Loxodes is one of the best ecologically characterized ciliate genera with numerous intriguing physiological abilities, including gravity-sensing organelles and nitrate respiration. However, these cells have been considered challenging to cultivate in bulk, and are poorly preserved by conventional fixatives used for fluorescence microscopy. Here we describe methods to grow and harvest Loxodes cells in bulk with liquid soil extract medium, as well as a new fixative called ZFAE (zinc sulfate, formaldehyde, acetic acid, ethanol) that can fix Loxodes cells more effectively than buffered formaldehyde or methanol. We show that ZFAE is compatible with immunofluorescence and the nuclear stain DAPI. Loxodes is thus now amenable to long-term maintenance, large-scale growth, and modern cell biology investigations of monoclonal strains in laboratory conditions.
{"title":"Improved Methods for Bulk Cultivation and Fixation of Loxodes Ciliates for Fluorescence Microscopy","authors":"Brandon Kwee Boon Seah, Christiane Emmerich, Aditi Singh, Estienne Carl Swart","doi":"10.1016/j.protis.2022.125905","DOIUrl":"10.1016/j.protis.2022.125905","url":null,"abstract":"<div><p><em>Loxodes</em> is one of the best ecologically characterized ciliate genera with numerous intriguing physiological abilities, including gravity-sensing organelles and nitrate respiration. However, these cells have been considered challenging to cultivate in bulk, and are poorly preserved by conventional fixatives used for fluorescence microscopy. Here we describe methods to grow and harvest <em>Loxodes</em> cells in bulk with liquid soil extract medium, as well as a new fixative called ZFAE (zinc sulfate, formaldehyde, acetic acid, ethanol) that can fix <em>Loxodes</em> cells more effectively than buffered formaldehyde or methanol. We show that ZFAE is compatible with immunofluorescence and the nuclear stain DAPI. <em>Loxodes</em> is thus now amenable to long-term maintenance, large-scale growth, and modern cell biology investigations of monoclonal strains in laboratory conditions.</p></div>","PeriodicalId":20781,"journal":{"name":"Protist","volume":"173 5","pages":"Article 125905"},"PeriodicalIF":2.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1434461022000505/pdfft?md5=3a0e3858784e9d921f16f284c467c601&pid=1-s2.0-S1434461022000505-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10451697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01DOI: 10.1016/j.protis.2022.125904
Jan Woyzichovski , Oleg N. Shchepin , Martin Schnittler
Spore size enables dispersal in plasmodial slime molds (Myxomycetes) and is an important taxonomic character. We recorded size and the number of nuclei per spore for 39 specimens (colonies of 50–1000 sporocarps) of the nivicolous myxomycete Physarum albescens, a morphologically defined taxon with several biological species. For each colony, three sporocarps were analyzed from the same spore mount under brightfield and DAPI-fluorescence, recording ca. 14,000 spores per item. Diagrams for spore size distribution showed narrow peaks of mostly uninucleate spores. Size was highly variable within morphospecies (10.6–13.5 µm, 11–13%), biospecies (3–13%), even within spatially separated colonies of one clone (ca. 8%); but fairly constant for a colony (mean variation 0.4 µm, ca. 1.5%). ANOVA explains most of this variation by the factor locality (within all colonies: 32.7%; within a region: 21.4%), less by biospecies (13.5%), whereas the contribution of intra-colony variation was negligible (<0.1%). Two rare aberrations occur: 1) multinucleate spores and 2) oversized spores with a double or triple volume of normal spores. Both are not related to each other or limited to certain biospecies. Spore size shows high phenotypic plasticity, but the low variation within a colony points to a strong genetic background.
{"title":"High Environmentally Induced Plasticity in Spore Size and Numbers of Nuclei per Spore in Physarum albescens (Myxomycetes)","authors":"Jan Woyzichovski , Oleg N. Shchepin , Martin Schnittler","doi":"10.1016/j.protis.2022.125904","DOIUrl":"10.1016/j.protis.2022.125904","url":null,"abstract":"<div><p><span><span>Spore size enables dispersal in </span>plasmodial slime molds (Myxomycetes) and is an important taxonomic character. We recorded size and the number of nuclei per spore for 39 specimens (colonies of 50–1000 sporocarps) of the nivicolous myxomycete </span><span><em>Physarum</em><em> albescens</em></span><span>, a morphologically defined taxon with several biological species. For each colony, three sporocarps<span><span> were analyzed from the same spore mount under brightfield and DAPI-fluorescence, recording ca. 14,000 spores per item. Diagrams for spore size distribution showed narrow peaks of mostly uninucleate spores. Size was highly variable within morphospecies (10.6–13.5 µm, 11–13%), biospecies (3–13%), even within spatially separated colonies of one clone (ca. 8%); but fairly constant for a colony (mean variation 0.4 µm, ca. 1.5%). ANOVA explains most of this variation by the factor locality (within all colonies: 32.7%; within a region: 21.4%), less by biospecies (13.5%), whereas the contribution of intra-colony variation was negligible (<0.1%). Two rare aberrations occur: 1) </span>multinucleate<span> spores and 2) oversized spores with a double or triple volume of normal spores. Both are not related to each other or limited to certain biospecies. Spore size shows high phenotypic plasticity, but the low variation within a colony points to a strong genetic background.</span></span></span></p></div>","PeriodicalId":20781,"journal":{"name":"Protist","volume":"173 5","pages":"Article 125904"},"PeriodicalIF":2.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10793544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The deposition of silicified costal strips and lorica assembly in choanoflagellates is precisely linked to the cell cycle. A minority of species undergo nudiform division whereby a loricate cell divides to produce a naked daughter cell that deposits a set of costal strips and then assembles a lorica. Most species undergo tectiform division whereby a parent loricate cell produces a set of costal strips, divides and passes on the stored strips to a daughter cell that immediately assembles a lorica. Many phylogenetic analyses recover nudiform and tectiform species as sister-clades giving the impression that they are distinct evolutionary lineages. However, the tectiform species Stephanoeca diplocostata is capable of undergoing nudiform division and depositing costal strips and assembling a lorica with certain modifications in a nudiform manner. The recent discovery of a new genus, Enibas, comprising species with Stephanoeca-like loricae that undergo nudiform cell division and on phylogenetic analysis occur as a sister group to other nudiform species has drawn attention to whether there are also unique features in lorica construction. A range of Enibas loricae is illustrated and it appears that there are unique features which might be interpreted as being derived from a Stephanoeca-like ancestor.
{"title":"Significance of the Nudiform and Tectiform Modes of Silica Deposition, Lorica Assembly and Cell Division in Choanoflagellates as Exemplified by Stephanoeca diplocostata and Enibas spp.","authors":"B. Leadbeater, M. Carr","doi":"10.2139/ssrn.4152857","DOIUrl":"https://doi.org/10.2139/ssrn.4152857","url":null,"abstract":"The deposition of silicified costal strips and lorica assembly in choanoflagellates is precisely linked to the cell cycle. A minority of species undergo nudiform division whereby a loricate cell divides to produce a naked daughter cell that deposits a set of costal strips and then assembles a lorica. Most species undergo tectiform division whereby a parent loricate cell produces a set of costal strips, divides and passes on the stored strips to a daughter cell that immediately assembles a lorica. Many phylogenetic analyses recover nudiform and tectiform species as sister-clades giving the impression that they are distinct evolutionary lineages. However, the tectiform species Stephanoeca diplocostata is capable of undergoing nudiform division and depositing costal strips and assembling a lorica with certain modifications in a nudiform manner. The recent discovery of a new genus, Enibas, comprising species with Stephanoeca-like loricae that undergo nudiform cell division and on phylogenetic analysis occur as a sister group to other nudiform species has drawn attention to whether there are also unique features in lorica construction. A range of Enibas loricae is illustrated and it appears that there are unique features which might be interpreted as being derived from a Stephanoeca-like ancestor.","PeriodicalId":20781,"journal":{"name":"Protist","volume":"173 6 1","pages":"125923"},"PeriodicalIF":2.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47877328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01DOI: 10.1016/j.protis.2022.125908
Emma Filtenborg Hocke , Mahwash Jamy , Fabien Burki , C. Graham Clark , Christen Rune Stensvold
Endolimax nana is a common endobiont of the human intestine, but members of the genus have also been reported in non-human hosts and in non-intestinal organs. Limited information is available regarding the genetic diversity of Endolimax, which is necessary to delineate species, host specificity and potential differences in clinical impact on the host. Here, we used cloning of PCR products followed by Sanger sequencing and next-generation PacBio Sequencing to obtain Endolimax-related nuclear ribosomal gene sequences and undertook a phylogenetic analysis to gain additional insight into the taxonomy of Endolimax and related organisms. The new sequences confirmed that E. nana forms a discrete clade within the Archamoebae and is related to Endolimax piscium and Iodamoeba. However, we identified substantial sequence divergence within E. nana and evidence for two distinct clades, which we propose to name E. nana ribosomal lineage 1 and E. nana ribosomal lineage 2. Both of the sequencing approaches applied in the study helped us to improve our understanding of genetic diversity across Endolimax, and it is likely that wider application of next-generation sequencing technologies will facilitate the generation of Endolimax-related DNA sequence data and help complete our understanding of its phylogenetic position and intrageneric diversity.
{"title":"Unravelling the Phylogeny of a Common Intestinal Protist: Intrageneric Diversity of Endolimax","authors":"Emma Filtenborg Hocke , Mahwash Jamy , Fabien Burki , C. Graham Clark , Christen Rune Stensvold","doi":"10.1016/j.protis.2022.125908","DOIUrl":"10.1016/j.protis.2022.125908","url":null,"abstract":"<div><p><span><em>Endolimax</em><em> nana</em></span><span> is a common endobiont of the human intestine, but members of the genus have also been reported in non-human hosts and in non-intestinal organs. Limited information is available regarding the genetic diversity of </span><em>Endolimax</em><span>, which is necessary to delineate species, host specificity and potential differences in clinical impact on the host. Here, we used cloning of PCR products followed by Sanger sequencing and next-generation PacBio Sequencing to obtain </span><em>Endolimax</em><span>-related nuclear ribosomal gene sequences and undertook a phylogenetic analysis to gain additional insight into the taxonomy of </span><em>Endolimax</em> and related organisms. The new sequences confirmed that <em>E. nana</em><span> forms a discrete clade within the Archamoebae and is related to </span><em>Endolimax piscium</em> and <em>Iodamoeba</em>. However, we identified substantial sequence divergence within <em>E. nana</em> and evidence for two distinct clades, which we propose to name <em>E. nana</em><span> ribosomal lineage 1 and </span><em>E. nana</em> ribosomal lineage 2. Both of the sequencing approaches applied in the study helped us to improve our understanding of genetic diversity across <em>Endolimax</em>, and it is likely that wider application of next-generation sequencing technologies will facilitate the generation of <em>Endolimax</em><span>-related DNA sequence data and help complete our understanding of its phylogenetic position and intrageneric diversity.</span></p></div>","PeriodicalId":20781,"journal":{"name":"Protist","volume":"173 5","pages":"Article 125908"},"PeriodicalIF":2.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10813211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01DOI: 10.1016/j.protis.2022.125909
Tong Wu , Yujie Liu , Yan Liu , Borong Lu , Xiao Cao , Shuang Hao , Saleh A. AL-Farraj , Alan Warren , Tengteng Zhang , Zhe Wang
Three epibiotic Epistylis species, i.e., Epistylis weishanensis sp. nov., Epistylis daphniae Fauré-Fremiet, 1905, and Epistylis pygmaeum (Ehrenberg, 1838) Foissner et al., 1999, were investigated based on their living morphology, infraciliature, and small subunit (SSU) rDNA sequence data. Epistylis weishanensis sp. nov. is characterized by its double-layered peristomial lip, contractile vacuole located on the dorsal wall of the infundibulum, infundibular polykinety 3 (P3) composed of three equal-length rows that terminate above infundibular polykinety 1 (P1), 50–62 silverlines between the peristome and the trochal band, and about 30 silverlines between the trochal band and the scopula. Based on previous and newly obtained data for E. daphniae and E. pygmaeum, improved diagnoses and redescriptions are provided including, for the first time, data on their infraciliature. Phylogenetic analyses reveal that all three species do not group within the major clade of Epistylis, supporting the assertion that the genus Epistylis should be an assemblage of morphospecies and therefore needs to be revised.
{"title":"Integrative Studies on Three Epibiotic Epistylis Species (Protozoa, Ciliophora, Peritrichia) in Lake Weishan Wetland, Northern China, Including the Establishment of a New Species","authors":"Tong Wu , Yujie Liu , Yan Liu , Borong Lu , Xiao Cao , Shuang Hao , Saleh A. AL-Farraj , Alan Warren , Tengteng Zhang , Zhe Wang","doi":"10.1016/j.protis.2022.125909","DOIUrl":"10.1016/j.protis.2022.125909","url":null,"abstract":"<div><p>Three epibiotic <span><em>Epistylis</em></span> species, i.e., <em>Epistylis weishanensis</em> sp. nov., <em>Epistylis daphniae</em> Fauré-Fremiet, 1905, and <em>Epistylis pygmaeum</em> (Ehrenberg, 1838) Foissner et al., 1999, were investigated based on their living morphology, infraciliature, and small subunit (SSU) rDNA sequence data. <em>Epistylis weishanensis</em><span> sp. nov. is characterized by its double-layered peristomial lip, contractile vacuole located on the dorsal wall of the infundibulum, infundibular polykinety 3 (P3) composed of three equal-length rows that terminate above infundibular polykinety 1 (P1), 50–62 silverlines between the peristome and the trochal band, and about 30 silverlines between the trochal band and the scopula. Based on previous and newly obtained data for </span><em>E. daphniae</em> and <em>E. pygmaeum</em><span>, improved diagnoses and redescriptions<span> are provided including, for the first time, data on their infraciliature. Phylogenetic analyses reveal that all three species do not group within the major clade of </span></span><em>Epistylis</em>, supporting the assertion that the genus <em>Epistylis</em><span> should be an assemblage of morphospecies and therefore needs to be revised.</span></p></div>","PeriodicalId":20781,"journal":{"name":"Protist","volume":"173 5","pages":"Article 125909"},"PeriodicalIF":2.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10813654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01DOI: 10.1016/j.protis.2022.125907
Carlos F. Finlay
This is a dedicatory article to the role drawing played in the career of Bland J. Finlay FRS, written by his son. It explores some of the many diagrams Bland produced as part of his research, while reflecting on the broader influence of protozoloogical illustrations in art and architectural history.
{"title":"Illustrating the Invisible: The Role of Drawing in the Career of Bland J. Finlay","authors":"Carlos F. Finlay","doi":"10.1016/j.protis.2022.125907","DOIUrl":"10.1016/j.protis.2022.125907","url":null,"abstract":"<div><p>This is a dedicatory article to the role drawing played in the career of Bland J. Finlay FRS, written by his son. It explores some of the many diagrams Bland produced as part of his research, while reflecting on the broader influence of protozoloogical illustrations in art and architectural history.</p></div>","PeriodicalId":20781,"journal":{"name":"Protist","volume":"173 5","pages":"Article 125907"},"PeriodicalIF":2.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1434461022000529/pdfft?md5=f88193df428eb9d5ec8aa3b96d8185be&pid=1-s2.0-S1434461022000529-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40332099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With his scientific curiosity and deep understanding of unicellular organisms, Bland J. Finlay could demonstrate that water bodies as small and innocuous as "Priest Pot" in the English Lake District represent a very broad range of protists and their interactions. From this, not only the field of protistan ecology benefitted greatly, but also my personal career. Enclosed are some scientific and personal memories to say "thank you" to Bland.
{"title":"Some Personal Memories of Bland J. Finlay and Work on Protists in \"Priest Pot\".","authors":"U. Berninger","doi":"10.2139/ssrn.4208046","DOIUrl":"https://doi.org/10.2139/ssrn.4208046","url":null,"abstract":"With his scientific curiosity and deep understanding of unicellular organisms, Bland J. Finlay could demonstrate that water bodies as small and innocuous as \"Priest Pot\" in the English Lake District represent a very broad range of protists and their interactions. From this, not only the field of protistan ecology benefitted greatly, but also my personal career. Enclosed are some scientific and personal memories to say \"thank you\" to Bland.","PeriodicalId":20781,"journal":{"name":"Protist","volume":"173 6 1","pages":"125910"},"PeriodicalIF":2.5,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49473833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diverse and dynamic communities of ciliates and other microbes thrive in the natural environment, driving the functioning of aquatic ecosystems. Many microbes are present in very low numbers or are dormant in the 'seedbank', escaping detection in environmental surveys and, consequently, remaining underexplored. Here, we report an extraordinarily rare ciliate that was discovered after persistent exploration of freshwater anoxic sediments - Legendrea loyezae Fauré-Fremiet, 1908, a member of the Family Spathidiidae, Order Haptorida. In this study, we present the sixth account of the ciliate since 1908 and reveal its phylogenetic position with the first 18S rRNA data for the genus. We explain the key morphological features of the species, describing a remarkable behaviour in which the ciliate "shapeshifts'' due to its ability of controlled full extension and retraction of its tube-like tentacles. Our results shed light on the similarity of L. loyezae to another ciliate that was first described as Legendrea bellerophon, later moved under a new genus and named Thysanomorpha bellerophon. We question the validity of this taxonomic decision and, based on morphological characters and tentacle movement, we propose moving T. bellerophon back under Legendrea. This study demonstrates how continued and persistent exploration of natural habitats lead to the discovery of microbial communities and species.
{"title":"The Extraordinarily Rare Ciliate Legendrea loyezae Fauré-Fremiet, 1908 (Haptoria, Ciliophora).","authors":"James Weiss, D. Andreou, G. Esteban","doi":"10.2139/ssrn.4163417","DOIUrl":"https://doi.org/10.2139/ssrn.4163417","url":null,"abstract":"Diverse and dynamic communities of ciliates and other microbes thrive in the natural environment, driving the functioning of aquatic ecosystems. Many microbes are present in very low numbers or are dormant in the 'seedbank', escaping detection in environmental surveys and, consequently, remaining underexplored. Here, we report an extraordinarily rare ciliate that was discovered after persistent exploration of freshwater anoxic sediments - Legendrea loyezae Fauré-Fremiet, 1908, a member of the Family Spathidiidae, Order Haptorida. In this study, we present the sixth account of the ciliate since 1908 and reveal its phylogenetic position with the first 18S rRNA data for the genus. We explain the key morphological features of the species, describing a remarkable behaviour in which the ciliate \"shapeshifts'' due to its ability of controlled full extension and retraction of its tube-like tentacles. Our results shed light on the similarity of L. loyezae to another ciliate that was first described as Legendrea bellerophon, later moved under a new genus and named Thysanomorpha bellerophon. We question the validity of this taxonomic decision and, based on morphological characters and tentacle movement, we propose moving T. bellerophon back under Legendrea. This study demonstrates how continued and persistent exploration of natural habitats lead to the discovery of microbial communities and species.","PeriodicalId":20781,"journal":{"name":"Protist","volume":"16 4","pages":"125912"},"PeriodicalIF":2.5,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41255970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.1016/j.protis.2022.125885
Artem O. Belyaev , Dmitriy G. Zagumyonnyi , Alexander P. Mylnikov , Denis V. Tikhonenkov
Kinetoplastids represent a stockpile of undiscovered protist diversity. Free-living members of this group have been studied less intensively compared to their important parasitic relatives. We have isolated a new soil-dwelling bacteriotrophic kinetoplastid, which is described here as a new genus and new species, Avlakibodo gracilis gen. et sp. nov. Phylogenetic analysis of 18S rRNA genes showed highly supported sister relationship of this protist with the clade uniting Neobodo borokensis, Neobodo curvifilus, Neobodo saliens, Actuariola framvarensis, some Neobodo designis isolates and several environmental sequences, with high statistical support. We have reconstructed the organization of the microtubular cytoskeleton of A. gracilis and determined the origins of the main bands of microtubules. Characteristic ultrastructural features include cytostome associated microtubules (FAS), cytopharynx associated additional microtubules (CMT), microtubular prism (nemadesm) and three microtubular roots (R1, R2 and R3).
着丝质体代表了未被发现的原生生物多样性的储备。与它们重要的寄生亲戚相比,对这一群体的自由生活成员的研究不那么深入。我们分离到了一个新的土壤细菌营养动胞体(Avlakibodo gracilis gen. et sp. 11),本文将其描述为一个新属新种。系统发育分析表明,该原生生物与Neobodo borokensis、Neobodo curvifilus、Neobodo saliens、Actuariola framvarensis、Neobodo designis的一些分离株和一些环境序列具有高度的统计学支持。我们重建了薄叶草微管细胞骨架的组织结构,并确定了微管主要带的来源。典型的超微结构特征包括细胞壁相关微管(FAS)、细胞咽部相关附加微管(CMT)、微管棱镜(nemadesm)和三个微管根(R1、R2和R3)。
{"title":"The Morphology, Ultrastructure and Molecular Phylogeny of a New Soil-Dwelling Kinetoplastid Avlakibodo gracilis gen. et sp. nov. (Neobodonida; Kinetoplastea)","authors":"Artem O. Belyaev , Dmitriy G. Zagumyonnyi , Alexander P. Mylnikov , Denis V. Tikhonenkov","doi":"10.1016/j.protis.2022.125885","DOIUrl":"10.1016/j.protis.2022.125885","url":null,"abstract":"<div><p><span><span>Kinetoplastids<span> represent a stockpile of undiscovered protist diversity. Free-living members of this group have been studied less intensively compared to their important parasitic relatives. We have isolated a new soil-dwelling bacteriotrophic kinetoplastid, which is described here as a </span></span>new genus and new species, </span><em>Avlakibodo gracilis</em><span> gen. et sp. nov. Phylogenetic analysis<span> of 18S rRNA genes showed highly supported sister relationship of this protist with the clade uniting </span></span><em>Neobodo borokensis</em>, <em>Neobodo curvifilus</em>, <em>Neobodo saliens</em>, <em>Actuariola framvarensis</em>, some <em>Neobodo designis</em><span> isolates and several environmental sequences, with high statistical support. We have reconstructed the organization of the microtubular cytoskeleton of </span><em>A. gracilis</em><span> and determined the origins of the main bands of microtubules. Characteristic ultrastructural features include cytostome associated microtubules (FAS), cytopharynx associated additional microtubules (CMT), microtubular prism (nemadesm) and three microtubular roots (R1, R2 and R3).</span></p></div>","PeriodicalId":20781,"journal":{"name":"Protist","volume":"173 4","pages":"Article 125885"},"PeriodicalIF":2.5,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42916265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}