入了孔隙。这些孔隙有助于根据外部压力变化调整厚度,从而提高压力传感器的灵敏度。通过使用表面活性剂乳化不相溶的聚二甲基硅氧烷(PDMS)和水来引入孔隙。通过控制 PDMS 和水乳液中的含水量,我们控制了 PDMS 基质中孔隙的大小、密度、均匀性和空间分布(二维或三维)。与高压相比,这些孔隙的存在大大提高了 PDMS 在低外部压力条件下的灵敏度。具体来说,多孔 PDMS 在低压条件下的灵敏度比无孔 PDMS 高出约 10 倍。多孔 PDMS 的有效性通过对小型乐高玩具的动态加载和卸载检测以及对人体心跳的监测得到了证明。这些结果凸显了我们基于多孔 PDMS 的压力传感器的功效,该传感器是通过使用 PDMS 和水乳液的简单而经济的工艺制作而成的。这种方法非常适合开发检测外加压力或接触力的能力。
{"title":"Fabrication of Highly Sensitive Porous Polydimethylsiloxane Pressure Sensor Through Control of Rheological Properties.","authors":"Yunseok Jang, Seung-Hyun Lee, Youn-Ki Lee, Inyoung Kim, Taik-Min Lee, Sin Kwon, Boseok Kang","doi":"10.3390/polym16213075","DOIUrl":"10.3390/polym16213075","url":null,"abstract":"<p><p>In order to enhance the sensitivity of elastomers, pores were integrated into their structure. These pores facilitate the adjustment of thickness in response to external pressure variations, thereby improving the sensitivity of pressure sensors. Pores were introduced by emulsifying immiscible polydimethylsiloxane (PDMS) and water with a surfactant. By controlling the water content in the PDMS and water emulsion, we controlled the size, density, uniformity, and spatial distribution (2D or 3D) of the pores within the PDMS matrix. The presence of these pores significantly improved the sensitivity of PDMS under low external pressure conditions compared to high pressures. Specifically, porous PDMS exhibited approximately 10-times greater sensitivity under low-pressure conditions than non-porous PDMS. The effectiveness of porous PDMS was demonstrated through dynamic loading and unloading detection of a small Lego toy and monitoring of human heartbeats. These results highlight the efficacy of our pressure sensor based on porous PDMS, which is fabricated through a simple and cost-effective process using a PDMS and water emulsion. This approach is highly suitable for developing the ability to detect applied pressures or contact forces.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rheological Behavior of Clay Tailings in the Presence of Divalent Cations and Sodium Polyacrylate: Insights from Molecular Dynamics Simulations. 二价阳离子和聚丙烯酸钠存在下的粘土尾矿流变行为:分子动力学模拟的启示。
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2024-10-31 DOI: 10.3390/polym16213091
Jahir J Ramos, Steven Nieto, Gonzalo R Quezada, Williams Leiva, Pedro Robles, Fernando Betancourt, Ricardo I Jeldres

This study analyzes the behavior of sodium polyacrylate (NaPA) as a rheological modifier for clay-based tailings. Special emphasis is placed on the impact of calcium and magnesium ions in industrial water, which are analyzed through rheograms, zeta potential measurements, and molecular dynamics simulations. The results are interpreted as electrostatic interactions, steric phenomena, and cation solvation. This interpretation integrates experimental studies with microscopic analyses, employing molecular dynamics simulations to elucidate the underlying mechanisms. In all cases, a decrease in the yield stress of synthetic slurries is observed as the dosing of NaPA increases due to greater repulsion between tailings particles through an increase in electrostatic repulsion and larger steric forces that hinder agglomeration. However, efficiency is reduced in the presence of divalent cations as zeta potential measurements suggest a reduction in the electrical charges of the particles and the polymer, making its application more challenging. The differences obtained in the presence of calcium compared to magnesium are explained in terms of the solvation of these ions and their impact on the polymer conformation in solution and adsorption on the mineral surfaces. This explanation is reinforced by molecular dynamics studies, which indicate that polymer adsorption on minerals depends on the type of mineral and type of ion. Particularly for quartz, the highest adsorption of NaPA occurs in the presence of calcium, whereas for a kaolinite surface, the highest polymer adsorption is obtained in the presence of magnesium. The competitive effect of these phenomena leads to the rheological behavior of the tailings being dominated by the effects originating in the clay.

本研究分析了聚丙烯酸钠(NaPA)作为粘土基尾矿流变改性剂的行为。特别强调了工业用水中钙和镁离子的影响,并通过流变图、zeta 电位测量和分子动力学模拟进行了分析。结果被解释为静电相互作用、立体现象和阳离子溶解。这种解释将实验研究与微观分析相结合,并利用分子动力学模拟来阐明内在机制。在所有情况下,随着 NaPA 投加量的增加,合成泥浆的屈服应力都会降低,这是由于静电斥力的增加和阻碍团聚的立体力的增大导致尾矿颗粒之间的斥力增大。不过,在存在二价阳离子的情况下,效率会降低,因为 zeta 电位测量结果表明,颗粒和聚合物的电荷会减少,使其应用更具挑战性。钙离子与镁离子在溶解度方面的差异,以及它们对聚合物在溶液中的构象和在矿物表面的吸附的影响,可以解释为钙离子与镁离子在溶解度方面的差异。分子动力学研究加强了这一解释,研究表明聚合物在矿物上的吸附取决于矿物类型和离子类型。特别是对于石英,钙存在时 NaPA 的吸附量最大,而对于高岭石表面,镁存在时聚合物的吸附量最大。这些现象的竞争效应导致尾矿的流变行为主要受粘土的影响。
{"title":"Rheological Behavior of Clay Tailings in the Presence of Divalent Cations and Sodium Polyacrylate: Insights from Molecular Dynamics Simulations.","authors":"Jahir J Ramos, Steven Nieto, Gonzalo R Quezada, Williams Leiva, Pedro Robles, Fernando Betancourt, Ricardo I Jeldres","doi":"10.3390/polym16213091","DOIUrl":"10.3390/polym16213091","url":null,"abstract":"<p><p>This study analyzes the behavior of sodium polyacrylate (NaPA) as a rheological modifier for clay-based tailings. Special emphasis is placed on the impact of calcium and magnesium ions in industrial water, which are analyzed through rheograms, zeta potential measurements, and molecular dynamics simulations. The results are interpreted as electrostatic interactions, steric phenomena, and cation solvation. This interpretation integrates experimental studies with microscopic analyses, employing molecular dynamics simulations to elucidate the underlying mechanisms. In all cases, a decrease in the yield stress of synthetic slurries is observed as the dosing of NaPA increases due to greater repulsion between tailings particles through an increase in electrostatic repulsion and larger steric forces that hinder agglomeration. However, efficiency is reduced in the presence of divalent cations as zeta potential measurements suggest a reduction in the electrical charges of the particles and the polymer, making its application more challenging. The differences obtained in the presence of calcium compared to magnesium are explained in terms of the solvation of these ions and their impact on the polymer conformation in solution and adsorption on the mineral surfaces. This explanation is reinforced by molecular dynamics studies, which indicate that polymer adsorption on minerals depends on the type of mineral and type of ion. Particularly for quartz, the highest adsorption of NaPA occurs in the presence of calcium, whereas for a kaolinite surface, the highest polymer adsorption is obtained in the presence of magnesium. The competitive effect of these phenomena leads to the rheological behavior of the tailings being dominated by the effects originating in the clay.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Functionalized Graphene Oxide-Aluminum Hypophosphite Nanohybrids for Enhanced Fire Safety Performance in Polystyrene. 制备功能化氧化石墨烯-次磷酸铝纳米杂化物以增强聚苯乙烯的防火安全性能
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2024-10-31 DOI: 10.3390/polym16213083
Zhenzhen Deng, Tao Tang, Junjie Huo, Hui He, Kang Dai

To enhance the fire safety performance in polystyrene (PS), a novel organic-inorganic hybrid material (FGO-AHP) was successfully prepared by the combination of functionalized graphene oxide (FGO) and aluminum hypophosphite (AHP) via a chemical deposition method. The resulting FGO-AHP nanohybrids were incorporated into PS via a masterbatch-melt blending to produce PS/FGO-AHP nanocomposites. Scanning electron microscope images confirm the homogeneous dispersion and exfoliation state of FGO-AHP in the PS matrix. Incorporating FGO-AHP significantly improves the thermal behavior and fire safety performance of PS. By incorporating 5 wt% FGO-AHP, the maximum mass loss rate (MMLR) in air, total heat release (THR), and maximum smoke density value (Dsmax) of PS nanocomposite achieve a reduction of 53.1%, 23.4%, and 50.9%, respectively, as compared to the pure PS. In addition, thermogravimetry-Fourier transform infrared (TG-FTIR) results indicate that introducing FGO-AHP notably inhibits the evolution of volatile products from PS decomposition. Further, scanning electron microscopy (SEM), FTIR, and Raman spectroscopy were employed to investigate the char residue of PS nanocomposite samples, elaborating the flame-retardant mechanism in PS/FGO-AHP nanocomposites.

为了提高聚苯乙烯(PS)的防火安全性能,通过化学沉积法将功能化氧化石墨烯(FGO)和次磷酸铝(AHP)结合在一起,成功制备了一种新型有机-无机杂化材料(FGO-AHP)。通过母料-熔体共混将 FGO-AHP 纳米杂化物加入 PS 中,制备出 PS/FGO-AHP 纳米复合材料。扫描电子显微镜图像证实了 FGO-AHP 在 PS 基体中的均匀分散和剥离状态。加入 FGO-AHP 能显著改善 PS 的热性能和防火安全性能。通过加入 5 wt% 的 FGO-AHP,与纯 PS 相比,PS 纳米复合材料在空气中的最大质量损失率(MMLR)、总热释放量(THR)和最大烟密度值(Dsmax)分别降低了 53.1%、23.4% 和 50.9%。此外,热重分析-傅立叶变换红外(TG-FTIR)结果表明,引入 FGO-AHP 能显著抑制 PS 分解产生的挥发性产物的演化。此外,还利用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)和拉曼光谱对 PS 纳米复合材料样品的残炭进行了研究,阐述了 PS/FGO-AHP 纳米复合材料的阻燃机理。
{"title":"Fabrication of Functionalized Graphene Oxide-Aluminum Hypophosphite Nanohybrids for Enhanced Fire Safety Performance in Polystyrene.","authors":"Zhenzhen Deng, Tao Tang, Junjie Huo, Hui He, Kang Dai","doi":"10.3390/polym16213083","DOIUrl":"10.3390/polym16213083","url":null,"abstract":"<p><p>To enhance the fire safety performance in polystyrene (PS), a novel organic-inorganic hybrid material (FGO-AHP) was successfully prepared by the combination of functionalized graphene oxide (FGO) and aluminum hypophosphite (AHP) via a chemical deposition method. The resulting FGO-AHP nanohybrids were incorporated into PS via a masterbatch-melt blending to produce PS/FGO-AHP nanocomposites. Scanning electron microscope images confirm the homogeneous dispersion and exfoliation state of FGO-AHP in the PS matrix. Incorporating FGO-AHP significantly improves the thermal behavior and fire safety performance of PS. By incorporating 5 wt% FGO-AHP, the maximum mass loss rate (MMLR) in air, total heat release (THR), and maximum smoke density value (D<sub>smax</sub>) of PS nanocomposite achieve a reduction of 53.1%, 23.4%, and 50.9%, respectively, as compared to the pure PS. In addition, thermogravimetry-Fourier transform infrared (TG-FTIR) results indicate that introducing FGO-AHP notably inhibits the evolution of volatile products from PS decomposition. Further, scanning electron microscopy (SEM), FTIR, and Raman spectroscopy were employed to investigate the char residue of PS nanocomposite samples, elaborating the flame-retardant mechanism in PS/FGO-AHP nanocomposites.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochar as a UV Stabilizer: Its Impact on the Photostability of Poly(butylene succinate) Biocomposites. 生物炭作为紫外线稳定剂:生物炭作为紫外线稳定剂:对聚丁二酸丁二醇酯生物复合材料光稳定性的影响。
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2024-10-31 DOI: 10.3390/polym16213080
Katerina Papadopoulou, Nina Maria Ainali, Ondřej Mašek, Dimitrios N Bikiaris

In the present study, biocomposite materials were created by incorporating biochar (BC) at rates of 1, 2.5, and 5 wt.% into a poly(butylene succinate) (PBSu) matrix using a two-stage melt polycondensation procedure in order to provide understanding of the aging process. The biocomposites in film form were exposed to UV irradiation for 7, 14, and 21 days. Photostability was examined by several methods, such as Fourier transform infrared spectroscopy (FTIR), which proved that new carbonyl and hydroxyl groups were formed during UV exposure. Moreover, Differential Scanning Calorimetry (DSC) measurements were employed to record the apparent UV effect in their crystalline morphology and thermal transitions. According to the molecular weight measurements of composites, it was apparent that by increasing the biochar content, the molecular weight decreased at a slower rate. Tensile strength tests were performed to evaluate the deterioration of their mechanical properties during UV exposure, while Scanning Electron Microscopy (SEM) images illustrated the notable surface alternations. Cracks were formed at higher UV exposure times, to a lesser extent in PBSu/BC composites than in neat PBSu. Furthermore, the mechanism of the thermal degradation of neat PBSu and its biocomposites prior to and upon UV exposure was studied by Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). From all the obtained results it was proved that biochar can be considered as an efficient UV-protective additive to PBSu, capable of mitigating photodegradation.

在本研究中,为了了解生物复合材料的老化过程,采用两阶段熔融缩聚法将生物炭(BC)以 1、2.5 和 5 wt.% 的比例加入聚丁二酸丁二醇酯(PBSu)基体中。薄膜形式的生物复合材料在紫外线照射下分别暴露 7 天、14 天和 21 天。通过傅立叶变换红外光谱(FTIR)等多种方法对光稳定性进行了检测,结果表明在紫外线照射过程中形成了新的羰基和羟基。此外,还采用差示扫描量热法(DSC)测量记录了紫外线对其晶体形态和热转变的明显影响。根据复合材料的分子量测量结果,可以明显看出,随着生物炭含量的增加,分子量的降低速度也在减慢。拉伸强度测试评估了复合材料在紫外线照射下机械性能的下降情况,扫描电子显微镜(SEM)图像则显示了显著的表面变化。紫外线暴露时间越长,PBSu/BC 复合材料形成裂纹的程度就越小。此外,还通过热解-气相色谱/质谱法(Py-GC/MS)研究了纯 PBSu 及其生物复合材料在紫外线照射前和紫外线照射后的热降解机理。所有研究结果都证明,生物炭可被视为 PBSu 的有效紫外线保护添加剂,能够缓解光降解。
{"title":"Biochar as a UV Stabilizer: Its Impact on the Photostability of Poly(butylene succinate) Biocomposites.","authors":"Katerina Papadopoulou, Nina Maria Ainali, Ondřej Mašek, Dimitrios N Bikiaris","doi":"10.3390/polym16213080","DOIUrl":"10.3390/polym16213080","url":null,"abstract":"<p><p>In the present study, biocomposite materials were created by incorporating biochar (BC) at rates of 1, 2.5, and 5 wt.% into a poly(butylene succinate) (PBSu) matrix using a two-stage melt polycondensation procedure in order to provide understanding of the aging process. The biocomposites in film form were exposed to UV irradiation for 7, 14, and 21 days. Photostability was examined by several methods, such as Fourier transform infrared spectroscopy (FTIR), which proved that new carbonyl and hydroxyl groups were formed during UV exposure. Moreover, Differential Scanning Calorimetry (DSC) measurements were employed to record the apparent UV effect in their crystalline morphology and thermal transitions. According to the molecular weight measurements of composites, it was apparent that by increasing the biochar content, the molecular weight decreased at a slower rate. Tensile strength tests were performed to evaluate the deterioration of their mechanical properties during UV exposure, while Scanning Electron Microscopy (SEM) images illustrated the notable surface alternations. Cracks were formed at higher UV exposure times, to a lesser extent in PBSu/BC composites than in neat PBSu. Furthermore, the mechanism of the thermal degradation of neat PBSu and its biocomposites prior to and upon UV exposure was studied by Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). From all the obtained results it was proved that biochar can be considered as an efficient UV-protective additive to PBSu, capable of mitigating photodegradation.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548502/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameter-Independent Deformation Behaviour of Diagonally Reinforced Doubly Re-Entrant Honeycomb. 对角线加固双向再入蜂窝材料与参数相关的变形行为。
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2024-10-31 DOI: 10.3390/polym16213082
Levente Széles, Richárd Horváth, Mihály Réger

In this study, a novel unit cell design is proposed, which eliminates the buckling tendency of the auxetic honeycomb. The novel unit cell design is a more balanced, diagonally reinforced doubly re-entrant auxetic honeycomb structure (x-reinforced auxetic honeycomb for short). We investigated and compared this novel unit cell design against a wide parameter range. Compression tests were carried out on specimens 3D-printed with a special, unique, flexible but tough resin mixture. The results showed that the additional, centrally pronounced reinforcements resulted in increased deformation stability; parameter-independent, non-buckling deformation behaviour is achieved; however, the novel structure is no longer auxetic. Mechanical properties, such as compression resistance and energy absorption capability, also increased significantly-An almost four times increase can be observed. In contrast to the deformation behaviour (which became predictable and constant), the mechanical properties can be precisely adjusted for the desired application. This novel structure was also investigated in a highly accurate, validated finite element environment, which showed that critical stress values are formed in well-supported regions, meaning that critical failure is unlikely. Our novel lattice unit cell design elevated the auxetic honeycomb to the realm of modern, high performance and widely applicable lattice structures.

本研究提出了一种新型单元格设计,它能消除辅助蜂窝的屈曲趋势。这种新型单元单元设计是一种更加平衡、对角线增强的双重入射辅助蜂窝结构(简称 x 增强辅助蜂窝)。我们对这种新型单元结构进行了研究,并在广泛的参数范围内对其进行了比较。我们在用一种特殊、独特、柔韧而坚固的树脂混合物 3D 打印的试样上进行了压缩试验。结果表明,额外的、中心明显的加强筋提高了变形稳定性;实现了与参数无关的非屈曲变形行为;但是,这种新型结构不再具有辅助性。抗压性和能量吸收能力等机械性能也显著提高--几乎提高了四倍。与变形行为(变得可预测且恒定)不同的是,机械性能可根据所需应用进行精确调整。我们还在高精度、经过验证的有限元环境中对这种新型结构进行了研究,结果表明,临界应力值是在支撑良好的区域形成的,这意味着不太可能出现临界失效。我们的新型晶格单元设计将辅助蜂窝提升到了现代、高性能和广泛应用的晶格结构领域。
{"title":"Parameter-Independent Deformation Behaviour of Diagonally Reinforced Doubly Re-Entrant Honeycomb.","authors":"Levente Széles, Richárd Horváth, Mihály Réger","doi":"10.3390/polym16213082","DOIUrl":"10.3390/polym16213082","url":null,"abstract":"<p><p>In this study, a novel unit cell design is proposed, which eliminates the buckling tendency of the auxetic honeycomb. The novel unit cell design is a more balanced, diagonally reinforced doubly re-entrant auxetic honeycomb structure (x-reinforced auxetic honeycomb for short). We investigated and compared this novel unit cell design against a wide parameter range. Compression tests were carried out on specimens 3D-printed with a special, unique, flexible but tough resin mixture. The results showed that the additional, centrally pronounced reinforcements resulted in increased deformation stability; parameter-independent, non-buckling deformation behaviour is achieved; however, the novel structure is no longer auxetic. Mechanical properties, such as compression resistance and energy absorption capability, also increased significantly-An almost four times increase can be observed. In contrast to the deformation behaviour (which became predictable and constant), the mechanical properties can be precisely adjusted for the desired application. This novel structure was also investigated in a highly accurate, validated finite element environment, which showed that critical stress values are formed in well-supported regions, meaning that critical failure is unlikely. Our novel lattice unit cell design elevated the auxetic honeycomb to the realm of modern, high performance and widely applicable lattice structures.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Aryl Phosphate for Improving Fire Safety and Mechanical Properties of Epoxy Resins. 用于改善环氧树脂防火安全性和机械性能的新型芳基磷酸酯。
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2024-10-30 DOI: 10.3390/polym16213049
Yue Xu, Wenjia Zhang, Ru Yin, Jun Sun, Bin Li, Lubin Liu

Epoxy resins (EPs) are highly flammable, and traditional flame retardant modifications often lead to a significant reduction in their mechanical performance, limiting their applications in aerospace and electrical and electronic fields. In this study, a novel flame retardant, bis(4-(((diphenylphosphoryl)oxy)methyl)phenyl)phenyl phosphate (DMP), was successfully prepared and introduced into the EP matrix. When the addition of DMP was 9 wt%, the EP/9 wt% DMP thermosets passed the UL-94 V-0 rating, and their LOI was increased from 24.5% of EP to 35.0%. With the introduction of DMP, the phosphoric acid compounds from the decomposition of DMP promoted the dehydration and charring of the EP matrix, and the compact, dense char layer effectively exerted the shielding effect in the condensed phase. Meanwhile, the produced phosphorus-containing radicals played a quenching effect in the gas phase. As a result, the peak heat release rate (PHRR) and total heat release (THR) of EP/9 wt% DMP were reduced by 68.9% and 18.1% compared to pure EP. In addition, the polyaromatic structure of DMP had good compatibility with the EP matrix, and the tensile strength, flexural strength and impact strength of EP/9 wt% DMP were enhanced by 116.38%, 17.84% and 59.11% in comparison with that of pure EP. This study is valuable for expanding the application of flame-retardant EP/DMP thermosets in emerging fields.

环氧树脂(EPs)极易燃烧,传统的阻燃剂改性往往会导致其机械性能显著下降,从而限制了其在航空航天、电气和电子领域的应用。本研究成功制备了一种新型阻燃剂--双(4-(((二苯基磷酰)氧基)甲基)苯基)苯基磷酸酯(DMP),并将其引入 EP 基体中。当 DMP 的添加量为 9 wt% 时,EP/9 wt% DMP 热固性塑料通过了 UL-94 V-0 评级,其 LOI 从 EP 的 24.5% 提高到 35.0%。引入 DMP 后,DMP 分解产生的磷酸化合物促进了 EP 基体的脱水和炭化,紧密致密的炭层有效地发挥了冷凝相的屏蔽作用。同时,产生的含磷自由基在气相中起到了淬火作用。因此,与纯 EP 相比,EP/9 wt% DMP 的峰值放热率(PHRR)和总放热率(THR)分别降低了 68.9% 和 18.1%。此外,DMP 的多芳香族结构与 EP 基体具有良好的相容性,与纯 EP 相比,EP/9 wt% DMP 的拉伸强度、弯曲强度和冲击强度分别提高了 116.38%、17.84% 和 59.11%。这项研究对于扩大阻燃 EP/DMP 热固性塑料在新兴领域的应用具有重要价值。
{"title":"Novel Aryl Phosphate for Improving Fire Safety and Mechanical Properties of Epoxy Resins.","authors":"Yue Xu, Wenjia Zhang, Ru Yin, Jun Sun, Bin Li, Lubin Liu","doi":"10.3390/polym16213049","DOIUrl":"10.3390/polym16213049","url":null,"abstract":"<p><p>Epoxy resins (EPs) are highly flammable, and traditional flame retardant modifications often lead to a significant reduction in their mechanical performance, limiting their applications in aerospace and electrical and electronic fields. In this study, a novel flame retardant, bis(4-(((diphenylphosphoryl)oxy)methyl)phenyl)phenyl phosphate (DMP), was successfully prepared and introduced into the EP matrix. When the addition of DMP was 9 wt%, the EP/9 wt% DMP thermosets passed the UL-94 V-0 rating, and their LOI was increased from 24.5% of EP to 35.0%. With the introduction of DMP, the phosphoric acid compounds from the decomposition of DMP promoted the dehydration and charring of the EP matrix, and the compact, dense char layer effectively exerted the shielding effect in the condensed phase. Meanwhile, the produced phosphorus-containing radicals played a quenching effect in the gas phase. As a result, the peak heat release rate (PHRR) and total heat release (THR) of EP/9 wt% DMP were reduced by 68.9% and 18.1% compared to pure EP. In addition, the polyaromatic structure of DMP had good compatibility with the EP matrix, and the tensile strength, flexural strength and impact strength of EP/9 wt% DMP were enhanced by 116.38%, 17.84% and 59.11% in comparison with that of pure EP. This study is valuable for expanding the application of flame-retardant EP/DMP thermosets in emerging fields.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasonic Production of Chitosan Nanoparticles and Their Application Against Colletotrichum gloeosporioides Present in the Ataulfo Mango. 壳聚糖纳米粒子的超声波生产及其在防治阿陶勒福芒果中的球孢子菌方面的应用
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2024-10-30 DOI: 10.3390/polym16213058
Ivana Solis Vizcaino, Efraín Rubio Rosas, Eva Águila Almanza, Marco Marín Castro, Heriberto Hernández Cocoletzi

In Mexico, the Ataulfo mango crop faces significant challenges due to anthracnose, a disease caused by the fungus Colletotrichum gloeosporioides. The need to use eco-friendly fungicides is crucial to avoid the use of harmful synthetic chemicals. This study aimed to prepare chitosan nanoparticles through a simple and effective ultrasound-assisted top-down method, with high antifungal efficiency. The nanoparticles were prepared from chitosan (DD = 85%, MW = 553 kDa) and Tween 20 under constant sonication. The formation of the nanoparticles was initially confirmed by Fourier-transform infrared (FTIR) spectroscopy; and their physicochemical properties were subsequently characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The antifungal potential of the chitosan nanoparticles against the phytopathogen Colletotrichum gloeosporioides was evaluated with isolated fungi obtained directly from mango tissues showing anthracnose symptoms in the state of Guerrero, Mexico. The fungus was identified through SEM imaging, showing a regular and smooth conidial layer, with cylindrical shape (r = 2 µm, h = 10 µm). In vitro tests were conducted with three different concentrations of chitosan nanoparticles to assess their inhibitory effects. After seven days of incubation, a maximum inhibition rate of 97% was observed with the 0.5% nanoparticle solution, corresponding to a fungal growth rate of 0.008 cm/h. At this time, the control mycelial growth was 7 cm, while the treated sample reached a radius of 0.55 mm. These results demonstrated the antifungal effect of the nanoparticles on the membrane and cell wall of the fungus, suggesting that their composition could induce a resistance response. The inhibitory effect was also influenced by the particle size (30 nm), as the small size facilitated penetration into fungal cells. Consequently, the parent compound could be formulated and applied as a natural antifungal agent in nanoparticle form to enhance its activity. The method described in this study offers a viable alternative for the preparation of chitosan nanoparticles, by avoiding the use of toxic reagents.

在墨西哥,阿陶勒福芒果作物面临着炭疽病带来的巨大挑战,炭疽病是由真菌 Colletotrichum gloeosporioides 引起的一种疾病。为避免使用有害的合成化学品,使用环保型杀菌剂至关重要。本研究旨在通过一种简单有效的超声辅助自上而下法制备壳聚糖纳米粒子,该方法具有很高的抗真菌效率。纳米粒子由壳聚糖(DD = 85%,MW = 553 kDa)和吐温 20 在持续超声下制备而成。傅立叶变换红外光谱(FTIR)初步证实了纳米颗粒的形成,随后使用扫描电子显微镜(SEM)和原子力显微镜(AFM)对其理化性质进行了表征。利用从墨西哥格雷罗州出现炭疽病症状的芒果组织中直接获得的分离真菌,评估了壳聚糖纳米颗粒对植物病原菌球孢子菌的抗真菌潜力。通过扫描电子显微镜成像对真菌进行了鉴定,结果显示其分生孢子层规则光滑,呈圆柱形(r = 2 µm,h = 10 µm)。使用三种不同浓度的壳聚糖纳米颗粒进行了体外试验,以评估其抑制作用。培养七天后,观察到 0.5% 纳米颗粒溶液的最大抑制率为 97%,相当于 0.008 厘米/小时的真菌生长速度。此时,对照组的菌丝生长速度为 7 厘米,而处理过的样品半径为 0.55 毫米。这些结果表明,纳米颗粒对真菌的膜和细胞壁具有抗真菌作用,表明其成分可诱导真菌产生抗性反应。抑制作用还受到粒径(30 纳米)的影响,因为粒径小有利于穿透真菌细胞。因此,可将母体化合物配制成纳米颗粒形式的天然抗真菌剂并加以应用,以提高其活性。本研究介绍的方法避免了有毒试剂的使用,为壳聚糖纳米粒子的制备提供了一种可行的替代方法。
{"title":"Ultrasonic Production of Chitosan Nanoparticles and Their Application Against <i>Colletotrichum gloeosporioides</i> Present in the Ataulfo Mango.","authors":"Ivana Solis Vizcaino, Efraín Rubio Rosas, Eva Águila Almanza, Marco Marín Castro, Heriberto Hernández Cocoletzi","doi":"10.3390/polym16213058","DOIUrl":"10.3390/polym16213058","url":null,"abstract":"<p><p>In Mexico, the Ataulfo mango crop faces significant challenges due to anthracnose, a disease caused by the fungus <i>Colletotrichum gloeosporioides</i>. The need to use eco-friendly fungicides is crucial to avoid the use of harmful synthetic chemicals. This study aimed to prepare chitosan nanoparticles through a simple and effective ultrasound-assisted top-down method, with high antifungal efficiency. The nanoparticles were prepared from chitosan (DD = 85%, MW = 553 kDa) and Tween 20 under constant sonication. The formation of the nanoparticles was initially confirmed by Fourier-transform infrared (FTIR) spectroscopy; and their physicochemical properties were subsequently characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The antifungal potential of the chitosan nanoparticles against the phytopathogen <i>Colletotrichum gloeosporioides</i> was evaluated with isolated fungi obtained directly from mango tissues showing anthracnose symptoms in the state of Guerrero, Mexico. The fungus was identified through SEM imaging, showing a regular and smooth conidial layer, with cylindrical shape (r = 2 µm, h = 10 µm). In vitro tests were conducted with three different concentrations of chitosan nanoparticles to assess their inhibitory effects. After seven days of incubation, a maximum inhibition rate of 97% was observed with the 0.5% nanoparticle solution, corresponding to a fungal growth rate of 0.008 cm/h. At this time, the control mycelial growth was 7 cm, while the treated sample reached a radius of 0.55 mm. These results demonstrated the antifungal effect of the nanoparticles on the membrane and cell wall of the fungus, suggesting that their composition could induce a resistance response. The inhibitory effect was also influenced by the particle size (30 nm), as the small size facilitated penetration into fungal cells. Consequently, the parent compound could be formulated and applied as a natural antifungal agent in nanoparticle form to enhance its activity. The method described in this study offers a viable alternative for the preparation of chitosan nanoparticles, by avoiding the use of toxic reagents.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 21","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Polymers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1