首页 > 最新文献

Polymers最新文献

英文 中文
Tribological Behavior of the Laser Micro-Textured PEEK-1040 Steel Friction Pairs.
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2025-02-27 DOI: 10.3390/polym17050645
Risheng Long, Haiming Wang, Jincheng Hou, Qingyu Shang, Yimin Zhang, Lin Zong, Zhijun Zhang

To compare them with PTFE-40# steel tribo-pairs, the tribological properties of textured PEEK-40# (AISI 1040) steel friction pairs were researched under full-film lubrication conditions by manufacturing micro-dimples with different dimensions on the contact surfaces of 1040 steel discs using laser surface texturing (LST). After repeated tribological tests, the coefficients of friction (COFs), wear losses, and wear morphologies of the PEEK-1040 steel friction pairs were measured and analyzed. The results show that micro-dimples do not significantly reduce the average COFs of PEEK-1040 steel friction pairs when lubricated with a sufficient amount of hydraulic oil, but they do reduce the wear losses of most groups. When the dimple diameter was 250 μm, the dimple depth was 5 μm, the area ratio was 6.6%, and the mass loss of the 1040 steel disc was reduced by 90% compared to the smooth reference. In comparison to the behavior of the PTFE-1040 steel tribo-pairs, PEEK-1040 steel friction pairs can provide better tribological performance, whether smooth or dimple-textured. This study offers important insights for the design of seals in machinery.

{"title":"Tribological Behavior of the Laser Micro-Textured PEEK-1040 Steel Friction Pairs.","authors":"Risheng Long, Haiming Wang, Jincheng Hou, Qingyu Shang, Yimin Zhang, Lin Zong, Zhijun Zhang","doi":"10.3390/polym17050645","DOIUrl":"10.3390/polym17050645","url":null,"abstract":"<p><p>To compare them with PTFE-40# steel tribo-pairs, the tribological properties of textured PEEK-40# (AISI 1040) steel friction pairs were researched under full-film lubrication conditions by manufacturing micro-dimples with different dimensions on the contact surfaces of 1040 steel discs using laser surface texturing (LST). After repeated tribological tests, the coefficients of friction (COFs), wear losses, and wear morphologies of the PEEK-1040 steel friction pairs were measured and analyzed. The results show that micro-dimples do not significantly reduce the average COFs of PEEK-1040 steel friction pairs when lubricated with a sufficient amount of hydraulic oil, but they do reduce the wear losses of most groups. When the dimple diameter was 250 μm, the dimple depth was 5 μm, the area ratio was 6.6%, and the mass loss of the 1040 steel disc was reduced by 90% compared to the smooth reference. In comparison to the behavior of the PTFE-1040 steel tribo-pairs, PEEK-1040 steel friction pairs can provide better tribological performance, whether smooth or dimple-textured. This study offers important insights for the design of seals in machinery.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Hard-Segment Structure on the Properties of Polyurethane/Poly(Ethyl Methacrylate) Damping Composites.
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2025-02-27 DOI: 10.3390/polym17050636
Jinbao Ma, Chi Ma, Risheng Long, Yan Jiang, Xingjia Wang, Chang Liu, Fan Li, Lee Tin Sin

Damping material performance influences the efficacy of vibration and noise reduction. However, traditional damping materials often have low damping peaks or narrow damping temperature ranges. In this study, a series of polyurethane (PU)/poly(ethylene methacrylate) (PEMA) composites were synthesised, in which the PU hard segments were varied using toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), isophorone diisocyanate (IPDI), and hexamethylene diisocyanate. The soft segments comprised tetrahydrofuran homopolymer glycol. The influence of the hard-segment structure on the properties of the PU/PEMA composites was investigated by infrared spectroscopy, thermogravimetric analysis, dynamic mechanical thermal analysis, and other experimental methods. The performance mechanism was explored from a molecular perspective via integration with molecular dynamics simulations. The PU/PEMA material with IPDI hard segments comprised numerous microphase-separated structures and exhibited greater free volume, fuller molecular-chain movement, and the highest damping performance, with a loss factor of 0.56. The PU/PEMA composites synthesised with TDI and MDI hard segments exhibited better compatibility, with the MDI-PU/PEMA system exhibiting a higher hydrogen-bonding force. This material also exhibited a higher thermal stability, with an initial breakdown temperature of 287.87 °C. This study provides a basis for regulating and optimising the performance of PU-based damping materials.

{"title":"Effect of Hard-Segment Structure on the Properties of Polyurethane/Poly(Ethyl Methacrylate) Damping Composites.","authors":"Jinbao Ma, Chi Ma, Risheng Long, Yan Jiang, Xingjia Wang, Chang Liu, Fan Li, Lee Tin Sin","doi":"10.3390/polym17050636","DOIUrl":"10.3390/polym17050636","url":null,"abstract":"<p><p>Damping material performance influences the efficacy of vibration and noise reduction. However, traditional damping materials often have low damping peaks or narrow damping temperature ranges. In this study, a series of polyurethane (PU)/poly(ethylene methacrylate) (PEMA) composites were synthesised, in which the PU hard segments were varied using toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), isophorone diisocyanate (IPDI), and hexamethylene diisocyanate. The soft segments comprised tetrahydrofuran homopolymer glycol. The influence of the hard-segment structure on the properties of the PU/PEMA composites was investigated by infrared spectroscopy, thermogravimetric analysis, dynamic mechanical thermal analysis, and other experimental methods. The performance mechanism was explored from a molecular perspective via integration with molecular dynamics simulations. The PU/PEMA material with IPDI hard segments comprised numerous microphase-separated structures and exhibited greater free volume, fuller molecular-chain movement, and the highest damping performance, with a loss factor of 0.56. The PU/PEMA composites synthesised with TDI and MDI hard segments exhibited better compatibility, with the MDI-PU/PEMA system exhibiting a higher hydrogen-bonding force. This material also exhibited a higher thermal stability, with an initial breakdown temperature of 287.87 °C. This study provides a basis for regulating and optimising the performance of PU-based damping materials.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycine-Group-Functionalized Polymeric Materials Impregnated with Zn(II) Used in the Photocatalytic Degradation of Congo Red Dye.
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2025-02-27 DOI: 10.3390/polym17050641
Laura Cocheci, Aurelia Visa, Bianca Maranescu, Lavinia Lupa, Aniela Pop, Ecaterina Stela Dragan, Adriana Popa

Reducing the ecological impact of dyes through wastewater discharge into the environment is a challenge that must be addressed in textile wastewater pollution prevention. Congo red (CR) dye is widely used in experimental studies for textile wastewater treatment due to its high organic loads used in its preparation. The degradation of organic dyes of the CR type was investigated using the photocatalytic activity of functionalized polymers. We have employed photodegradation procedures for both polymer-supported glycine groups (Code: AP2) and polymer-supported glycine-Zn(II) (Code: AP2-Zn(II)). A photocatalysis efficiency of 89.2% was achieved for glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (AP2) and 95.4% for the AP2-Zn(II) sample by using an initial concentration of CR of 15 mg/L, a catalyst concentration of 1 g/L, and 240 min of photocatalysis. The findings provided here have shown that the two materials (AP2 and AP2-Zn(II)) may be effectively employed in the heterogeneous photocatalysis method to remove CR from water. From the perspective of the degradation mechanism of CR, the two photocatalysts act similarly.

{"title":"Glycine-Group-Functionalized Polymeric Materials Impregnated with Zn(II) Used in the Photocatalytic Degradation of Congo Red Dye.","authors":"Laura Cocheci, Aurelia Visa, Bianca Maranescu, Lavinia Lupa, Aniela Pop, Ecaterina Stela Dragan, Adriana Popa","doi":"10.3390/polym17050641","DOIUrl":"10.3390/polym17050641","url":null,"abstract":"<p><p>Reducing the ecological impact of dyes through wastewater discharge into the environment is a challenge that must be addressed in textile wastewater pollution prevention. Congo red (CR) dye is widely used in experimental studies for textile wastewater treatment due to its high organic loads used in its preparation. The degradation of organic dyes of the CR type was investigated using the photocatalytic activity of functionalized polymers. We have employed photodegradation procedures for both polymer-supported glycine groups (Code: AP2) and polymer-supported glycine-Zn(II) (Code: AP2-Zn(II)). A photocatalysis efficiency of 89.2% was achieved for glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (AP2) and 95.4% for the AP2-Zn(II) sample by using an initial concentration of CR of 15 mg/L, a catalyst concentration of 1 g/L, and 240 min of photocatalysis. The findings provided here have shown that the two materials (AP2 and AP2-Zn(II)) may be effectively employed in the heterogeneous photocatalysis method to remove CR from water. From the perspective of the degradation mechanism of CR, the two photocatalysts act similarly.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Polypropylene Biodegradability Through Additive Integration for Sustainable and Reusable Laboratory Applications.
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2025-02-27 DOI: 10.3390/polym17050639
Kanittika Samneingjam, Juthamas Mahajaroensiri, Maysinee Kanathananun, Cristina Velasco Aranda, Mario Muñoz, Somchoke Limwongsaree

The environmental challenges posed by laboratory plastic waste, particularly single-use items, underscore the urgent need for sustainable alternatives. This study investigated the development of reusable and biodegradable labware, addressing both functional and environmental demands. The content of the biodegradable additive in the polypropylene (PP) varied from 1% to 2% by weight via twin-screw extrusion, followed by injection molding to fabricate test specimens. Three different grades of PP were also compared. Optical, mechanical, and thermal properties were systematically assessed before and after repetitive autoclave sterilization for up to 10 cycles (121 °C, 15 min, 0.11 MPa). Additionally, cytotoxicity following electron beam irradiation (E-Beam 25 and 50 kGy) was evaluated in compliance with ISO 10993-5, alongside biodegradability studies conducted under ASTM D5511 conditions. The results demonstrate that the biodegradable additive stabilized the appearance and enhanced the flexural and impact strengths of PP without compromising thermal stability, particularly after five autoclave cycles. Cytotoxicity assays confirmed the biocompatibility of the additive-modified PP, while biodegradability tests indicated moderate degradation, with 12% biodegradation achieved over 6 months compared to negligible degradation in the negative control. These findings highlight the potential of additive-modified PP as a sustainable solution for reusable labware, balancing durability with improved environmental performance and providing a viable step toward more sustainable laboratory practices.

{"title":"Enhancing Polypropylene Biodegradability Through Additive Integration for Sustainable and Reusable Laboratory Applications.","authors":"Kanittika Samneingjam, Juthamas Mahajaroensiri, Maysinee Kanathananun, Cristina Velasco Aranda, Mario Muñoz, Somchoke Limwongsaree","doi":"10.3390/polym17050639","DOIUrl":"10.3390/polym17050639","url":null,"abstract":"<p><p>The environmental challenges posed by laboratory plastic waste, particularly single-use items, underscore the urgent need for sustainable alternatives. This study investigated the development of reusable and biodegradable labware, addressing both functional and environmental demands. The content of the biodegradable additive in the polypropylene (PP) varied from 1% to 2% by weight via twin-screw extrusion, followed by injection molding to fabricate test specimens. Three different grades of PP were also compared. Optical, mechanical, and thermal properties were systematically assessed before and after repetitive autoclave sterilization for up to 10 cycles (121 °C, 15 min, 0.11 MPa). Additionally, cytotoxicity following electron beam irradiation (E-Beam 25 and 50 kGy) was evaluated in compliance with ISO 10993-5, alongside biodegradability studies conducted under ASTM D5511 conditions. The results demonstrate that the biodegradable additive stabilized the appearance and enhanced the flexural and impact strengths of PP without compromising thermal stability, particularly after five autoclave cycles. Cytotoxicity assays confirmed the biocompatibility of the additive-modified PP, while biodegradability tests indicated moderate degradation, with 12% biodegradation achieved over 6 months compared to negligible degradation in the negative control. These findings highlight the potential of additive-modified PP as a sustainable solution for reusable labware, balancing durability with improved environmental performance and providing a viable step toward more sustainable laboratory practices.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902804/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Sulfation of Arabinogalactan in the Melt of a Sulfamic Acid-Urea Mixture.
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2025-02-27 DOI: 10.3390/polym17050642
Vladimir A Levdansky, Alexander V Levdansky, Yuriy N Malyar, Timur Yu Ivanenko, Olga Yu Fetisova, Aleksandr S Kazachenko, Boris N Kuznetsov

Sulfation of arabinogalactan (AG) from larch wood (Larix sibirica Ledeb.) in the melt of a sulfamic acid-urea mixture has been first examined. The impact of the AG sulfation temperature on the AG sulfate yield and the sulfur content has been established. The high sulfur content (11.3-11.6%) in sulfated AG has been obtained in the temperature range of 115-120 °C for a sulfation time of 0.5 h. The process effectively prevents molecular degradation under these conditions. The incorporation of sulfate groups into the arabinogalactan structure has been confirmed by the appearance of absorption bands in the FTIR spectrum that are typical of sulfate group vibrations. The 13C NMR spectroscopy study has proven that the AG sulfation in the melt of a sulfamic acid-urea mixture leads to the substitution of some free hydroxyl groups for C6, C4, and C2 carbon atoms of the AG β-D-galactopyranose units. The advantage of the proposed AG sulfation method is that the reaction occurs without solvent, and the reaction time is only 0.5 h. The kinetics of the thermal decomposition of the initial AG and sulfated AG samples have been studied. It has been found that the sulfated AG samples have a lower thermal resistance than the initial AG. The kinetic analysis has revealed a decrease in the activation energy of the thermal degradation of the sulfated samples as compared to the initial AG.

{"title":"Green Sulfation of Arabinogalactan in the Melt of a Sulfamic Acid-Urea Mixture.","authors":"Vladimir A Levdansky, Alexander V Levdansky, Yuriy N Malyar, Timur Yu Ivanenko, Olga Yu Fetisova, Aleksandr S Kazachenko, Boris N Kuznetsov","doi":"10.3390/polym17050642","DOIUrl":"10.3390/polym17050642","url":null,"abstract":"<p><p>Sulfation of arabinogalactan (AG) from larch wood (<i>Larix sibirica Ledeb.</i>) in the melt of a sulfamic acid-urea mixture has been first examined. The impact of the AG sulfation temperature on the AG sulfate yield and the sulfur content has been established. The high sulfur content (11.3-11.6%) in sulfated AG has been obtained in the temperature range of 115-120 °C for a sulfation time of 0.5 h. The process effectively prevents molecular degradation under these conditions. The incorporation of sulfate groups into the arabinogalactan structure has been confirmed by the appearance of absorption bands in the FTIR spectrum that are typical of sulfate group vibrations. The <sup>13</sup>C NMR spectroscopy study has proven that the AG sulfation in the melt of a sulfamic acid-urea mixture leads to the substitution of some free hydroxyl groups for C6, C4, and C2 carbon atoms of the AG β-D-galactopyranose units. The advantage of the proposed AG sulfation method is that the reaction occurs without solvent, and the reaction time is only 0.5 h. The kinetics of the thermal decomposition of the initial AG and sulfated AG samples have been studied. It has been found that the sulfated AG samples have a lower thermal resistance than the initial AG. The kinetic analysis has revealed a decrease in the activation energy of the thermal degradation of the sulfated samples as compared to the initial AG.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Evaluation of a Polymer Composite Material Reinforced by Tectona Grandis Fiber, with Static Analysis.
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2025-02-27 DOI: 10.3390/polym17050634
Sandeep Bavanam Nagaraja Reddy, Kishor Buddha, Kadiyala Chandra Babu Naidu, Dudekula Baba Basha

This research seeks to investigate the viability of using Tectona grandis wood powder as a reinforcement material in polymer matrix composites because of the increasing awareness of natural fibers that offer impressive characteristics and cost-effectiveness in addition to being biodegradable. The fibers were mixed with epoxy resin, and the mixture was passed through a filter to remove fiber bundles and then compression molded to form composites, which were cured in an oven. Different experiments were performed on the composite to measure its mechanical characteristics. The tests performed were a tensile test to measure the mechanical properties of the material like strength and elastic properties, a compression test for evaluating the behavior of the material under a compressive load, a hardness test for the rate of indentation resistivity, and an impact test for the material's ability to withstand shock loads. The results showed that fiber reinforcement caused a significant enhancement in the mechanical aspect of the composite, where the compression strength obtained was 249.83 MPa, and the tensile strength obtained was 17.98 MPa. SEM microstructural analysis and a moisture absorption test were performed, while an additional analysis was carried out using Ansys work bench software. This research proves that Tectona grandis wood powder improves the mechanical properties of polymer composites and represents a viable substitute for synthetic reinforcements.

{"title":"Development and Evaluation of a Polymer Composite Material Reinforced by Tectona Grandis Fiber, with Static Analysis.","authors":"Sandeep Bavanam Nagaraja Reddy, Kishor Buddha, Kadiyala Chandra Babu Naidu, Dudekula Baba Basha","doi":"10.3390/polym17050634","DOIUrl":"10.3390/polym17050634","url":null,"abstract":"<p><p>This research seeks to investigate the viability of using Tectona grandis wood powder as a reinforcement material in polymer matrix composites because of the increasing awareness of natural fibers that offer impressive characteristics and cost-effectiveness in addition to being biodegradable. The fibers were mixed with epoxy resin, and the mixture was passed through a filter to remove fiber bundles and then compression molded to form composites, which were cured in an oven. Different experiments were performed on the composite to measure its mechanical characteristics. The tests performed were a tensile test to measure the mechanical properties of the material like strength and elastic properties, a compression test for evaluating the behavior of the material under a compressive load, a hardness test for the rate of indentation resistivity, and an impact test for the material's ability to withstand shock loads. The results showed that fiber reinforcement caused a significant enhancement in the mechanical aspect of the composite, where the compression strength obtained was 249.83 MPa, and the tensile strength obtained was 17.98 MPa. SEM microstructural analysis and a moisture absorption test were performed, while an additional analysis was carried out using Ansys work bench software. This research proves that Tectona grandis wood powder improves the mechanical properties of polymer composites and represents a viable substitute for synthetic reinforcements.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vitro Evaluation and Clinical Effects of a Regenerative Complex with Non-Cross-Linked Hyaluronic Acid and a High-Molecular-Weight Polynucleotide for Periorbital Treatment.
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2025-02-27 DOI: 10.3390/polym17050638
Hanadi Sami Abuyousif, Alexandre Porcello, Marco Cerrano, Cíntia Marques, Corinne Scaletta, Kelly Lourenço, Philippe Abdel-Sayed, Michèle Chemali, Wassim Raffoul, Nathalie Hirt-Burri, Lee Ann Applegate, Alexis E Laurent

Skin aging is a complex and multifactorial process influenced by both intrinsic and extrinsic factors. The periorbital area of the face is particularly susceptible to premature aging signs due to its delicate skin structure, and is a major concern for many individuals. While hyaluronic acid (HA)-based dermal filler products are commonly used for periorbital rejuvenation, novel approaches to effectively locally address the visible signs of aging are available. This study aimed to investigate Innovyal Regenerative Action (IRA), an injectable polynucleotide-HA (PN-HA) regenerative complex designed for periocular prejuvenation. Firstly, PN-HA was compared to other commercially available HA-based dermbooster products (Profhilo®, Suisselle Cellbooster® Glow, and NCTF® 135 HA) in terms of rheological properties, in vitro antioxidant capacity, and total collagen production stimulation in human fibroblasts. Secondly, the clinical effects of the IRA PN-HA complex were evaluated in two case reports (monotherapy for periorbital prejuvenation). It was shown that the PN-HA complex outperformed its comparators in terms of relative rheological behavior (biophysical attributes normalized to polymer contents), intrinsic antioxidant activity (CUPRAC, FRAP, and ORAC assays), as well as total collagen level induction (72-h in vitro dermal fibroblast induction model). Generally, the results of this study provided mechanistic and preliminary clinical insights into the potential benefits of the IRA PN-HA complex for periocular cutaneous treatment. Overall, it was underscored that combining the structural support and regenerative properties of PN with the hydrating and volumizing effects of HA bares tangible potential for multifactorial skin quality enhancement and for periocular prejuvenation in particular.

{"title":"In Vitro Evaluation and Clinical Effects of a Regenerative Complex with Non-Cross-Linked Hyaluronic Acid and a High-Molecular-Weight Polynucleotide for Periorbital Treatment.","authors":"Hanadi Sami Abuyousif, Alexandre Porcello, Marco Cerrano, Cíntia Marques, Corinne Scaletta, Kelly Lourenço, Philippe Abdel-Sayed, Michèle Chemali, Wassim Raffoul, Nathalie Hirt-Burri, Lee Ann Applegate, Alexis E Laurent","doi":"10.3390/polym17050638","DOIUrl":"10.3390/polym17050638","url":null,"abstract":"<p><p>Skin aging is a complex and multifactorial process influenced by both intrinsic and extrinsic factors. The periorbital area of the face is particularly susceptible to premature aging signs due to its delicate skin structure, and is a major concern for many individuals. While hyaluronic acid (HA)-based dermal filler products are commonly used for periorbital rejuvenation, novel approaches to effectively locally address the visible signs of aging are available. This study aimed to investigate Innovyal Regenerative Action (IRA), an injectable polynucleotide-HA (PN-HA) regenerative complex designed for periocular prejuvenation. Firstly, PN-HA was compared to other commercially available HA-based dermbooster products (Profhilo<sup>®</sup>, Suisselle Cellbooster<sup>®</sup> Glow, and NCTF<sup>®</sup> 135 HA) in terms of rheological properties, in vitro antioxidant capacity, and total collagen production stimulation in human fibroblasts. Secondly, the clinical effects of the IRA PN-HA complex were evaluated in two case reports (monotherapy for periorbital prejuvenation). It was shown that the PN-HA complex outperformed its comparators in terms of relative rheological behavior (biophysical attributes normalized to polymer contents), intrinsic antioxidant activity (CUPRAC, FRAP, and ORAC assays), as well as total collagen level induction (72-h in vitro dermal fibroblast induction model). Generally, the results of this study provided mechanistic and preliminary clinical insights into the potential benefits of the IRA PN-HA complex for periocular cutaneous treatment. Overall, it was underscored that combining the structural support and regenerative properties of PN with the hydrating and volumizing effects of HA bares tangible potential for multifactorial skin quality enhancement and for periocular prejuvenation in particular.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the Mechanical Properties of Calcareous Sand Improved by Polyurethane Foam Adhesive Under Fixed Principal Stress Axes Shearing.
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2025-02-27 DOI: 10.3390/polym17050644
Dan Chang, Yongjun Xie, Xinghua Zhang, Jiankun Liu

The mechanical properties and envelope curve predictions of polyurethane-improved calcareous sand are significantly influenced by the magnitude and direction of principal stress. This study conducted a series of directional shearing tests with varying polyurethane contents (c = 2.5%, 5%, and 7.5%), stress Lode angles (θσ = -19.1°, 0°, 19.1°, and 30°), and major principal stress angles (α = 0°, 30°, 45°, 60°, and 90°) to investigate the strength and non-coaxial characteristics of calcareous sand improved by polyurethane foam adhesive (PFA). Key findings revealed that failure strength varied significantly with the major principal stress axis direction, initially decreasing to a minimum at α = 45° before increasing, with a 30% decrease and 25% increase observed at c = 5%. Non-coaxial characteristics between strain increment and stress directions became more pronounced, with angles varying up to 15°. Increasing polyurethane content from 2.5% to 7.5% enhanced sample strength by 20% at θσ = -19.1° and α = 60°. A generalized linear strength theory in the π-plane accurately described strength envelope variations, while a modified Lade criterion, incorporating polymer content, effectively predicted multiaxial strength characteristics with less than 10% deviation from experimental results. These contributions provide quantitative insights into failure strength and non-coaxial behavior, introduce a robust strength prediction framework, and enhance multiaxial strength prediction accuracy, advancing the understanding of polyurethane-improved calcareous sand for engineering applications.

{"title":"Investigation of the Mechanical Properties of Calcareous Sand Improved by Polyurethane Foam Adhesive Under Fixed Principal Stress Axes Shearing.","authors":"Dan Chang, Yongjun Xie, Xinghua Zhang, Jiankun Liu","doi":"10.3390/polym17050644","DOIUrl":"10.3390/polym17050644","url":null,"abstract":"<p><p>The mechanical properties and envelope curve predictions of polyurethane-improved calcareous sand are significantly influenced by the magnitude and direction of principal stress. This study conducted a series of directional shearing tests with varying polyurethane contents (<i>c</i> = 2.5%, 5%, and 7.5%), stress Lode angles (θσ = -19.1°, 0°, 19.1°, and 30°), and major principal stress angles (<i>α</i> = 0°, 30°, 45°, 60°, and 90°) to investigate the strength and non-coaxial characteristics of calcareous sand improved by polyurethane foam adhesive (PFA). Key findings revealed that failure strength varied significantly with the major principal stress axis direction, initially decreasing to a minimum at α = 45° before increasing, with a 30% decrease and 25% increase observed at <i>c</i> = 5%. Non-coaxial characteristics between strain increment and stress directions became more pronounced, with angles varying up to 15°. Increasing polyurethane content from 2.5% to 7.5% enhanced sample strength by 20% at θσ = -19.1° and <i>α</i> = 60°. A generalized linear strength theory in the π-plane accurately described strength envelope variations, while a modified Lade criterion, incorporating polymer content, effectively predicted multiaxial strength characteristics with less than 10% deviation from experimental results. These contributions provide quantitative insights into failure strength and non-coaxial behavior, introduce a robust strength prediction framework, and enhance multiaxial strength prediction accuracy, advancing the understanding of polyurethane-improved calcareous sand for engineering applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun Coaxial Polycaprolactone/Polyvinylpyrrolidone Fibers Containing Cisplatin: A Potential Local Chemotherapy Delivery System for Cervical Cancer Treatment.
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2025-02-27 DOI: 10.3390/polym17050637
Mariana Sarai Silva-López, Vladimir Alonso Escobar-Barrios, Luz Eugenia Alcántara-Quintana

Cisplatin, a frequently used chemotherapeutic for the treatment of cervical cancer, causes adverse effects that limit its use. Treatment with local therapy that limits toxicity remains a challenge. The aim of this study was to develop a local intravaginal cisplatin delivery system of polycaprolactone/polyvinylpyrrolidone sheath/core fibers by coaxial electrospinning. Physicochemical properties, degradation rate, mucoadhesion, release profile, and in vitro biosafety assays were characterized. Microscopy images confirmed the coaxial nature of the fibers and showed continuous morphology and diameters of 3-9 µm. The combination of polymers improved their mechanical properties. The contact angle < 85° indicated a hydrophilic surface, which would allow its dissolution in the vaginal environment. The release profile showed a rapid initial release followed by a slow and sustained release over eight days. The degradation test showed ~50% dissolution of the fibers on day 10. The adhesion of the fibrous device to the vaginal wall lasted for more than 15 days, which was sufficient time to allow the release of cisplatin. The biosafety tests showed great cytocompatibility and no hemolysis. The characteristics of the developed system open the possibility of its application as a localized therapy against cervical cancer, reducing adverse effects and improving the quality of life of patients.

{"title":"Electrospun Coaxial Polycaprolactone/Polyvinylpyrrolidone Fibers Containing Cisplatin: A Potential Local Chemotherapy Delivery System for Cervical Cancer Treatment.","authors":"Mariana Sarai Silva-López, Vladimir Alonso Escobar-Barrios, Luz Eugenia Alcántara-Quintana","doi":"10.3390/polym17050637","DOIUrl":"10.3390/polym17050637","url":null,"abstract":"<p><p>Cisplatin, a frequently used chemotherapeutic for the treatment of cervical cancer, causes adverse effects that limit its use. Treatment with local therapy that limits toxicity remains a challenge. The aim of this study was to develop a local intravaginal cisplatin delivery system of polycaprolactone/polyvinylpyrrolidone sheath/core fibers by coaxial electrospinning. Physicochemical properties, degradation rate, mucoadhesion, release profile, and in vitro biosafety assays were characterized. Microscopy images confirmed the coaxial nature of the fibers and showed continuous morphology and diameters of 3-9 µm. The combination of polymers improved their mechanical properties. The contact angle < 85° indicated a hydrophilic surface, which would allow its dissolution in the vaginal environment. The release profile showed a rapid initial release followed by a slow and sustained release over eight days. The degradation test showed ~50% dissolution of the fibers on day 10. The adhesion of the fibrous device to the vaginal wall lasted for more than 15 days, which was sufficient time to allow the release of cisplatin. The biosafety tests showed great cytocompatibility and no hemolysis. The characteristics of the developed system open the possibility of its application as a localized therapy against cervical cancer, reducing adverse effects and improving the quality of life of patients.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Different pH and Temperature Values on Ca2+, F-, PO43-, OH-, Si, and Sr2+ Release from Different Bioactive Restorative Dental Materials: An In Vitro Study. 不同 pH 值和温度值对不同生物活性牙齿修复材料中 Ca2+、F-、PO43-、OH-、Si 和 Sr2+ 释放的影响:体外研究。
IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Pub Date : 2025-02-27 DOI: 10.3390/polym17050640
Angelo Aliberti, Fabiana Di Duca, Maria Triassi, Paolo Montuori, Stefano Scippa, Mirko Piscopo, Pietro Ausiello

Bioactive restorative materials are crucial for promoting remineralization and protecting dental tissues through ion release. This study examines how pH and temperature influence the short- and long-term ion (F-, Ca2+, Sr2+, OH-, Si, and PO43-) release from seven commercial materials: Cention Forte Filling Material, Cention Primer, Stela Self Cure, Riva Light Cure HV, Riva Self Cure, Equia Forte HT Fil, and Fuji IX GP Fast. Disks were prepared according to the manufacturers' instructions; immersed in buffer solutions at pH 4.8, 6.8, and 8.8; and stored at 37 °C and 44 °C. Ion release was measured after 1, 7, and 28 days using ion chromatography and mass spectrometry. Results revealed that ion release was significantly affected by pH, temperature, and exposure time. The highest fluoride (40.14 ± 0.32 mg/L) and calcium (74.23 ± 0.37 mg/L) releases were observed in Riva Light Cure at pH 4.8 and 44 °C after 28 days, with the highest strontium release (5.87 ± 0.06 mg/L) occurring under the same conditions. In contrast, silicon release peaked in Cention Forte Filling (31.72 ± 0.68 mg/L) at pH 4.8 and 37 °C. These findings highlight the impact of environmental factors on material performance, assisting clinicians in selecting optimal restorative materials for long-term dental health.

{"title":"The Effect of Different pH and Temperature Values on Ca<sup>2+</sup>, F<sup>-</sup>, PO<sub>4</sub><sup>3-</sup>, OH<sup>-</sup>, Si, and Sr<sup>2+</sup> Release from Different Bioactive Restorative Dental Materials: An In Vitro Study.","authors":"Angelo Aliberti, Fabiana Di Duca, Maria Triassi, Paolo Montuori, Stefano Scippa, Mirko Piscopo, Pietro Ausiello","doi":"10.3390/polym17050640","DOIUrl":"10.3390/polym17050640","url":null,"abstract":"<p><p>Bioactive restorative materials are crucial for promoting remineralization and protecting dental tissues through ion release. This study examines how pH and temperature influence the short- and long-term ion (F<sup>-</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup>, OH<sup>-</sup>, Si, and PO<sub>4</sub><sup>3-</sup>) release from seven commercial materials: <i>Cention Forte Filling Material</i>, <i>Cention Primer</i>, <i>Stela Self Cure</i>, <i>Riva Light Cure HV</i>, <i>Riva Self Cure</i>, <i>Equia Forte HT Fil</i>, and <i>Fuji IX GP Fast</i>. Disks were prepared according to the manufacturers' instructions; immersed in buffer solutions at pH 4.8, 6.8, and 8.8; and stored at 37 °C and 44 °C. Ion release was measured after 1, 7, and 28 days using ion chromatography and mass spectrometry. Results revealed that ion release was significantly affected by pH, temperature, and exposure time. The highest fluoride (40.14 ± 0.32 mg/L) and calcium (74.23 ± 0.37 mg/L) releases were observed in <i>Riva Light Cure</i> at pH 4.8 and 44 °C after 28 days, with the highest strontium release (5.87 ± 0.06 mg/L) occurring under the same conditions. In contrast, silicon release peaked in <i>Cention Forte Filling</i> (31.72 ± 0.68 mg/L) at pH 4.8 and 37 °C. These findings highlight the impact of environmental factors on material performance, assisting clinicians in selecting optimal restorative materials for long-term dental health.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143616984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Polymers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1