Ovarian carcinoma (OV) is a lethal gynecological malignancy. Most OV patients develop resistance to platinum-based chemotherapy and recurrence. Peroxisome proliferator-activated receptors (PPARs) are the ligand activating transcription factor of the nuclear receptor superfamily. PPARs as important transcriptional regulators regulate important physiological processes such as lipid metabolism, inflammation, and wound healing. Several reports point out that PPARs can also have an effect on the sensitivity of tumor cells to platinum-based chemotherapy drugs. However, the role of PPAR-target related genes (PPAR-TRGs) in chemotherapeutic resistance of OV remains unclear. The present study is aimed at optimizing candidate genes by integrating platinum-chemotherapy expression data and PPAR family genes with their targets. The gene expression profiles were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database. A total of 4 genes (AP2A2, DOCK4, HSDL2, and PDK4) were the candidate differentially expressed genes (DEGs) of PPAR-TRGs with platinum chemosensitivity. After conducting numerous survival analyses using different cohorts, we found that only the upexpression of DOCK4 has important significance with the poor prognosis of OV patients. Meanwhile, DOCK4 is detected in plasma and enriched in neutrophil and monocyte cells of the blood. We further found that there were significant correlations between DOCK4 expression and the levels of CD4+ T cell infiltration, dendritic cell infiltration, and neutrophil infiltration in OV. In addition, we verified the expression level of DOCK4 in OV cell lines treated with platinum drugs and found that DOCK4 is potentially responsive to platinum drugs. In conclusion, DOCK4 is potentially associated with immune cell infiltration and represents a valuable prognostic biomarker in ovarian cancer patients.
卵巢癌是一种致死性妇科恶性肿瘤。大多数OV患者对铂类化疗产生耐药性和复发。过氧化物酶体增殖体激活受体(PPARs)是核受体超家族中的配体激活转录因子。ppar作为重要的转录调节因子调节重要的生理过程,如脂质代谢、炎症和伤口愈合。一些报道指出,ppar还可以影响肿瘤细胞对铂类化疗药物的敏感性。然而,ppar靶向相关基因(PPAR-TRGs)在OV化疗耐药中的作用尚不清楚。本研究旨在通过整合铂化疗表达数据和PPAR家族基因及其靶点来优化候选基因。基因表达谱来源于gene expression Omnibus (GEO)和The Cancer Genome Atlas (TCGA)数据库。共有4个基因(AP2A2、DOCK4、HSDL2和PDK4)是PPAR-TRGs具有铂化学敏感性的候选差异表达基因(DEGs)。通过使用不同的队列进行大量的生存分析,我们发现只有DOCK4的高表达与OV患者的不良预后有重要意义。同时,DOCK4在血浆中检测到,并在血液中性粒细胞和单核细胞中富集。我们进一步发现DOCK4表达与OV中CD4+ T细胞浸润、树突状细胞浸润和中性粒细胞浸润水平有显著相关性。此外,我们验证了DOCK4在铂类药物治疗OV细胞株中的表达水平,发现DOCK4对铂类药物有潜在的应答。总之,DOCK4可能与免疫细胞浸润有关,是卵巢癌患者有价值的预后生物标志物。
{"title":"DOCK4 Is a Platinum-Chemosensitive and Prognostic-Related Biomarker in Ovarian Cancer.","authors":"Qianqian Zhao, Jie Zhong, Ping Lu, Xiao Feng, Ying Han, Chenqi Ling, Wenke Guo, Weijin Zhou, Fudong Yu","doi":"10.1155/2021/6629842","DOIUrl":"https://doi.org/10.1155/2021/6629842","url":null,"abstract":"<p><p>Ovarian carcinoma (OV) is a lethal gynecological malignancy. Most OV patients develop resistance to platinum-based chemotherapy and recurrence. Peroxisome proliferator-activated receptors (PPARs) are the ligand activating transcription factor of the nuclear receptor superfamily. PPARs as important transcriptional regulators regulate important physiological processes such as lipid metabolism, inflammation, and wound healing. Several reports point out that PPARs can also have an effect on the sensitivity of tumor cells to platinum-based chemotherapy drugs. However, the role of PPAR-target related genes (PPAR-TRGs) in chemotherapeutic resistance of OV remains unclear. The present study is aimed at optimizing candidate genes by integrating platinum-chemotherapy expression data and PPAR family genes with their targets. The gene expression profiles were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database. A total of 4 genes (<i>AP2A2</i>, <i>DOCK4</i>, <i>HSDL2</i>, and <i>PDK4</i>) were the candidate differentially expressed genes (DEGs) of PPAR-TRGs with platinum chemosensitivity. After conducting numerous survival analyses using different cohorts, we found that only the upexpression of <i>DOCK4</i> has important significance with the poor prognosis of OV patients. Meanwhile, <i>DOCK4</i> is detected in plasma and enriched in neutrophil and monocyte cells of the blood. We further found that there were significant correlations between <i>DOCK4</i> expression and the levels of CD4+ T cell infiltration, dendritic cell infiltration, and neutrophil infiltration in OV. In addition, we verified the expression level of <i>DOCK4</i> in OV cell lines treated with platinum drugs and found that <i>DOCK4</i> is potentially responsive to platinum drugs. In conclusion, <i>DOCK4</i> is potentially associated with immune cell infiltration and represents a valuable prognostic biomarker in ovarian cancer patients.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":"6629842"},"PeriodicalIF":2.9,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25391283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-01eCollection Date: 2021-01-01DOI: 10.1155/2021/6658944
Jie Zhang, Ping Cheng, Weiqi Dai, Jie Ji, Liwei Wu, Jiao Feng, Jianye Wu, Qiang Yu, Jingjing Li, Chuanyong Guo
Hepatic ischemia and reperfusion injury is characterized by hepatocyte apoptosis, impaired autophagy, and oxidative stress. Fenofibrate, a commonly used antilipidemic drug, has been verified to exert hepatic protective effects in other cells and animal models. The purpose of this study was to identify the function of fenofibrate on mouse hepatic IR injury and discuss the possible mechanisms. A segmental (70%) hepatic warm ischemia model was established in Balb/c mice. Serum and liver tissue samples were collected for detecting pathological changes at 2, 8, and 24 h after reperfusion, while fenofibrate (50 mg/kg, 100 mg/kg) was injected intraperitoneally 1 hour prior to surgery. Compared to the IR group, pretreatment of FF could reduce the inflammatory response and inhibit apoptosis and autophagy. Furthermore, fenofibrate can activate PPAR-α, which is associated with the phosphorylation of AMPK.
{"title":"Fenofibrate Ameliorates Hepatic Ischemia/Reperfusion Injury in Mice: Involvements of Apoptosis, Autophagy, and PPAR-<i>α</i> Activation.","authors":"Jie Zhang, Ping Cheng, Weiqi Dai, Jie Ji, Liwei Wu, Jiao Feng, Jianye Wu, Qiang Yu, Jingjing Li, Chuanyong Guo","doi":"10.1155/2021/6658944","DOIUrl":"https://doi.org/10.1155/2021/6658944","url":null,"abstract":"<p><p>Hepatic ischemia and reperfusion injury is characterized by hepatocyte apoptosis, impaired autophagy, and oxidative stress. Fenofibrate, a commonly used antilipidemic drug, has been verified to exert hepatic protective effects in other cells and animal models. The purpose of this study was to identify the function of fenofibrate on mouse hepatic IR injury and discuss the possible mechanisms. A segmental (70%) hepatic warm ischemia model was established in Balb/c mice. Serum and liver tissue samples were collected for detecting pathological changes at 2, 8, and 24 h after reperfusion, while fenofibrate (50 mg/kg, 100 mg/kg) was injected intraperitoneally 1 hour prior to surgery. Compared to the IR group, pretreatment of FF could reduce the inflammatory response and inhibit apoptosis and autophagy. Furthermore, fenofibrate can activate PPAR-<i>α</i>, which is associated with the phosphorylation of AMPK.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":"6658944"},"PeriodicalIF":2.9,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870311/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25382880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-28eCollection Date: 2021-01-01DOI: 10.1155/2021/6651839
Jie Ji, Qiang Yu, Weiqi Dai, Liwei Wu, Jiao Feng, Yuanyuan Zheng, Yan Li, Chuanyong Guo
Objective: The aim of this study is to confirm the hepatocellular protective functions of apigenin and the molecular mechanism on liver fibrosis in mice.
Methods: Carbon tetrachloride (CCl4) and bile duct ligature (BDL) mouse fibrosis models were used to investigate the effects of apigenin on liver fibrosis. Sixty-six male C57 mice were randomly divided into eight groups, including the vehicle group, CCl4 group, CCl4+L-apigenin (20 mg/kg) group, CCl4+H-apigenin (40 mg/kg) group, sham group, BDL group, BDL+L-apigenin(20 mg/kg) group, and BDL+H-apigenin(40 mg/kg) group. Serum liver enzymes (ALT and AST), proteins associated with autophagy, and indicators linked with the TGF-β1/Smad3 and p38/PPARα pathways were detected using qRT-PCR, immunohistochemical staining, and western blotting.
Results: Our findings confirmed that apigenin could decrease the levels of ALT and AST, suppress the generation of ECM, inhibit the activation of HSCs, regulate the balance of MMP2 and TIMP1, reduce the expression of autophagy-linked protein, and restrain the TGF-β1/Smad3 and p38/PPARα pathways.
Conclusion: Apigenin could alleviate liver fibrosis by inhibiting hepatic stellate cell activation and autophagy via TGF-β1/Smad3 and p38/PPARα pathways.
目的:探讨芹菜素对小鼠肝纤维化的保护作用及其分子机制。方法:采用四氯化碳(CCl4)和胆管结扎(BDL)小鼠纤维化模型,研究芹菜素对肝纤维化的影响。将66只雄性C57小鼠随机分为8组,分别为载药组、CCl4组、CCl4+ l -芹菜素(20 mg/kg)组、CCl4+ h -芹菜素(40 mg/kg)组、假药组、BDL组、BDL+ l -芹菜素(20 mg/kg)组和BDL+ h -芹菜素(40 mg/kg)组。采用qRT-PCR、免疫组化染色、western blotting检测血清肝酶(ALT、AST)、自噬相关蛋白、TGF-β1/Smad3、p38/PPARα通路相关指标。结果:我们的研究证实了芹菜素可以降低ALT和AST的水平,抑制ECM的产生,抑制hsc的活化,调节MMP2和TIMP1的平衡,降低自噬相关蛋白的表达,抑制TGF-β1/Smad3和p38/PPARα通路。结论:芹菜素可能通过TGF-β1/Smad3和p38/PPARα途径抑制肝星状细胞活化和自噬,从而减轻肝纤维化。
{"title":"Apigenin Alleviates Liver Fibrosis by Inhibiting Hepatic Stellate Cell Activation and Autophagy via TGF-<i>β</i>1/Smad3 and p38/PPAR<i>α</i> Pathways.","authors":"Jie Ji, Qiang Yu, Weiqi Dai, Liwei Wu, Jiao Feng, Yuanyuan Zheng, Yan Li, Chuanyong Guo","doi":"10.1155/2021/6651839","DOIUrl":"https://doi.org/10.1155/2021/6651839","url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study is to confirm the hepatocellular protective functions of apigenin and the molecular mechanism on liver fibrosis in mice.</p><p><strong>Methods: </strong>Carbon tetrachloride (CCl<sub>4</sub>) and bile duct ligature (BDL) mouse fibrosis models were used to investigate the effects of apigenin on liver fibrosis. Sixty-six male C57 mice were randomly divided into eight groups, including the vehicle group, CCl<sub>4</sub> group, CCl<sub>4</sub>+L-apigenin (20 mg/kg) group, CCl<sub>4</sub>+H-apigenin (40 mg/kg) group, sham group, BDL group, BDL+L-apigenin(20 mg/kg) group, and BDL+H-apigenin(40 mg/kg) group. Serum liver enzymes (ALT and AST), proteins associated with autophagy, and indicators linked with the TGF-<i>β</i>1/Smad3 and p38/PPAR<i>α</i> pathways were detected using qRT-PCR, immunohistochemical staining, and western blotting.</p><p><strong>Results: </strong>Our findings confirmed that apigenin could decrease the levels of ALT and AST, suppress the generation of ECM, inhibit the activation of HSCs, regulate the balance of MMP2 and TIMP1, reduce the expression of autophagy-linked protein, and restrain the TGF-<i>β</i>1/Smad3 and p38/PPAR<i>α</i> pathways.</p><p><strong>Conclusion: </strong>Apigenin could alleviate liver fibrosis by inhibiting hepatic stellate cell activation and autophagy via TGF-<i>β</i>1/Smad3 and p38/PPAR<i>α</i> pathways.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":"6651839"},"PeriodicalIF":2.9,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7861947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25360431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-22eCollection Date: 2021-01-01DOI: 10.1155/2021/8894752
Pengfei Gao, Jiayu Wang, Zhen Su, Fayin Li, Xianlong Zhang
Neuropathic pain is a public health problem. Although many pharmaceuticals are used to treat neuropathic pain, effective and safe drugs do not yet exist. In this study, we tested nociceptive responses in CCI rats, and ELISA assay was performed to examine the expression of proinflammatory cytokines. We found that amorfrutins significantly reduce the pain behaviors in CCI rats and suppress the expression of proinflammatory cytokines (TNFα, IL-6, and IL-1β) and chemokines (CCL2/CCR2) in the spinal cord. However, concurrent administration of a PPARγ antagonist, GW9662, reversed the antihyperalgesic effect induced by amorfrutins. The results indicate that amorfrutins inhibit the inflammation and chemokine expression by activating PPARγ, thus relieving neuropathic pain in CCI rats. Therefore, PPARγ-CCL2/CCR2 pathway might represent a new treatment option for neuropathic pain.
{"title":"Amorfrutins Relieve Neuropathic Pain through the PPAR<i>γ</i>/CCL2 Axis in CCI Rats.","authors":"Pengfei Gao, Jiayu Wang, Zhen Su, Fayin Li, Xianlong Zhang","doi":"10.1155/2021/8894752","DOIUrl":"https://doi.org/10.1155/2021/8894752","url":null,"abstract":"<p><p>Neuropathic pain is a public health problem. Although many pharmaceuticals are used to treat neuropathic pain, effective and safe drugs do not yet exist. In this study, we tested nociceptive responses in CCI rats, and ELISA assay was performed to examine the expression of proinflammatory cytokines. We found that amorfrutins significantly reduce the pain behaviors in CCI rats and suppress the expression of proinflammatory cytokines (TNF<i>α</i>, IL-6, and IL-1<i>β</i>) and chemokines (CCL2/CCR2) in the spinal cord. However, concurrent administration of a PPAR<i>γ</i> antagonist, GW9662, reversed the antihyperalgesic effect induced by amorfrutins. The results indicate that amorfrutins inhibit the inflammation and chemokine expression by activating PPAR<i>γ</i>, thus relieving neuropathic pain in CCI rats. Therefore, PPAR<i>γ</i>-CCL2/CCR2 pathway might represent a new treatment option for neuropathic pain.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":"8894752"},"PeriodicalIF":2.9,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25341270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-09eCollection Date: 2021-01-01DOI: 10.1155/2021/8895376
Fabiola Cortes-Lopez, Alicia Sanchez-Mendoza, David Centurion, Luz G Cervantes-Perez, Vicente Castrejon-Tellez, Leonardo Del Valle-Mondragon, Elizabeth Soria-Castro, Victoria Ramirez, Araceli Sanchez-Lopez, Gustavo Pastelin-Hernandez, Wylly Ramses Garcia-Niño, Maria Sanchez-Aguilar, Luz Ibarra-Lara
Lesions caused by high glucose (HG), hypoxia/reperfusion (H/R), and the coexistence of both conditions in cardiomyocytes are linked to an overproduction of reactive oxygen species (ROS), causing irreversible damage to macromolecules in the cardiomyocyte as well as its ultrastructure. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, promotes beneficial activities counteracting cardiac injury. Therefore, the objective of this work was to determine the potential protective effect of fenofibrate in cardiomyocytes exposed to HG, H/R, and HG+H/R. Cardiomyocyte cultures were divided into four main groups: (1) control (CT), (2) HG (25 mM), (3) H/R, and (4) HG+H/R. Our results indicate that cell viability decreases in cardiomyocytes undergoing HG, H/R, and both conditions, while fenofibrate improves cell viability in every case. Fenofibrate also decreases ROS production as well as nicotinamide adenine dinucleotide phosphate oxidase (NADPH) subunit expression. Regarding the antioxidant defense, superoxide dismutase (SOD Cu2+/Zn2+ and SOD Mn2+), catalase, and the antioxidant capacity were decreased in HG, H/R, and HG+H/R-exposed cardiomyocytes, while fenofibrate increased those parameters. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) increased significantly in treated cells, while pathologies increased the expression of its inhibitor Keap1. Oxidative stress-induced mitochondrial damage was lower in fenofibrate-exposed cardiomyocytes. Endothelial nitric oxide synthase was also favored in cardiomyocytes treated with fenofibrate. Our results suggest that fenofibrate preserves the antioxidant status and the ultrastructure in cardiomyocytes undergoing HG, H/R, and HG+H/R preventing damage to essential macromolecules involved in the proper functioning of the cardiomyocyte.
{"title":"Fenofibrate Protects Cardiomyocytes from Hypoxia/Reperfusion- and High Glucose-Induced Detrimental Effects.","authors":"Fabiola Cortes-Lopez, Alicia Sanchez-Mendoza, David Centurion, Luz G Cervantes-Perez, Vicente Castrejon-Tellez, Leonardo Del Valle-Mondragon, Elizabeth Soria-Castro, Victoria Ramirez, Araceli Sanchez-Lopez, Gustavo Pastelin-Hernandez, Wylly Ramses Garcia-Niño, Maria Sanchez-Aguilar, Luz Ibarra-Lara","doi":"10.1155/2021/8895376","DOIUrl":"https://doi.org/10.1155/2021/8895376","url":null,"abstract":"<p><p>Lesions caused by high glucose (HG), hypoxia/reperfusion (H/R), and the coexistence of both conditions in cardiomyocytes are linked to an overproduction of reactive oxygen species (ROS), causing irreversible damage to macromolecules in the cardiomyocyte as well as its ultrastructure. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR<i>α</i>) agonist, promotes beneficial activities counteracting cardiac injury. Therefore, the objective of this work was to determine the potential protective effect of fenofibrate in cardiomyocytes exposed to HG, H/R, and HG+H/R. Cardiomyocyte cultures were divided into four main groups: (1) control (CT), (2) HG (25 mM), (3) H/R, and (4) HG+H/R. Our results indicate that cell viability decreases in cardiomyocytes undergoing HG, H/R, and both conditions, while fenofibrate improves cell viability in every case. Fenofibrate also decreases ROS production as well as nicotinamide adenine dinucleotide phosphate oxidase (NADPH) subunit expression. Regarding the antioxidant defense, superoxide dismutase (SOD Cu<sup>2+</sup>/Zn<sup>2+</sup> and SOD Mn<sup>2+</sup>), catalase, and the antioxidant capacity were decreased in HG, H/R, and HG+H/R-exposed cardiomyocytes, while fenofibrate increased those parameters. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) increased significantly in treated cells, while pathologies increased the expression of its inhibitor Keap1. Oxidative stress-induced mitochondrial damage was lower in fenofibrate-exposed cardiomyocytes. Endothelial nitric oxide synthase was also favored in cardiomyocytes treated with fenofibrate. Our results suggest that fenofibrate preserves the antioxidant status and the ultrastructure in cardiomyocytes undergoing HG, H/R, and HG+H/R preventing damage to essential macromolecules involved in the proper functioning of the cardiomyocyte.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":" ","pages":"8895376"},"PeriodicalIF":2.9,"publicationDate":"2021-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38869217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheryar Afzal, Munavvar Abdul Sattar, Edward James Johns, Olorunfemi A Eseyin, Ali Attiq
Oxidative stress, which is associated with metabolic and anthropometric perturbations, leads to reactive oxygen species production and decrease in plasma adiponectin concentration. We investigated pharmacodynamically the pathophysiological role and potential implication of exogenously administered adiponectin with full and partial peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists on modulation of oxidative stress, metabolic dysregulation, and antioxidant potential in streptozotocin-induced spontaneously hypertensive rats (SHR). Group I (WKY) serves as the normotensive control, whereas 42 male SHRs were randomized equally into 7 groups (n = 6); group II serves as the SHR control, group III serves as the SHR diabetic control, and groups IV, V, and VI are treated with irbesartan (30 mg/kg), pioglitazone (10 mg/kg), and adiponectin (2.5 μg/kg), whereas groups VII and VIII received cotreatments as irbesartan+adiponectin and pioglitazone+adiponectin, respectively. Diabetes was induced using an intraperitoneal injection of streptozotocin (40 mg/kg). Plasma adiponectin, lipid contents, and arterial stiffness with oxidative stress biomarkers were measured using an in vitro and in vivo analysis. Diabetic SHRs exhibited hyperglycemia, hypertriglyceridemia, hypercholesterolemia, and increased arterial stiffness with reduced plasma adiponectin and antioxidant enzymatic levels (P < 0.05). Diabetic SHRs pretreated with pioglitazone and adiponectin separately exerted improvements in antioxidant enzyme activities, abrogated arterial stiffness, and offset the increased production of reactive oxygen species and dyslipidemic effects of STZ, whereas the blood pressure values were significantly reduced in the irbesartan-treated groups (all P < 0.05). The combined treatment of exogenously administered adiponectin with full PPAR-γ agonist augmented the improvement in lipid contents and adiponectin concentration and restored arterial stiffness with antioxidant potential effects, indicating the degree of synergism between adiponectin and full PPAR-γ agonists (pioglitazone).
{"title":"Antioxidant Potential of Adiponectin and Full PPAR-<i>γ</i> Agonist in Correcting Streptozotocin-Induced Vascular Abnormality in Spontaneously Hypertensive Rats.","authors":"Sheryar Afzal, Munavvar Abdul Sattar, Edward James Johns, Olorunfemi A Eseyin, Ali Attiq","doi":"10.1155/2021/6661181","DOIUrl":"https://doi.org/10.1155/2021/6661181","url":null,"abstract":"<p><p>Oxidative stress, which is associated with metabolic and anthropometric perturbations, leads to reactive oxygen species production and decrease in plasma adiponectin concentration. We investigated pharmacodynamically the pathophysiological role and potential implication of exogenously administered adiponectin with full and partial peroxisome proliferator-activated receptor-gamma (PPAR-<i>γ</i>) agonists on modulation of oxidative stress, metabolic dysregulation, and antioxidant potential in streptozotocin-induced spontaneously hypertensive rats (SHR). Group I (WKY) serves as the normotensive control, whereas 42 male SHRs were randomized equally into 7 groups (<i>n</i> = 6); group II serves as the SHR control, group III serves as the SHR diabetic control, and groups IV, V, and VI are treated with irbesartan (30 mg/kg), pioglitazone (10 mg/kg), and adiponectin (2.5 <i>μ</i>g/kg), whereas groups VII and VIII received cotreatments as irbesartan+adiponectin and pioglitazone+adiponectin, respectively. Diabetes was induced using an intraperitoneal injection of streptozotocin (40 mg/kg). Plasma adiponectin, lipid contents, and arterial stiffness with oxidative stress biomarkers were measured using an in vitro and in vivo analysis. Diabetic SHRs exhibited hyperglycemia, hypertriglyceridemia, hypercholesterolemia, and increased arterial stiffness with reduced plasma adiponectin and antioxidant enzymatic levels (<i>P</i> < 0.05). Diabetic SHRs pretreated with pioglitazone and adiponectin separately exerted improvements in antioxidant enzyme activities, abrogated arterial stiffness, and offset the increased production of reactive oxygen species and dyslipidemic effects of STZ, whereas the blood pressure values were significantly reduced in the irbesartan-treated groups (all <i>P</i> < 0.05). The combined treatment of exogenously administered adiponectin with full PPAR-<i>γ</i> agonist augmented the improvement in lipid contents and adiponectin concentration and restored arterial stiffness with antioxidant potential effects, indicating the degree of synergism between adiponectin and full PPAR-<i>γ</i> agonists (pioglitazone).</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2021 ","pages":"6661181"},"PeriodicalIF":2.9,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10697748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-31eCollection Date: 2020-01-01DOI: 10.1155/2020/6694214
Yujing Xia, Jingjing Li, Kan Chen, Jiao Feng, Chuanyong Guo
Liver fibrosis is a pathological process involving diffuse extracellular matrix (ECM) deposition in the liver. It is typical of many chronic liver diseases, including cirrhosis, and effective drugs are needed. In this study, we explored the protective effect of bergenin on liver fibrosis induced by carbon tetrachloride and bile duct ligation. A variety of molecular biological methods (qRT-PCR, western blotting, and immunohistochemistry) were employed to confirm the increased degree of hepatocyte injury and ECM formation in the disease model, consistent with autophagy and activation of the TGF-β pathway. Bergenin activated PPAR-γ and inhibited TGF-β and autophagy and decreased liver fibrosis by inhibiting hepatocyte necrosis and ECM formation in a dose-dependent manner. The results suggest that bergenin may be a promising drug candidate for the treatment of liver fibrosis.
{"title":"Bergenin Attenuates Hepatic Fibrosis by Regulating Autophagy Mediated by the PPAR-<i>γ</i>/TGF-<i>β</i> Pathway.","authors":"Yujing Xia, Jingjing Li, Kan Chen, Jiao Feng, Chuanyong Guo","doi":"10.1155/2020/6694214","DOIUrl":"https://doi.org/10.1155/2020/6694214","url":null,"abstract":"<p><p>Liver fibrosis is a pathological process involving diffuse extracellular matrix (ECM) deposition in the liver. It is typical of many chronic liver diseases, including cirrhosis, and effective drugs are needed. In this study, we explored the protective effect of bergenin on liver fibrosis induced by carbon tetrachloride and bile duct ligation. A variety of molecular biological methods (qRT-PCR, western blotting, and immunohistochemistry) were employed to confirm the increased degree of hepatocyte injury and ECM formation in the disease model, consistent with autophagy and activation of the TGF-<i>β</i> pathway. Bergenin activated PPAR-<i>γ</i> and inhibited TGF-<i>β</i> and autophagy and decreased liver fibrosis by inhibiting hepatocyte necrosis and ECM formation in a dose-dependent manner. The results suggest that bergenin may be a promising drug candidate for the treatment of liver fibrosis.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2020 ","pages":"6694214"},"PeriodicalIF":2.9,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38854144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cholesteatoma is characterized by both the overgrowth of hyperkeratinized squamous epithelium and bone erosion. However, the exact mechanism underlying the hyperproliferative ability of cholesteatoma remains unknown. In this study, we investigated PPAR β/δ expression in human surgical specimens of cholesteatoma and analyzed its functional role as a regulator of epithelial keratinocyte hyperproliferation. We found that the expression of PPAR β/δ was significantly upregulated in cholesteatoma and ligand-activated PPAR β/δ markedly promoted the proliferation of cholesteatoma keratinocytes. Furthermore, we showed that PPAR β/δ activation increased PDK1 expression and decreased PTEN generation, which led to increased phosphorylation of AKT and GSK3β and increased the expression level of Cyclin D1. Overall, our data suggested that the proliferating effect of PPAR β/δ on the cholesteatoma keratinocytes was mediated by the positive regulation of the PDK1/PTEN/AKT/GSK3β/Cyclin D1 pathway. These findings warranted further investigation of PPAR β/δ as a therapeutic target for recurrent or residual cholesteatoma.
{"title":"Ligand-Activated Peroxisome Proliferator-Activated Receptor <i>β</i>/<i>δ</i> Facilitates Cell Proliferation in Human Cholesteatoma Keratinocytes.","authors":"Chen Zhang, Yang-Wenyi Liu, Zhangcai Chi, Bing Chen","doi":"10.1155/2020/8864813","DOIUrl":"https://doi.org/10.1155/2020/8864813","url":null,"abstract":"<p><p>Cholesteatoma is characterized by both the overgrowth of hyperkeratinized squamous epithelium and bone erosion. However, the exact mechanism underlying the hyperproliferative ability of cholesteatoma remains unknown. In this study, we investigated PPAR <i>β</i>/<i>δ</i> expression in human surgical specimens of cholesteatoma and analyzed its functional role as a regulator of epithelial keratinocyte hyperproliferation. We found that the expression of PPAR <i>β</i>/<i>δ</i> was significantly upregulated in cholesteatoma and ligand-activated PPAR <i>β</i>/<i>δ</i> markedly promoted the proliferation of cholesteatoma keratinocytes. Furthermore, we showed that PPAR <i>β</i>/<i>δ</i> activation increased PDK1 expression and decreased PTEN generation, which led to increased phosphorylation of AKT and GSK3<i>β</i> and increased the expression level of Cyclin D1. Overall, our data suggested that the proliferating effect of PPAR <i>β</i>/<i>δ</i> on the cholesteatoma keratinocytes was mediated by the positive regulation of the PDK1/PTEN/AKT/GSK3<i>β</i>/Cyclin D1 pathway. These findings warranted further investigation of PPAR <i>β</i>/<i>δ</i> as a therapeutic target for recurrent or residual cholesteatoma.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2020 ","pages":"8864813"},"PeriodicalIF":2.9,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38804542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-22eCollection Date: 2020-01-01DOI: 10.1155/2020/6633022
Xianjin Du, Miao Wu, Dan Tian, Jianlin Zhou, Lu Wang, Liying Zhan
The severity of sepsis may be associated with excessive inflammation, thus leading to acute liver injury. MicroRNA-21 is highly expressed in the liver of a variety of inflammation-related diseases, and PPARα is also proved to participate in regulating inflammation. In the present study, the LPS-induced sepsis model was established. We found that microRNA-21 expression was upregulated in the liver of sepsis mice, and microRNA-21 inhibition significantly reduced the liver injury. The expression of liver injury markers, inflammation cytokines, and PPARα in the septic mice was higher than in antagomir-21 treated septic mice. In addition, we also found that PPARα is the target gene of microRNA-21; PPARα antagonist GW6471 could reverse the effect of antagomir-21. In conclusion, our study illustrated that microRNA-21 exacerbate acute liver injury in sepsis mice by inhibiting PPARα expression.
{"title":"MicroRNA-21 Contributes to Acute Liver Injury in LPS-Induced Sepsis Mice by Inhibiting PPAR<i>α</i> Expression.","authors":"Xianjin Du, Miao Wu, Dan Tian, Jianlin Zhou, Lu Wang, Liying Zhan","doi":"10.1155/2020/6633022","DOIUrl":"https://doi.org/10.1155/2020/6633022","url":null,"abstract":"<p><p>The severity of sepsis may be associated with excessive inflammation, thus leading to acute liver injury. MicroRNA-21 is highly expressed in the liver of a variety of inflammation-related diseases, and PPAR<i>α</i> is also proved to participate in regulating inflammation. In the present study, the LPS-induced sepsis model was established. We found that microRNA-21 expression was upregulated in the liver of sepsis mice, and microRNA-21 inhibition significantly reduced the liver injury. The expression of liver injury markers, inflammation cytokines, and PPAR<i>α</i> in the septic mice was higher than in antagomir-21 treated septic mice. In addition, we also found that PPAR<i>α</i> is the target gene of microRNA-21; PPAR<i>α</i> antagonist GW6471 could reverse the effect of antagomir-21. In conclusion, our study illustrated that microRNA-21 exacerbate acute liver injury in sepsis mice by inhibiting PPAR<i>α</i> expression.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2020 ","pages":"6633022"},"PeriodicalIF":2.9,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38804541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-14eCollection Date: 2020-01-01DOI: 10.1155/2020/6661642
Wanshun Wen, Jinlin Wang, Biyu Zhang, Jun Wang
Inflammation caused by neuropathy contributes to the development of neuropathic pain (NP), but the exact mechanism still needs to be understood. Peroxisome proliferator-activated receptor α (PPARα), an important inflammation regulator, might participate in the inflammation in NP. To explore the role of PPARα in NP, the effects of PPARα agonist WY-14643 on chronic constriction injury (CCI) rats were evaluated. The results showed that WY-14643 stimulation could decrease inflammation and relieve neuropathic pain, which was relative with the activation of PPARα. In addition, we also found that the SIRT1/NF-κB pathway was involved in the WY-14643-induced anti-inflammation in NP, and activation of PPARα increased SIRT1 expression, thus reducing the proinflammatory function of NF-κB. These data suggested that WY-14643 might serve as an inflammation mediator, which may be a potential therapy option for NP.
{"title":"PPAR<i>α</i> Agonist WY-14643 Relieves Neuropathic Pain through SIRT1-Mediated Deacetylation of NF-<i>κ</i>B.","authors":"Wanshun Wen, Jinlin Wang, Biyu Zhang, Jun Wang","doi":"10.1155/2020/6661642","DOIUrl":"https://doi.org/10.1155/2020/6661642","url":null,"abstract":"<p><p>Inflammation caused by neuropathy contributes to the development of neuropathic pain (NP), but the exact mechanism still needs to be understood. Peroxisome proliferator-activated receptor <i>α</i> (PPAR<i>α</i>), an important inflammation regulator, might participate in the inflammation in NP. To explore the role of PPAR<i>α</i> in NP, the effects of PPAR<i>α</i> agonist WY-14643 on chronic constriction injury (CCI) rats were evaluated. The results showed that WY-14643 stimulation could decrease inflammation and relieve neuropathic pain, which was relative with the activation of PPAR<i>α</i>. In addition, we also found that the SIRT1/NF-<i>κ</i>B pathway was involved in the WY-14643-induced anti-inflammation in NP, and activation of PPAR<i>α</i> increased SIRT1 expression, thus reducing the proinflammatory function of NF-<i>κ</i>B. These data suggested that WY-14643 might serve as an inflammation mediator, which may be a potential therapy option for NP.</p>","PeriodicalId":20439,"journal":{"name":"PPAR Research","volume":"2020 ","pages":"6661642"},"PeriodicalIF":2.9,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/6661642","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38794143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}