The prevalence of colon cancer (CC) is increasing at the endemic scale, which is accompanied by subsequent morbidity and mortality. Although there have been noteworthy achievements in the therapeutic strategies in recent years, the treatment of patients with CC remains a formidable task. The current study focused on to study role of biohydrogenation-derived conjugated linoleic acid (CLA) of probiotic Pediococcus pentosaceus GS4 (CLAGS4) against CC, which induced peroxisome proliferator-activated receptor gamma (PPARγ) expression in human CC HCT-116 cells. Pre-treatment with PPARγ antagonist bisphenol A diglycidyl ether has significantly reduced the inhibitory efficacy of enhanced cell viability of HCT-116 cells, suggesting the PPARγ-dependent cell death. The cancer cells treated with CLA/CLAGS4 demonstrated the reduced level of Prostaglandin E2 PGE2 in association with reduced COX-2 and 5-LOX expressions. Moreover, these consequences were found to be associated with PPARγ-dependent. Furthermore, delineation of mitochondrial dependent apoptosis with the help of molecular docking LigPlot analysis showed that CLA can bind with hexokinase-II (hHK-II) (highly expressed in cancer cells) and that this association underlies voltage dependent anionic channel to open, thereby causing mitochondrial membrane depolarization, a condition that initiates intrinsic apoptotic events. Apoptosis was further confirmed by annexin V staining and elevation of caspase 1p10 expression. Taken all together, it is deduced that, mechanistically, the upregulation of PPARγ by CLAGS4 of P. pentosaceus GS4 can alter cancer cell metabolism in association with triggering apoptosis in CC.
{"title":"Appraisal of the Possible Role of PPAR<i>γ</i> Upregulation by CLA of Probiotic <i>Pediococcus pentosaceus</i> GS4 in Colon Cancer Mitigation.","authors":"Vinay Dubey, Alok Kumar Mishra, Asit Ranjan Ghosh","doi":"10.1155/2023/9458308","DOIUrl":"https://doi.org/10.1155/2023/9458308","url":null,"abstract":"<p><p>The prevalence of colon cancer (CC) is increasing at the endemic scale, which is accompanied by subsequent morbidity and mortality. Although there have been noteworthy achievements in the therapeutic strategies in recent years, the treatment of patients with CC remains a formidable task. The current study focused on to study role of biohydrogenation-derived conjugated linoleic acid (CLA) of probiotic <i>Pediococcus pentosaceus</i> GS4 (CLA<sub>GS4</sub>) against CC, which induced peroxisome proliferator-activated receptor gamma (PPAR<i>γ</i>) expression in human CC HCT-116 cells. Pre-treatment with PPAR<i>γ</i> antagonist bisphenol A diglycidyl ether has significantly reduced the inhibitory efficacy of enhanced cell viability of HCT-116 cells, suggesting the PPAR<i>γ</i>-dependent cell death. The cancer cells treated with CLA/CLA<sub>GS4</sub> demonstrated the reduced level of Prostaglandin E2 PGE<sub>2</sub> in association with reduced COX-2 and 5-LOX expressions. Moreover, these consequences were found to be associated with PPAR<i>γ</i>-dependent. Furthermore, delineation of mitochondrial dependent apoptosis with the help of molecular docking LigPlot analysis showed that CLA can bind with hexokinase-II (hHK-II) (highly expressed in cancer cells) and that this association underlies voltage dependent anionic channel to open, thereby causing mitochondrial membrane depolarization, a condition that initiates intrinsic apoptotic events. Apoptosis was further confirmed by annexin V staining and elevation of caspase 1p10 expression. Taken all together, it is deduced that, mechanistically, the upregulation of PPAR<i>γ</i> by CLA<sub>GS4</sub> of <i>P</i>. <i>pentosaceus</i> GS4 can alter cancer cell metabolism in association with triggering apoptosis in CC.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2023 ","pages":"9458308"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984262/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10854739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Obesity-induced endoplasmic reticulum (ER) stress plays a role in increased susceptibility to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The activation of peroxisome proliferator-activated receptor-γ (PPARγ) is associated with lung protection and is effective in ameliorating ER stress and mitochondrial dysfunction. The aim of this study was to investigate the expression of PPARγ in the lung tissues of obese mice and explore whether the PPARγ-dependent pathway could mediate decreased ALI/ARDS by regulating ER stress and mitochondrial biogenesis.
Methods: We determined PPARγ expression in the lung tissues of normal and obese mice. ALI models of alveolar epithelial cells and of obese mice were used and treated with either PPARγ activator rosiglitazone (RSG) or PPARγ inhibitor GW9662. Lung tissue and cell samples were collected to assess lung inflammation and apoptosis, and ER stress and mitochondrial biogenesis were detected.
Results: PPARγ expression was significantly decreased in the lung tissue of obese mice compared with that in normal mice. Both in vivo and in vitro studies have shown that activation of PPARγ leads to reduced expression of the ER stress marker proteins 78-kDa glucose-regulated protein (GRP78), C/EBP homologous protein (CHOP), and Caspase12. Conversely, expression of the mitochondrial biogenesis-related proteins peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1α), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TFAM) increased. Furthermore, activation of PPARγ is associated with decreased levels of lung inflammation and epithelial apoptosis and increased expression of adiponectin (APN) and mitofusin2 (MFN2). GW9662 bound to PPARγ and blocked its transcriptional activity and then diminished the protective effect of PPARγ on lung tissues.
Conclusions: PPARγ activation exerts anti-inflammation effects in alveolar epithelia by alleviating ER stress and promoting mitochondrial biogenesis. Therefore, lower levels of PPARγ in the lung tissues of obese mice may lead to an increased susceptibility to ALI.
{"title":"Activation of PPAR<i>γ</i> Protects Obese Mice from Acute Lung Injury by Inhibiting Endoplasmic Reticulum Stress and Promoting Mitochondrial Biogenesis.","authors":"Yin Tang, Ke Wei, Ling Liu, Jingyue Ma, Siqi Wu, Wenjing Tang","doi":"10.1155/2022/7888937","DOIUrl":"https://doi.org/10.1155/2022/7888937","url":null,"abstract":"<p><strong>Objective: </strong>Obesity-induced endoplasmic reticulum (ER) stress plays a role in increased susceptibility to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The activation of peroxisome proliferator-activated receptor-<i>γ</i> (PPAR<i>γ</i>) is associated with lung protection and is effective in ameliorating ER stress and mitochondrial dysfunction. The aim of this study was to investigate the expression of PPAR<i>γ</i> in the lung tissues of obese mice and explore whether the PPAR<i>γ</i>-dependent pathway could mediate decreased ALI/ARDS by regulating ER stress and mitochondrial biogenesis.</p><p><strong>Methods: </strong>We determined PPAR<i>γ</i> expression in the lung tissues of normal and obese mice. ALI models of alveolar epithelial cells and of obese mice were used and treated with either PPAR<i>γ</i> activator rosiglitazone (RSG) or PPAR<i>γ</i> inhibitor GW9662. Lung tissue and cell samples were collected to assess lung inflammation and apoptosis, and ER stress and mitochondrial biogenesis were detected.</p><p><strong>Results: </strong>PPAR<i>γ</i> expression was significantly decreased in the lung tissue of obese mice compared with that in normal mice. Both in vivo and in vitro studies have shown that activation of PPAR<i>γ</i> leads to reduced expression of the ER stress marker proteins 78-kDa glucose-regulated protein (GRP78), C/EBP homologous protein (CHOP), and Caspase12. Conversely, expression of the mitochondrial biogenesis-related proteins peroxisome proliferator-activated receptor <i>γ</i> coactivator 1 (PGC-1<i>α</i>), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TFAM) increased. Furthermore, activation of PPAR<i>γ</i> is associated with decreased levels of lung inflammation and epithelial apoptosis and increased expression of adiponectin (APN) and mitofusin2 (MFN2). GW9662 bound to PPAR<i>γ</i> and blocked its transcriptional activity and then diminished the protective effect of PPAR<i>γ</i> on lung tissues.</p><p><strong>Conclusions: </strong>PPAR<i>γ</i> activation exerts anti-inflammation effects in alveolar epithelia by alleviating ER stress and promoting mitochondrial biogenesis. Therefore, lower levels of PPAR<i>γ</i> in the lung tissues of obese mice may lead to an increased susceptibility to ALI.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2022 ","pages":"7888937"},"PeriodicalIF":2.9,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33497358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.
{"title":"Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments.","authors":"Ayesheh Enayati, Mobina Ghojoghnejad, Basil D Roufogalis, Seyed Adel Maollem, Amirhossein Sahebkar","doi":"10.1155/2022/4714914","DOIUrl":"10.1155/2022/4714914","url":null,"abstract":"<p><p>Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2022 ","pages":"4714914"},"PeriodicalIF":3.5,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33460905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Fedchenko, O. Izmailova, V. Shynkevych, O. Shlykova, I. Kaidashev
Introduction The master clock, which is located in the suprachiasmatic nucleus (SCN), harmonizes clock genes present in the liver to synchronize life rhythms and bioactivity with the surrounding environment. The reversed feeding disrupts the expression of clock genes in the liver. Recently, a novel role of PPAR-γ as a regulator in correlating circadian rhythm and metabolism was demonstrated. This study examined the influence of PPAR-γ agonist pioglitazone (PG) on the mRNA expression profile of principle clock genes and inflammation-related genes in the mouse liver disrupted by reverse feeding. Methods Mice were randomly assigned to daytime-feeding and nighttime-feeding groups. Mice in daytime-feeding groups received food from 7 AM to 7 PM, and mice in nighttime-feeding groups received food from 7 PM to 7 AM. PG was administered in the dose of 20 mg/kg per os as aqueous suspension 40 μl at 7 AM or 7 PM. Each group consisted of 12 animals. On day 8 of the feeding intervention, mice were sacrificed by cervical dislocation at noon (05 hours after light onset (HALO)) and midnight (HALO 17). Liver expressions of Bmal1, Clock, Rev-erb alpha, Cry1, Cry2, Per1, Per2, Cxcl5, Nrf2, and Ppar-γ were determined by quantitative reverse transcription PCR. Liver expression of PPAR-γ, pNF-κB, and IL-6 was determined by Western blotting. Glucose, ceruloplasmin, total cholesterol, triglyceride concentrations, and ALT and AST activities were measured in sera by photometric methods. The null hypothesis tested was that PG and the time of its administration have no influence on the clock gene expression impaired by reverse feeding. Results Administration of PG at 7 AM to nighttime-feeding mice did not reveal any influence on the expression of the clock or inflammation-related genes either at midnight or at noon. In the daytime-feeding group, PG intake at 7 PM led to an increase in Per2 and Rev-erb alpha mRNA at noon, an increase in Ppar-γ mRNA at midnight, and a decrease in Nfκb (p65) mRNA at noon. In general, PG administration at 7 PM slightly normalized the impaired expression of clock genes and increased anti-inflammatory potency impaired by reversed feeding. This pattern was supported by biochemical substrate levels—glucose, total cholesterol, ALT, and AST activities. The decrease in NF-κB led to the inhibition of serum ceruloplasmin levels as well as IL-6 in liver tissue. According to our data, PG intake at 7 PM exerts strong normalization of clock gene expression with a further increase in Nrf2 and, especially, Ppar-γ and PPAR-γ expression with inhibition of Nfκb and pNF-κB expression in daytime-feeding mice. These expression changes resulted in decreased hyperglycemia, hypercholesterolemia, ALT, and AST activities. Thus, PG had a potent chronopharmacological effect when administered at 7 PM to daytime-feeding mice. Conclusions Our study indicates that reversed feeding induced the disruption of mouse liver circadian expression pattern of clock genes accompanied by
{"title":"PPAR-γ Agonist Pioglitazone Restored Mouse Liver mRNA Expression of Clock Genes and Inflammation-Related Genes Disrupted by Reversed Feeding","authors":"T. Fedchenko, O. Izmailova, V. Shynkevych, O. Shlykova, I. Kaidashev","doi":"10.1155/2022/7537210","DOIUrl":"https://doi.org/10.1155/2022/7537210","url":null,"abstract":"Introduction The master clock, which is located in the suprachiasmatic nucleus (SCN), harmonizes clock genes present in the liver to synchronize life rhythms and bioactivity with the surrounding environment. The reversed feeding disrupts the expression of clock genes in the liver. Recently, a novel role of PPAR-γ as a regulator in correlating circadian rhythm and metabolism was demonstrated. This study examined the influence of PPAR-γ agonist pioglitazone (PG) on the mRNA expression profile of principle clock genes and inflammation-related genes in the mouse liver disrupted by reverse feeding. Methods Mice were randomly assigned to daytime-feeding and nighttime-feeding groups. Mice in daytime-feeding groups received food from 7 AM to 7 PM, and mice in nighttime-feeding groups received food from 7 PM to 7 AM. PG was administered in the dose of 20 mg/kg per os as aqueous suspension 40 μl at 7 AM or 7 PM. Each group consisted of 12 animals. On day 8 of the feeding intervention, mice were sacrificed by cervical dislocation at noon (05 hours after light onset (HALO)) and midnight (HALO 17). Liver expressions of Bmal1, Clock, Rev-erb alpha, Cry1, Cry2, Per1, Per2, Cxcl5, Nrf2, and Ppar-γ were determined by quantitative reverse transcription PCR. Liver expression of PPAR-γ, pNF-κB, and IL-6 was determined by Western blotting. Glucose, ceruloplasmin, total cholesterol, triglyceride concentrations, and ALT and AST activities were measured in sera by photometric methods. The null hypothesis tested was that PG and the time of its administration have no influence on the clock gene expression impaired by reverse feeding. Results Administration of PG at 7 AM to nighttime-feeding mice did not reveal any influence on the expression of the clock or inflammation-related genes either at midnight or at noon. In the daytime-feeding group, PG intake at 7 PM led to an increase in Per2 and Rev-erb alpha mRNA at noon, an increase in Ppar-γ mRNA at midnight, and a decrease in Nfκb (p65) mRNA at noon. In general, PG administration at 7 PM slightly normalized the impaired expression of clock genes and increased anti-inflammatory potency impaired by reversed feeding. This pattern was supported by biochemical substrate levels—glucose, total cholesterol, ALT, and AST activities. The decrease in NF-κB led to the inhibition of serum ceruloplasmin levels as well as IL-6 in liver tissue. According to our data, PG intake at 7 PM exerts strong normalization of clock gene expression with a further increase in Nrf2 and, especially, Ppar-γ and PPAR-γ expression with inhibition of Nfκb and pNF-κB expression in daytime-feeding mice. These expression changes resulted in decreased hyperglycemia, hypercholesterolemia, ALT, and AST activities. Thus, PG had a potent chronopharmacological effect when administered at 7 PM to daytime-feeding mice. Conclusions Our study indicates that reversed feeding induced the disruption of mouse liver circadian expression pattern of clock genes accompanied by","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48218991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background. Peroxisome proliferator-activated receptor-γ (PPARγ) gene is located at 3p25 position. PPARγ functions as the master regulator of glucose homeostasis and lipoprotein metabolism, and recent studies have reported that it is involved in various metabolic diseases such as diabetes mellitus, hyperlipidemia, coronary artery disease (CAD), and nonalcoholic fatty liver disease (NAFLD). PPARγ1 and PPARγ2 are necessary for the development of adipose tissue and insulin sensitivity regulation. But PPARγ2 is the isoform that was controlled in response to nutrient intake and obesity. Methodology. In this study, we used computational techniques to show the impact of Pro12Ala polymorphism on PPARγ2. The 3-D structure of PPARγ2 was modeled using I-TASSER server. The modeled structure was validated with the ZLab server, and the mutation was created with SPDB viewer. Stability prediction tools were used. Molecular dynamics simulation (MDS) was used to understand the structural and functional behavior of the wild type and mutant. Essential dynamics was also applied. Results and Conclusions. Stability prediction tools were showed that this mutation has a destabilizing effect on the PPARγ2 structure. The RMSD, RMSF, Rg, SASA, and DSSP were in line with H-bond results that showed less flexibility in the mutant structure. Essential dynamics was used to verify MDS results. Pro12Ala polymorphism leads to rigidity of the PPARγ2 protein and might disturb the conformational changes and interactions of PPARγ2 and results in type 2 diabetes mellitus (T2DM), CAD, and NAFLD. This study can help scientists to develop a drug therapy against these diseases.
{"title":"Molecular Dynamics Simulation and Essential Dynamics of Deleterious Proline 12 Alanine Single-Nucleotide Polymorphism in PPARγ2 Associated with Type 2 Diabetes, Cardiovascular Disease, and Nonalcoholic Fatty Liver Disease","authors":"Somayye Taghvaei, L. Saremi","doi":"10.1155/2022/3833668","DOIUrl":"https://doi.org/10.1155/2022/3833668","url":null,"abstract":"Background. Peroxisome proliferator-activated receptor-γ (PPARγ) gene is located at 3p25 position. PPARγ functions as the master regulator of glucose homeostasis and lipoprotein metabolism, and recent studies have reported that it is involved in various metabolic diseases such as diabetes mellitus, hyperlipidemia, coronary artery disease (CAD), and nonalcoholic fatty liver disease (NAFLD). PPARγ1 and PPARγ2 are necessary for the development of adipose tissue and insulin sensitivity regulation. But PPARγ2 is the isoform that was controlled in response to nutrient intake and obesity. Methodology. In this study, we used computational techniques to show the impact of Pro12Ala polymorphism on PPARγ2. The 3-D structure of PPARγ2 was modeled using I-TASSER server. The modeled structure was validated with the ZLab server, and the mutation was created with SPDB viewer. Stability prediction tools were used. Molecular dynamics simulation (MDS) was used to understand the structural and functional behavior of the wild type and mutant. Essential dynamics was also applied. Results and Conclusions. Stability prediction tools were showed that this mutation has a destabilizing effect on the PPARγ2 structure. The RMSD, RMSF, Rg, SASA, and DSSP were in line with H-bond results that showed less flexibility in the mutant structure. Essential dynamics was used to verify MDS results. Pro12Ala polymorphism leads to rigidity of the PPARγ2 protein and might disturb the conformational changes and interactions of PPARγ2 and results in type 2 diabetes mellitus (T2DM), CAD, and NAFLD. This study can help scientists to develop a drug therapy against these diseases.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49239561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The postoperative survival time and quality of life of patients with colon adenocarcinoma (COAD) varies widely. In order to make accurate decisions after surgery, clinicians need to distinguish patients with different prognostic trends. However, we still lack effective methods to predict the prognosis of COAD patients. Accumulated evidences indicated that the inhibition of peroxisome proliferator-activated receptors (PPARs) and a portion of their target genes were associated with the development of COAD. Our study found that the expression of several PPAR pathway-related genes were linked to the prognosis of COAD patients. Therefore, we developed a scoring system (named PPAR-Riskscore) that can predict patients' outcomes. PPAR-Riskscore was constructed by univariate Cox regression based on the expression of 4 genes (NR1D1, ILK, TNFRSF1A, and REN) in tumor tissues. Compared to typical TNM grading systems, PPAR-Riskscore has better predictive accuracy and sensitivity. The reliability of the system was tested on six external validation datasets. Furthermore, PPAR-Riskscore was able to evaluate the immune cell infiltration and chemotherapy sensitivity of each tumor sample. We also combined PPAR-Riskscore and clinical features to create a nomogram with greater clinical utility. The nomogram can help clinicians make precise treatment decisions regarding the possible long-term survival of patients after surgery.
{"title":"The Expression of PPAR Pathway-Related Genes Can Better Predict the Prognosis of Patients with Colon Adenocarcinoma","authors":"Xiao-Yu Zhou, Jianqiu Wang, Jin-Xu Chen, Jing-Song Chen","doi":"10.1155/2022/1285083","DOIUrl":"https://doi.org/10.1155/2022/1285083","url":null,"abstract":"The postoperative survival time and quality of life of patients with colon adenocarcinoma (COAD) varies widely. In order to make accurate decisions after surgery, clinicians need to distinguish patients with different prognostic trends. However, we still lack effective methods to predict the prognosis of COAD patients. Accumulated evidences indicated that the inhibition of peroxisome proliferator-activated receptors (PPARs) and a portion of their target genes were associated with the development of COAD. Our study found that the expression of several PPAR pathway-related genes were linked to the prognosis of COAD patients. Therefore, we developed a scoring system (named PPAR-Riskscore) that can predict patients' outcomes. PPAR-Riskscore was constructed by univariate Cox regression based on the expression of 4 genes (NR1D1, ILK, TNFRSF1A, and REN) in tumor tissues. Compared to typical TNM grading systems, PPAR-Riskscore has better predictive accuracy and sensitivity. The reliability of the system was tested on six external validation datasets. Furthermore, PPAR-Riskscore was able to evaluate the immune cell infiltration and chemotherapy sensitivity of each tumor sample. We also combined PPAR-Riskscore and clinical features to create a nomogram with greater clinical utility. The nomogram can help clinicians make precise treatment decisions regarding the possible long-term survival of patients after surgery.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45193358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Balaji Venkataraman, S. Almarzooqi, V. Raj, P. Dudeja, B. Bhongade, R. Patil, S. Ojha, S. Attoub, T. Adrian, S. Subramanya
The incidence and prevalence of inflammatory bowel disease (IBD, Crohn's disease, and ulcerative colitis) are increasing worldwide. The etiology of IBD is multifactorial, including genetic predisposition, dysregulated immune response, microbial dysbiosis, and environmental factors. However, many of the existing therapies are associated with marked side effects. Therefore, the development of new drugs for IBD treatment is an important area of investigation. Here, we investigated the anti-inflammatory effects of α-bisabolol, a naturally occurring monocyclic sesquiterpene alcohol present in many aromatic plants, in colonic inflammation. To address this, we used molecular docking and dynamic studies to understand how α-bisabolol interacts with PPAR-γ, which is highly expressed in the colonic epithelium: in vivo (mice) and in vitro (RAW264.7 macrophages and HT-29 colonic adenocarcinoma cells) models. The molecular docking and dynamic analysis revealed that α-bisabolol interacts with PPAR-γ, a nuclear receptor protein that is highly expressed in the colon epithelium. Treatment with α-bisabolol in DSS-administered mice significantly reduced Disease Activity Index (DAI), myeloperoxidase (MPO) activity, and colonic length and protected the microarchitecture of the colon. α-Bisabolol treatment also reduced the expression of proinflammatory cytokines (IL-6, IL1β, TNF-α, and IL-17A) at the protein and mRNA levels. The expression of COX-2 and iNOS inflammatory mediators were reduced along with tissue nitrite levels. Furthermore, α-bisabolol decreased the phosphorylation of activated mitogen-activated protein kinase (MAPK) signaling and nuclear factor kappa B (NFκB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. However, the PPAR-α and β/δ expression was not altered, indicating α-bisabolol is a specific stimulator of PPAR-γ. α-Bisabolol also increased the PPAR-γ transcription factor expression but not PPAR-α and β/δ in pretreated in LPS-stimulated RAW264.7 macrophages. α-Bisabolol significantly decreased the expression of proinflammatory chemokines (CXCL-1 and IL-8) mRNA in HT-29 cells treated with TNF-α and HT-29 PPAR-γ promoter activity. These results demonstrate that α-bisabolol mitigates colonic inflammation by inhibiting MAPK signaling and stimulating PPAR-γ expression.
{"title":"α-Bisabolol Mitigates Colon Inflammation by Stimulating Colon PPAR-γ Transcription Factor: In Vivo and In Vitro Study","authors":"Balaji Venkataraman, S. Almarzooqi, V. Raj, P. Dudeja, B. Bhongade, R. Patil, S. Ojha, S. Attoub, T. Adrian, S. Subramanya","doi":"10.1155/2022/5498115","DOIUrl":"https://doi.org/10.1155/2022/5498115","url":null,"abstract":"The incidence and prevalence of inflammatory bowel disease (IBD, Crohn's disease, and ulcerative colitis) are increasing worldwide. The etiology of IBD is multifactorial, including genetic predisposition, dysregulated immune response, microbial dysbiosis, and environmental factors. However, many of the existing therapies are associated with marked side effects. Therefore, the development of new drugs for IBD treatment is an important area of investigation. Here, we investigated the anti-inflammatory effects of α-bisabolol, a naturally occurring monocyclic sesquiterpene alcohol present in many aromatic plants, in colonic inflammation. To address this, we used molecular docking and dynamic studies to understand how α-bisabolol interacts with PPAR-γ, which is highly expressed in the colonic epithelium: in vivo (mice) and in vitro (RAW264.7 macrophages and HT-29 colonic adenocarcinoma cells) models. The molecular docking and dynamic analysis revealed that α-bisabolol interacts with PPAR-γ, a nuclear receptor protein that is highly expressed in the colon epithelium. Treatment with α-bisabolol in DSS-administered mice significantly reduced Disease Activity Index (DAI), myeloperoxidase (MPO) activity, and colonic length and protected the microarchitecture of the colon. α-Bisabolol treatment also reduced the expression of proinflammatory cytokines (IL-6, IL1β, TNF-α, and IL-17A) at the protein and mRNA levels. The expression of COX-2 and iNOS inflammatory mediators were reduced along with tissue nitrite levels. Furthermore, α-bisabolol decreased the phosphorylation of activated mitogen-activated protein kinase (MAPK) signaling and nuclear factor kappa B (NFκB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. However, the PPAR-α and β/δ expression was not altered, indicating α-bisabolol is a specific stimulator of PPAR-γ. α-Bisabolol also increased the PPAR-γ transcription factor expression but not PPAR-α and β/δ in pretreated in LPS-stimulated RAW264.7 macrophages. α-Bisabolol significantly decreased the expression of proinflammatory chemokines (CXCL-1 and IL-8) mRNA in HT-29 cells treated with TNF-α and HT-29 PPAR-γ promoter activity. These results demonstrate that α-bisabolol mitigates colonic inflammation by inhibiting MAPK signaling and stimulating PPAR-γ expression.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2022 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42053945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shunli Qi, Qi Yan, Zhen Wang, Deng Liu, Mengting Zhan, Jian Du, Lijian Chen
Liver ischemia/reperfusion (I/R) injury is a primary complication in major liver surgery. Our previous study about proteome profiling has revealed that the PPAR signaling cascade was significantly upregulated during liver ischemia/reperfusion. To elucidate the potential mechanisms of PPARα involved in I/R injury, we used oleoylethanolamide (OEA), the peroxisome proliferator-activated receptor alpha (PPARα) agonist, in this study. We demonstrated a protective role of OEA on liver I/R injury by using a mouse model of partial warm ischemia-reperfusion and hypoxia-reoxygenation model of hepatocytes. These effects were caused by ameliorating liver damage, decreasing the level of serum ALT and AST, and reducing the apoptosis of hepatocytes. Furthermore, a mechanistic study revealed that OEA regulated endoplasmic reticulum (ER) stress by activating PPARα, thereby reducing ER stress-associated apoptosis to attenuate liver I/R injury. Briefly, these data first proposed that OEA-mediated PPARα activation could be an effective therapy against hepatic ischemia/reperfusion injury.
{"title":"Oleoylethanolamide Alleviates Hepatic Ischemia-Reperfusion Injury via Inhibiting Endoplasmic Reticulum Stress-Associated Apoptosis","authors":"Shunli Qi, Qi Yan, Zhen Wang, Deng Liu, Mengting Zhan, Jian Du, Lijian Chen","doi":"10.1155/2022/2212996","DOIUrl":"https://doi.org/10.1155/2022/2212996","url":null,"abstract":"Liver ischemia/reperfusion (I/R) injury is a primary complication in major liver surgery. Our previous study about proteome profiling has revealed that the PPAR signaling cascade was significantly upregulated during liver ischemia/reperfusion. To elucidate the potential mechanisms of PPARα involved in I/R injury, we used oleoylethanolamide (OEA), the peroxisome proliferator-activated receptor alpha (PPARα) agonist, in this study. We demonstrated a protective role of OEA on liver I/R injury by using a mouse model of partial warm ischemia-reperfusion and hypoxia-reoxygenation model of hepatocytes. These effects were caused by ameliorating liver damage, decreasing the level of serum ALT and AST, and reducing the apoptosis of hepatocytes. Furthermore, a mechanistic study revealed that OEA regulated endoplasmic reticulum (ER) stress by activating PPARα, thereby reducing ER stress-associated apoptosis to attenuate liver I/R injury. Briefly, these data first proposed that OEA-mediated PPARα activation could be an effective therapy against hepatic ischemia/reperfusion injury.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42809202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiuwen Liang, Tingting He, Lihong Gao, Libo Wei, Di Rong, Yu Zhang, Yu Liu
Both rs1801133 mutation on Methylenetetrahydrofolate reductase (MTHFR) gene and transcription factor peroxisome proliferator-activated gamma (PPARG) have been associated with plasma homocysteine (Hcy) levels and hypertension. However, their role in H-type hypertension remains unclear. In this study, we first tested the association between rs1801133 genotypes and Hcy level in H-type hypertension using clinical profiles collected from 203 patients before and after the treatment using enalapril maleate and folic acid tablets (EMFAT). Then, we constructed a literature-based pathway analysis to explore the role of the rs1801133-PPARG signaling pathway in H-type hypertension and its treatment. Although presented similar blood pressure, the patients with TT genotype of rs1801133 were much younger (p value <0.05) and significantly higher in Hcy levels (x2 = 6.11 and p < 0.005) than that in the CC and CT genotype groups. Pathway analysis showed that T-allele of rs1801133 could inhibit the expression of PPARG through the downregulation of folate levels and upregulation of Hcy levels, which increased the risk of hypertension and hyperhomocysteinemia. Treatment using EMFAT led to similarly decreased Hcy levels for all patients with different genotypes (x2 = 86.00; p < 0.36), which may occur partially through the activation of PPARG. Moreover, even after treatment, the patients with TT genotype still presented significantly higher Hcy levels (x2 = 7.87 and p < 0.001). Our results supported that rs1801133 mutation could play a role in H-type hypertension, which might be partially through the downregulation of PPARG. Moreover, PPARG might also be involved in treating H-type hypertension using EMFAT.
亚甲基四氢叶酸还原酶(MTHFR)基因rs1801133突变和转录因子过氧化物酶体增殖激活γ (PPARG)与血浆同型半胱氨酸(Hcy)水平和高血压有关。然而,它们在h型高血压中的作用尚不清楚。在这项研究中,我们首先通过收集203例患者在使用马来酸依那普利叶酸片(EMFAT)治疗前后的临床资料,检测了h型高血压患者rs1801133基因型与Hcy水平之间的关系。然后,我们构建基于文献的通路分析,探讨rs1801133-PPARG信号通路在h型高血压中的作用及其治疗。虽然血压相近,但TT基因型rs1801133患者比CC和CT基因型患者更年轻(p值<0.05),且Hcy水平显著高于CC和CT基因型患者(x2 = 6.11, p < 0.005)。通路分析显示,rs1801133的t等位基因可通过下调叶酸水平和上调Hcy水平抑制PPARG的表达,从而增加高血压和高同型半胱氨酸血症的风险。EMFAT治疗导致不同基因型患者Hcy水平相似地降低(x2 = 86.00;p < 0.36),这可能部分通过PPARG的激活而发生。而且,即使在治疗后,TT基因型患者的Hcy水平仍显著升高(x2 = 7.87, p < 0.001)。我们的结果支持rs1801133突变可能在h型高血压中发挥作用,部分可能是通过下调PPARG来实现的。此外,PPARG还可能参与EMFAT治疗h型高血压。
{"title":"Explore the Role of the rs1801133-PPARG Pathway in the H-type Hypertension","authors":"Xiuwen Liang, Tingting He, Lihong Gao, Libo Wei, Di Rong, Yu Zhang, Yu Liu","doi":"10.1155/2022/2054876","DOIUrl":"https://doi.org/10.1155/2022/2054876","url":null,"abstract":"Both rs1801133 mutation on Methylenetetrahydrofolate reductase (MTHFR) gene and transcription factor peroxisome proliferator-activated gamma (PPARG) have been associated with plasma homocysteine (Hcy) levels and hypertension. However, their role in H-type hypertension remains unclear. In this study, we first tested the association between rs1801133 genotypes and Hcy level in H-type hypertension using clinical profiles collected from 203 patients before and after the treatment using enalapril maleate and folic acid tablets (EMFAT). Then, we constructed a literature-based pathway analysis to explore the role of the rs1801133-PPARG signaling pathway in H-type hypertension and its treatment. Although presented similar blood pressure, the patients with TT genotype of rs1801133 were much younger (p value <0.05) and significantly higher in Hcy levels (x2 = 6.11 and p < 0.005) than that in the CC and CT genotype groups. Pathway analysis showed that T-allele of rs1801133 could inhibit the expression of PPARG through the downregulation of folate levels and upregulation of Hcy levels, which increased the risk of hypertension and hyperhomocysteinemia. Treatment using EMFAT led to similarly decreased Hcy levels for all patients with different genotypes (x2 = 86.00; p < 0.36), which may occur partially through the activation of PPARG. Moreover, even after treatment, the patients with TT genotype still presented significantly higher Hcy levels (x2 = 7.87 and p < 0.001). Our results supported that rs1801133 mutation could play a role in H-type hypertension, which might be partially through the downregulation of PPARG. Moreover, PPARG might also be involved in treating H-type hypertension using EMFAT.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47147742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peroxisome proliferator-activated receptor-δ, encoded by gene PPARD, is overexpressed in a majority of human lung cancer subtypes, but its role in the tumor progression remains poorly understood. We have analyzed the expression of PPARD in lung adenocarcinoma (LA) and squamous cell carcinoma (LSCC) datasets. The potential roles of PPARD in the pathological development of LA and LSCC were explored through literature-based pathway analysis and pathway enrichment analysis. In all LA datasets (N = 11) and in seven out of nine LSCC studies, the levels of PPARD were increased as compared to control tissues (log-fold changes were 0.37 ± 0.20 and 0.10 ± 0.37 for LA and LSCC, respectively). On average, the expression levels of PPARD in LA were higher than those in LSCC (p = 0.036). Pathway analysis showed that the overexpression of PPARD might play both positive and negative roles in the development of both LA and LSCC. Specifically, PPARD inhibits seven LSCC promoters and seven LA promoters and activates one LSCC inhibitor and another LA inhibitor. However, PPARD also activates six and one promoters of LA and LSCC, respectively, which would facilitate the development of LA/LSCC. Our results suggested a mixed role of PPARD in LA/LSCC, which may add new insights into the understanding of the PPARD-lung cancer relationship.
{"title":"Increased PPARD Expression May Play a Protective Role in Human Lung Adenocarcinoma and Squamous Cell Carcinoma","authors":"Yongchun Zhu, Yedong Mi, Zhonghua Qin, Xuewei Jiang, Yibo Shan, K. Kural, Guiping Yu","doi":"10.1155/2022/9414524","DOIUrl":"https://doi.org/10.1155/2022/9414524","url":null,"abstract":"Peroxisome proliferator-activated receptor-δ, encoded by gene PPARD, is overexpressed in a majority of human lung cancer subtypes, but its role in the tumor progression remains poorly understood. We have analyzed the expression of PPARD in lung adenocarcinoma (LA) and squamous cell carcinoma (LSCC) datasets. The potential roles of PPARD in the pathological development of LA and LSCC were explored through literature-based pathway analysis and pathway enrichment analysis. In all LA datasets (N = 11) and in seven out of nine LSCC studies, the levels of PPARD were increased as compared to control tissues (log-fold changes were 0.37 ± 0.20 and 0.10 ± 0.37 for LA and LSCC, respectively). On average, the expression levels of PPARD in LA were higher than those in LSCC (p = 0.036). Pathway analysis showed that the overexpression of PPARD might play both positive and negative roles in the development of both LA and LSCC. Specifically, PPARD inhibits seven LSCC promoters and seven LA promoters and activates one LSCC inhibitor and another LA inhibitor. However, PPARD also activates six and one promoters of LA and LSCC, respectively, which would facilitate the development of LA/LSCC. Our results suggested a mixed role of PPARD in LA/LSCC, which may add new insights into the understanding of the PPARD-lung cancer relationship.","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49188262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}