Pub Date : 2023-01-01DOI: 10.2174/1574892817666220325151555
Xiaoliang Chen, Lili Yin, Hui Xu, Jie Rong, Miao Feng, Di Jiang, Yunfeng Bai
Background: Enzalutamide has been approved clinically for the treatment of castrationresistant prostate cancer (CRPC) but is limited by the emergence of resistance. RhoA has been shown to play a vital role in carcinogenesis, invasion, and metastasis. However, the role of RhoA in enzalutamide-resistant prostate cancer (PCa) remains unclear.
Objectives: This study investigated the role of RhoA and the associated mechanisms of RhoA depletion in enzalutamide resistance in CRPC.
Methods: Western blotting, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and colony formation assays were used to assess protein expression, survival, and proliferation of PCa cells, respectively. Xenograft experiments and hematoxylin and eosin (H&E) staining were used to detect further effects of RhoA on enzalutamide resistance in vivo.
Results: In the present study, the expression of RhoA, ROCK2, p38, p-p38, and AR was upregulated in enzalutamide-resistant PCa cells treated with enzalutamide, and silencing of RhoA or ROCK2 attenuated enzalutamide-resistant cell proliferation and colony formation. Furthermore, the deletion of RhoA dramatically increased the efficacy of enzalutamide in inhibiting 22RV1-derived xenograft tumor growth. Additionally, there was no significant change in ROCK1 expression in C4-2R cells treated with or without enzalutamide. Mechanistically, the knockdown of RhoA expression reverted the resistance to enzalutamide via RhoA/ROCK2/p38 rather than RhoA/ROCK1/p38.
Conclusion: Our results suggested that RhoA is a promising therapeutic target. As the inhibition of RhoA reverted enzalutamide resistance, it may increase its effectiveness in CRPC.
{"title":"Knockdown of RhoA Expression Reverts Enzalutamide Resistance via the p38 MAPK Pathway in Castration-resistant Prostate Cancer.","authors":"Xiaoliang Chen, Lili Yin, Hui Xu, Jie Rong, Miao Feng, Di Jiang, Yunfeng Bai","doi":"10.2174/1574892817666220325151555","DOIUrl":"https://doi.org/10.2174/1574892817666220325151555","url":null,"abstract":"<p><strong>Background: </strong>Enzalutamide has been approved clinically for the treatment of castrationresistant prostate cancer (CRPC) but is limited by the emergence of resistance. RhoA has been shown to play a vital role in carcinogenesis, invasion, and metastasis. However, the role of RhoA in enzalutamide-resistant prostate cancer (PCa) remains unclear.</p><p><strong>Objectives: </strong>This study investigated the role of RhoA and the associated mechanisms of RhoA depletion in enzalutamide resistance in CRPC.</p><p><strong>Methods: </strong>Western blotting, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and colony formation assays were used to assess protein expression, survival, and proliferation of PCa cells, respectively. Xenograft experiments and hematoxylin and eosin (H&E) staining were used to detect further effects of RhoA on enzalutamide resistance in vivo.</p><p><strong>Results: </strong>In the present study, the expression of RhoA, ROCK2, p38, p-p38, and AR was upregulated in enzalutamide-resistant PCa cells treated with enzalutamide, and silencing of RhoA or ROCK2 attenuated enzalutamide-resistant cell proliferation and colony formation. Furthermore, the deletion of RhoA dramatically increased the efficacy of enzalutamide in inhibiting 22RV1-derived xenograft tumor growth. Additionally, there was no significant change in ROCK1 expression in C4-2R cells treated with or without enzalutamide. Mechanistically, the knockdown of RhoA expression reverted the resistance to enzalutamide via RhoA/ROCK2/p38 rather than RhoA/ROCK1/p38.</p><p><strong>Conclusion: </strong>Our results suggested that RhoA is a promising therapeutic target. As the inhibition of RhoA reverted enzalutamide resistance, it may increase its effectiveness in CRPC.</p>","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"18 1","pages":"92-99"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10340495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2174/1574892817666220511162046
Chaoyuan Huang, Yimin Cheng, Wei Li, Yuancheng Huang, Hu Luo, Chong Zhong, Fengbin Liu
Objective: The objective of this study is to explore the potential anti-liver cancer mechanism of Huachansu injection through integrated bioinformatics analysis.
Methods: Active ingredients of Huachansu injection (extraction of toad skin) were obtained, and their potential drug targets were predicted via SwissTargetPrediction database. Liver cancer disease targets were identified from the GEO (Gene Expression Omnibus) dataset and four public databases. Then Protein-Protein Interaction (PPI) network of toad skin was constructed. GO (Gene Ontology) enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis were performed subsequently. Finally, molecular docking was performed using Auto Dock Vina.
Results: In the search for therapeutic targets, twenty active components of toad skin were screened for further study, five hundred and sixty-eight targets of components were identified. In the search for disease targets, three thousand two hundred and twenty-seven genes were identified after removal of duplicated genes, one hundred and fifty-nine genes were up-regulated in liver cancer samples while two hundred and seventy-eight were down-regulated in liver cancer patients. After predicting the therapeutic targets of the components, the results were cross-checked with the disease targets, thirteen up-regulated targets and ten down-regulated targets were obtained. Finally, in the results of molecular docking, seven targets (CDK1, AKR1B1, MMP12, AURKB, CHEK1, AURKA, TTK) were potential up-regulated targets, three targets (SHBG, SRD5A2, NR1I2) were potential down-regulated targets, all of which have the best binding energy and molecular interactions.
Conclusion: CDK1, AKR1B1, MMP12, AURKB, CHEK1, AURKA, and TTK could be potential upregulated target proteins of Huachansu injection for treating liver cancer. The mechanism of Huachansu injection in the treatment of liver cancer through these up-regulated targets is related to cell cycle, cellular senescence, viral carcinogenesis, p53 signaling pathway. SHBG, SRD5A2, and NR1I2 could be potential down-regulated target proteins of Huachansu injection in treating liver cancer.
目的:通过综合生物信息学分析,探讨花血素注射液抗肝癌的潜在作用机制。方法:提取花蟾素注射液(蟾蜍皮提取物)的有效成分,并通过SwissTargetPrediction数据库预测其潜在的药物靶点。从GEO (Gene Expression Omnibus)数据集和四个公共数据库中确定肝癌疾病靶点。然后构建蟾蜍皮肤蛋白-蛋白相互作用(PPI)网络。随后进行GO (Gene Ontology)富集分析和KEGG (Kyoto Encyclopedia of Genes and Genomes)富集分析。最后,利用Auto Dock Vina进行分子对接。结果:在寻找治疗靶点方面,筛选出20种蟾蜍皮有效成分,鉴定出568个靶点。在寻找疾病靶点的过程中,在去除重复基因后,确定了三千二百二十七个基因,其中肝癌样本中有一百五十九个基因上调,而肝癌患者中有二百七十八个基因下调。预测各组分的治疗靶点后,与疾病靶点进行交叉比对,得到13个上调靶点和10个下调靶点。最后,在分子对接结果中,7个靶点(CDK1、AKR1B1、MMP12、AURKB、CHEK1、AURKA、TTK)为潜在上调靶点,3个靶点(SHBG、SRD5A2、NR1I2)为潜在下调靶点,它们都具有最佳的结合能和分子相互作用。结论:CDK1、AKR1B1、MMP12、AURKB、CHEK1、AURKA、TTK可能是花血素注射液治疗肝癌的潜在上调靶蛋白。花血素注射液通过这些上调靶点治疗肝癌的机制与细胞周期、细胞衰老、病毒癌变、p53信号通路有关。SHBG、SRD5A2、NR1I2可能是花血素注射液治疗肝癌的潜在下调靶蛋白。
{"title":"Examining the Mechanisms of Huachansu Injection on Liver Cancer through Integrated Bioinformatics Analysis.","authors":"Chaoyuan Huang, Yimin Cheng, Wei Li, Yuancheng Huang, Hu Luo, Chong Zhong, Fengbin Liu","doi":"10.2174/1574892817666220511162046","DOIUrl":"https://doi.org/10.2174/1574892817666220511162046","url":null,"abstract":"<p><strong>Objective: </strong>The objective of this study is to explore the potential anti-liver cancer mechanism of Huachansu injection through integrated bioinformatics analysis.</p><p><strong>Methods: </strong>Active ingredients of Huachansu injection (extraction of toad skin) were obtained, and their potential drug targets were predicted via SwissTargetPrediction database. Liver cancer disease targets were identified from the GEO (Gene Expression Omnibus) dataset and four public databases. Then Protein-Protein Interaction (PPI) network of toad skin was constructed. GO (Gene Ontology) enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis were performed subsequently. Finally, molecular docking was performed using Auto Dock Vina.</p><p><strong>Results: </strong>In the search for therapeutic targets, twenty active components of toad skin were screened for further study, five hundred and sixty-eight targets of components were identified. In the search for disease targets, three thousand two hundred and twenty-seven genes were identified after removal of duplicated genes, one hundred and fifty-nine genes were up-regulated in liver cancer samples while two hundred and seventy-eight were down-regulated in liver cancer patients. After predicting the therapeutic targets of the components, the results were cross-checked with the disease targets, thirteen up-regulated targets and ten down-regulated targets were obtained. Finally, in the results of molecular docking, seven targets (CDK1, AKR1B1, MMP12, AURKB, CHEK1, AURKA, TTK) were potential up-regulated targets, three targets (SHBG, SRD5A2, NR1I2) were potential down-regulated targets, all of which have the best binding energy and molecular interactions.</p><p><strong>Conclusion: </strong>CDK1, AKR1B1, MMP12, AURKB, CHEK1, AURKA, and TTK could be potential upregulated target proteins of Huachansu injection for treating liver cancer. The mechanism of Huachansu injection in the treatment of liver cancer through these up-regulated targets is related to cell cycle, cellular senescence, viral carcinogenesis, p53 signaling pathway. SHBG, SRD5A2, and NR1I2 could be potential down-regulated target proteins of Huachansu injection in treating liver cancer.</p>","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"18 3","pages":"408-425"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9308225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2174/1574892818666221207091329
Hai-Long Zhang, Yongxia Li
Background: KRAS and BRAF targets are involved in the epidermal growth factor receptor pathway. KRAS and BRAF targets are the most frequent driver mutations in cancer.
Objective: The objective of the study was to present the recent developments in the KRAS target and the BRAF target.
Methods: KRAS target and BRAF target were analyzed by US patent analysis. All US granted patent documents from January 2002 to November 2021 were retrieved.
Results: The results showed both KRAS and BRAF targets to be attractive targets for developing anticancer drugs. The technology of RNA interference has been developed for drug discovery related to the KRAS target. Our study indicates that the structural screening of inhibitors between the KRAS target and the BRAF target should be an inverse option.
Conclusion: The chemical structures of inhibitors of BRAF target exhibited a unique classification of C07D405. The inhibitors of BRAF target could be used for the treatment of various cancers. However, the inhibitors of KRAS target did not show this feature. The present study provides new insight into drug discovery involving KRAS and BRAF targets.
{"title":"The Patent Landscape of BRAF Target and KRAS Target.","authors":"Hai-Long Zhang, Yongxia Li","doi":"10.2174/1574892818666221207091329","DOIUrl":"https://doi.org/10.2174/1574892818666221207091329","url":null,"abstract":"<p><strong>Background: </strong>KRAS and BRAF targets are involved in the epidermal growth factor receptor pathway. KRAS and BRAF targets are the most frequent driver mutations in cancer.</p><p><strong>Objective: </strong>The objective of the study was to present the recent developments in the KRAS target and the BRAF target.</p><p><strong>Methods: </strong>KRAS target and BRAF target were analyzed by US patent analysis. All US granted patent documents from January 2002 to November 2021 were retrieved.</p><p><strong>Results: </strong>The results showed both KRAS and BRAF targets to be attractive targets for developing anticancer drugs. The technology of RNA interference has been developed for drug discovery related to the KRAS target. Our study indicates that the structural screening of inhibitors between the KRAS target and the BRAF target should be an inverse option.</p><p><strong>Conclusion: </strong>The chemical structures of inhibitors of BRAF target exhibited a unique classification of C07D405. The inhibitors of BRAF target could be used for the treatment of various cancers. However, the inhibitors of KRAS target did not show this feature. The present study provides new insight into drug discovery involving KRAS and BRAF targets.</p>","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"18 4","pages":"495-505"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9525303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2174/1574892817666220420122426
S B Santhosh, Santny Shanmugarama, Nimma Ramesh, A Mohamed Sheik Tharik, Veera Vijaya Basamshetty
Background: Nanotechnology plays a vital role in the field of medicine. Especially various nanoparticles such as silver, gold, platinum are involved in the treatment of different types of cancer. The effective nanoparticles were synthesized using techniques like chemical, physical, electrochemical and biological methods. In order to overcome the limitations existing in the synthesis of nanoparticles, researchers turned their attention toward the biological single step nanoparticle synthesis method by using plant and plant products.
Objective: The objective of this study is to overcome the side effects encountered in the existing anti- cancer agents like nonspecificity and fast excretion, and plant-derived nanoparticles that are ecofriendly, cost-effective and biologically active could serve as a promising alternative.
Conclusion: From the thorough literature review and recent patents, it is understood that the plantderived nanoparticles exhibited an excellent anti-proliferation anti-tumor activity towards different types of cancers without affecting the normal cells. Especially, the traditional chemotherapeutic drugs obtained from the plant source incorporated with the nanoparticles show remarkable results against anti cancer studies. The present review focused on some of the existing herbal plant derived nanoparticles, formulations and their potential application in cancer therapeutics.
{"title":"Recent Patents on Plant-Derived Nanoparticles and their Potential Application Towards Various Cancer Therapeutics.","authors":"S B Santhosh, Santny Shanmugarama, Nimma Ramesh, A Mohamed Sheik Tharik, Veera Vijaya Basamshetty","doi":"10.2174/1574892817666220420122426","DOIUrl":"https://doi.org/10.2174/1574892817666220420122426","url":null,"abstract":"<p><strong>Background: </strong>Nanotechnology plays a vital role in the field of medicine. Especially various nanoparticles such as silver, gold, platinum are involved in the treatment of different types of cancer. The effective nanoparticles were synthesized using techniques like chemical, physical, electrochemical and biological methods. In order to overcome the limitations existing in the synthesis of nanoparticles, researchers turned their attention toward the biological single step nanoparticle synthesis method by using plant and plant products.</p><p><strong>Objective: </strong>The objective of this study is to overcome the side effects encountered in the existing anti- cancer agents like nonspecificity and fast excretion, and plant-derived nanoparticles that are ecofriendly, cost-effective and biologically active could serve as a promising alternative.</p><p><strong>Conclusion: </strong>From the thorough literature review and recent patents, it is understood that the plantderived nanoparticles exhibited an excellent anti-proliferation anti-tumor activity towards different types of cancers without affecting the normal cells. Especially, the traditional chemotherapeutic drugs obtained from the plant source incorporated with the nanoparticles show remarkable results against anti cancer studies. The present review focused on some of the existing herbal plant derived nanoparticles, formulations and their potential application in cancer therapeutics.</p>","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"18 3","pages":"292-306"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9431080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Gastrointestinal cancer are the major form of cancer in developing countries, which comprises gastric cancer (GC), hepatic cancer (HCC), colorectal cancers (CRC), etc.; they account for a large number of cancer-related deaths globally. Gastrointestinal cancers generally have a multifactorial origin, where both genetic and dietary factors play prominent roles. PI3K/Akt signaling is the prime signaling pathway associated with the Phosphoinositide-3 kinase/protein kinase B signaling pathway.
Objectives: The present review aims to summarize the role of the PI3K/Akt signaling pathway on the different events of gastrointestinal cancers, such as proliferation, survival, metastasis, angiogenesis, drug resistance and stem cell properties.
Methods: Literature collection has been done using the appropriate keywords from Pub- Med/Medline, Scopus, Web of science, or Eurekaselect. The details of individual types of cancers were selected by giving respective keywords.
Results: PI3K signaling pathway is important in various gastrointestinal carcinogenesis and progression events; the pathway is involved in proliferation, survival, metastasis, and drug resistance. Several natural phytochemicals and their derivatives have been shown to inhibit PI3K signaling and its downstream regulatory elements, subsequently resulting in anticancer and anti-metastatic activity. Although numerous preclinical evidences are available, conclusive clinical reports are lacking on the anticancer aspects of PI3K inhibitors in gastric cancer.
Conclusion: Phytochemicals are promising drug candidates for targeting the PI3K/mTOR pathway in various gastrointestinal cancer treatments. However, there is a need for extensive clinical studies to ascertain the commercial value of anticancer therapeutic compounds against cancers of the stomach, liver, and intestine.
背景:胃肠道癌症是发展中国家的主要癌症形式,包括胃癌(GC)、肝癌(HCC)、结直肠癌(CRC)等;它们在全球范围内造成了大量与癌症相关的死亡。胃肠道癌症通常有多因素的起源,其中遗传和饮食因素都起着重要作用。PI3K/Akt信号通路是与磷酸肌醇-3激酶/蛋白激酶B信号通路相关的主要信号通路。目的:本文旨在综述PI3K/Akt信号通路在胃肠道肿瘤的增殖、存活、转移、血管生成、耐药和干细胞特性等不同事件中的作用。方法:使用Pub- Med/Medline、Scopus、Web of science或Eurekaselect中合适的关键词进行文献收集。通过给出相应的关键词来选择每种癌症的详细信息。结果:PI3K信号通路在多种胃肠道癌变和进展事件中起重要作用;该通路参与增殖、生存、转移和耐药。一些天然植物化学物质及其衍生物已被证明可以抑制PI3K信号及其下游调控元件,从而产生抗癌和抗转移活性。虽然有大量的临床前证据,但缺乏关于PI3K抑制剂在胃癌中的抗癌作用的结论性临床报告。结论:植物化学物质是靶向PI3K/mTOR通路治疗多种胃肠道肿瘤的有希望的候选药物。然而,有必要进行广泛的临床研究,以确定抗癌治疗化合物对胃癌、肝癌和肠癌的商业价值。
{"title":"Phytochemicals and Nanoparticles in the Modulation of PI3K/Akt/mTOR Kinases and its Implications in the Development and Progression of Gastrointestinal Cancers: A Review of Preclinical and Clinical Evidence.","authors":"Arunaksharan Narayanankutty, Sreelakshmi Nambiattil, Sreeshna Mannarakkal","doi":"10.2174/1574892817666220606104712","DOIUrl":"https://doi.org/10.2174/1574892817666220606104712","url":null,"abstract":"<p><strong>Background: </strong>Gastrointestinal cancer are the major form of cancer in developing countries, which comprises gastric cancer (GC), hepatic cancer (HCC), colorectal cancers (CRC), etc.; they account for a large number of cancer-related deaths globally. Gastrointestinal cancers generally have a multifactorial origin, where both genetic and dietary factors play prominent roles. PI3K/Akt signaling is the prime signaling pathway associated with the Phosphoinositide-3 kinase/protein kinase B signaling pathway.</p><p><strong>Objectives: </strong>The present review aims to summarize the role of the PI3K/Akt signaling pathway on the different events of gastrointestinal cancers, such as proliferation, survival, metastasis, angiogenesis, drug resistance and stem cell properties.</p><p><strong>Methods: </strong>Literature collection has been done using the appropriate keywords from Pub- Med/Medline, Scopus, Web of science, or Eurekaselect. The details of individual types of cancers were selected by giving respective keywords.</p><p><strong>Results: </strong>PI3K signaling pathway is important in various gastrointestinal carcinogenesis and progression events; the pathway is involved in proliferation, survival, metastasis, and drug resistance. Several natural phytochemicals and their derivatives have been shown to inhibit PI3K signaling and its downstream regulatory elements, subsequently resulting in anticancer and anti-metastatic activity. Although numerous preclinical evidences are available, conclusive clinical reports are lacking on the anticancer aspects of PI3K inhibitors in gastric cancer.</p><p><strong>Conclusion: </strong>Phytochemicals are promising drug candidates for targeting the PI3K/mTOR pathway in various gastrointestinal cancer treatments. However, there is a need for extensive clinical studies to ascertain the commercial value of anticancer therapeutic compounds against cancers of the stomach, liver, and intestine.</p>","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"18 3","pages":"307-324"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9431093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Cancer is characterized by uncontrolled cell division in the human body damaging normal tissues. There are almost a hundred types of cancers studied to date that are conventionally treated with chemotherapy, radiation therapy, and surgery. Conventional methods have drawbacks like non-specific distribution of drugs, low concentration of drugs in tumors, and adverse effects like cardiotoxicity. Therefore, inorganic nanoparticles are explored nowadays to achieve better results in cancer treatment.
Objective: The objective of this review paper was to summarize the role of inorganic nanoparticles in cancer treatment by revealing their preclinical status and patents.
Methods: Literature survey for the present work was conducted by exploring various search engines like PubMed, Google Scholar, and Google patents.
Results: Inorganic nanoparticles come under the advanced category of nanomedicine explored in cancer therapeutics. The structural properties of inorganic nanoparticles make them excellent candidates for targeting, imaging, and eradication of cancer cells. Besides this, they also show high biocompatibility and minimum systemic toxicity.
Conclusion: This review paper concludes that inorganic nanoparticles may be better alternatives to conventional approaches for the treatment of cancer. However, their presence in global pharmaceutical markets will be governed by the development of novel scale-up techniques and clinical evaluation.
{"title":"Overview of Inorganic Nanoparticles: An Expanding Horizon in Tumor Therapeutics.","authors":"Lalit Kumar, Shivani Verma, Puneet Utreja, Dinesh Kumar","doi":"10.2174/1574892817666221005094423","DOIUrl":"https://doi.org/10.2174/1574892817666221005094423","url":null,"abstract":"<p><strong>Background: </strong>Cancer is characterized by uncontrolled cell division in the human body damaging normal tissues. There are almost a hundred types of cancers studied to date that are conventionally treated with chemotherapy, radiation therapy, and surgery. Conventional methods have drawbacks like non-specific distribution of drugs, low concentration of drugs in tumors, and adverse effects like cardiotoxicity. Therefore, inorganic nanoparticles are explored nowadays to achieve better results in cancer treatment.</p><p><strong>Objective: </strong>The objective of this review paper was to summarize the role of inorganic nanoparticles in cancer treatment by revealing their preclinical status and patents.</p><p><strong>Methods: </strong>Literature survey for the present work was conducted by exploring various search engines like PubMed, Google Scholar, and Google patents.</p><p><strong>Results: </strong>Inorganic nanoparticles come under the advanced category of nanomedicine explored in cancer therapeutics. The structural properties of inorganic nanoparticles make them excellent candidates for targeting, imaging, and eradication of cancer cells. Besides this, they also show high biocompatibility and minimum systemic toxicity.</p><p><strong>Conclusion: </strong>This review paper concludes that inorganic nanoparticles may be better alternatives to conventional approaches for the treatment of cancer. However, their presence in global pharmaceutical markets will be governed by the development of novel scale-up techniques and clinical evaluation.</p>","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"18 3","pages":"343-363"},"PeriodicalIF":2.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9086968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}