首页 > 最新文献

Radiology. Imaging cancer最新文献

英文 中文
Screening Contrast-enhanced Mammography: Assessment of Patient Experience. 对比增强乳腺 X 射线摄影筛查:患者体验评估。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-09-01 DOI: 10.1148/rycan.249017
Sofia Fung-Lee, Bonnie N Joe
{"title":"Screening Contrast-enhanced Mammography: Assessment of Patient Experience.","authors":"Sofia Fung-Lee, Bonnie N Joe","doi":"10.1148/rycan.249017","DOIUrl":"10.1148/rycan.249017","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growing Teratoma Syndrome Involving the Heart. 涉及心脏的生长畸胎瘤综合征
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-09-01 DOI: 10.1148/rycan.240116
Rory L Cochran, Philip J Saylor, Brian B Ghoshhajra, Mukesh G Harisinghani
{"title":"Growing Teratoma Syndrome Involving the Heart.","authors":"Rory L Cochran, Philip J Saylor, Brian B Ghoshhajra, Mukesh G Harisinghani","doi":"10.1148/rycan.240116","DOIUrl":"10.1148/rycan.240116","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reversal of National Coverage Determination for MR Spectroscopy Increases Reimbursement Rates. 核磁共振波谱检查国家承保范围决定的逆转提高了报销率。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-09-01 DOI: 10.1148/rycan.240230
Candace C Fleischer, Alexander P Lin, Jason W Allen
{"title":"Reversal of National Coverage Determination for MR Spectroscopy Increases Reimbursement Rates.","authors":"Candace C Fleischer, Alexander P Lin, Jason W Allen","doi":"10.1148/rycan.240230","DOIUrl":"10.1148/rycan.240230","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel PET Radiotracer for Detection of Neuroendocrine Tumors of the Lung and Prostate. 用于检测肺部和前列腺神经内分泌肿瘤的新型 PET 放射性示踪剂。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-09-01 DOI: 10.1148/rycan.249019
Saumya Gurbani, Hui Mao
{"title":"A Novel PET Radiotracer for Detection of Neuroendocrine Tumors of the Lung and Prostate.","authors":"Saumya Gurbani, Hui Mao","doi":"10.1148/rycan.249019","DOIUrl":"10.1148/rycan.249019","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intraprocedural Diffusion-weighted Imaging for Predicting Ablation Zone during MRI-guided Focused Ultrasound of Prostate Cancer. 用于预测磁共振成像引导下前列腺癌聚焦超声消融区的术中弥散加权成像。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-09-01 DOI: 10.1148/rycan.240009
Rachel R Bitton, Wei Shao, Yosef Chodakeiwitz, Ryan L Brunsing, Geoffery Sonn, Mirabela Rusu, Pejman Ghanouni

Purpose To compare diffusion-weighted imaging (DWI) with thermal dosimetry as a noncontrast method to predict ablation margins in individuals with prostate cancer treated with MRI-guided focused ultrasound (MRgFUS) ablation. Materials and Methods This secondary analysis of a prospective trial (ClinicalTrials.gov no. NCT01657942) included 17 participants (mean age, 64 years ± 6 [SD]; all male) who were treated for prostate cancer using MRgFUS in whom DWI was performed immediately after treatment. Ablation contours from computed thermal dosimetry and DWI as drawn by two blinded radiologists were compared against the reference standard of ablation assessment, posttreatment contrast-enhanced nonperfused volume (NPV) contours. The ability of each method to predict the ablation zone was analyzed quantitively using Dice similarity coefficients (DSCs) and mean Hausdorff distances (mHDs). Results DWI revealed a hyperintense rim at the margin of the ablation zone. While DWI accurately helped predict treatment margins, thermal dose contours underestimated the extent of the ablation zone compared with the T1-weighted NPV imaging reference standard. Quantitatively, contour assessment between methods showed that DWI-drawn contours matched postcontrast NPV contours (mean DSC = 0.84 ± 0.05 for DWI, mHD = 0.27 mm ± 0.13) better than the thermal dose contours did (mean DSC = 0.64 ± 0.12, mHD = 1.53 mm ± 1.20) (P < .001). Conclusion This study demonstrates that DWI, which can visualize the ablation zone directly, is a promising noncontrast method that is robust to treatment-related bulk motion compared with thermal dosimetry and correlates better than thermal dosimetry with the reference standard T1-weighted NPV. Keywords: Interventional-Body, Ultrasound-High-Intensity Focused (HIFU), Genital/Reproductive, Prostate, Oncology, Imaging Sequences, MRI-guided Focused Ultrasound, MR Thermometry, Diffusionweighted Imaging, Prostate Cancer ClinicalTrials.gov Identifier no. NCT01657942 Supplemental material is available for this article. © RSNA, 2024.

目的 比较弥散加权成像 (DWI) 和热剂量测定作为一种非对比方法,对接受 MRI 引导下聚焦超声 (MRgFUS) 消融术治疗的前列腺癌患者的消融边缘进行预测。材料与方法 这是对一项前瞻性试验(ClinicalTrials.gov 编号:NCT01657942)的二次分析,共纳入了 17 名使用 MRgFUS 治疗前列腺癌的参与者(平均年龄为 64 岁 ± 6 [SD];均为男性),他们在治疗后立即进行了 DWI 检查。由两名盲人放射科医生绘制的计算热剂量计和 DWI 消融轮廓与消融评估的参考标准--治疗后对比增强非灌注容积 (NPV) 轮廓进行了比较。使用戴斯相似系数(DSC)和平均豪斯多夫距离(mHD)对每种方法预测消融区的能力进行了定量分析。结果 DWI 显示消融区边缘有一个高强度边缘。虽然 DWI 能准确预测治疗边缘,但与 T1 加权 NPV 成像参考标准相比,热剂量轮廓低估了消融区的范围。定量方面,不同方法之间的等高线评估显示,DWI 绘制的等高线与对比后 NPV 等高线(DWI 的平均 DSC = 0.84 ± 0.05,mHD = 0.27 mm ± 0.13)的匹配程度优于热剂量等高线(平均 DSC = 0.64 ± 0.12,mHD = 1.53 mm ± 1.20)(P < .001)。结论 本研究表明,DWI 可以直接观察消融区,是一种很有前途的非对比方法,与热剂量测定法相比,它对治疗相关的体动具有很强的鲁棒性,与热剂量测定法相比,它与参考标准 T1 加权 NPV 的相关性更好。关键词介入-全身 超声-高强度聚焦(HIFU) 生殖器/前列腺 肿瘤成像序列 MRI引导聚焦超声 MR热测量 扩散加权成像 前列腺癌 ClinicalTrials.gov Identifier no.本文有补充材料。© RSNA, 2024.
{"title":"Intraprocedural Diffusion-weighted Imaging for Predicting Ablation Zone during MRI-guided Focused Ultrasound of Prostate Cancer.","authors":"Rachel R Bitton, Wei Shao, Yosef Chodakeiwitz, Ryan L Brunsing, Geoffery Sonn, Mirabela Rusu, Pejman Ghanouni","doi":"10.1148/rycan.240009","DOIUrl":"10.1148/rycan.240009","url":null,"abstract":"<p><p>Purpose To compare diffusion-weighted imaging (DWI) with thermal dosimetry as a noncontrast method to predict ablation margins in individuals with prostate cancer treated with MRI-guided focused ultrasound (MRgFUS) ablation. Materials and Methods This secondary analysis of a prospective trial (ClinicalTrials.gov no. NCT01657942) included 17 participants (mean age, 64 years ± 6 [SD]; all male) who were treated for prostate cancer using MRgFUS in whom DWI was performed immediately after treatment. Ablation contours from computed thermal dosimetry and DWI as drawn by two blinded radiologists were compared against the reference standard of ablation assessment, posttreatment contrast-enhanced nonperfused volume (NPV) contours. The ability of each method to predict the ablation zone was analyzed quantitively using Dice similarity coefficients (DSCs) and mean Hausdorff distances (mHDs). Results DWI revealed a hyperintense rim at the margin of the ablation zone. While DWI accurately helped predict treatment margins, thermal dose contours underestimated the extent of the ablation zone compared with the T1-weighted NPV imaging reference standard. Quantitatively, contour assessment between methods showed that DWI-drawn contours matched postcontrast NPV contours (mean DSC = 0.84 ± 0.05 for DWI, mHD = 0.27 mm ± 0.13) better than the thermal dose contours did (mean DSC = 0.64 ± 0.12, mHD = 1.53 mm ± 1.20) (<i>P</i> < .001). Conclusion This study demonstrates that DWI, which can visualize the ablation zone directly, is a promising noncontrast method that is robust to treatment-related bulk motion compared with thermal dosimetry and correlates better than thermal dosimetry with the reference standard T1-weighted NPV. <b>Keywords:</b> Interventional-Body, Ultrasound-High-Intensity Focused (HIFU), Genital/Reproductive, Prostate, Oncology, Imaging Sequences, MRI-guided Focused Ultrasound, MR Thermometry, Diffusionweighted Imaging, Prostate Cancer ClinicalTrials.gov Identifier no. NCT01657942 <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patient Characteristics Impact False Positives in AI Interpretation of True-Negative Screening Breast Tomosynthesis Examinations. 患者特征对人工智能解读真阴性乳腺断层合成检查中假阳性的影响。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-09-01 DOI: 10.1148/rycan.249015
Nour Homsi, Maggie Chung
{"title":"Patient Characteristics Impact False Positives in AI Interpretation of True-Negative Screening Breast Tomosynthesis Examinations.","authors":"Nour Homsi, Maggie Chung","doi":"10.1148/rycan.249015","DOIUrl":"10.1148/rycan.249015","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosai-Dorfman Disease Mimicking Metastatic Disease. 模仿转移性疾病的罗赛-多夫曼病
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-09-01 DOI: 10.1148/rycan.240109
Sofia Velasco, Santiago Aristizábal-Ortiz, Angela Guarnizo
{"title":"Rosai-Dorfman Disease Mimicking Metastatic Disease.","authors":"Sofia Velasco, Santiago Aristizábal-Ortiz, Angela Guarnizo","doi":"10.1148/rycan.240109","DOIUrl":"10.1148/rycan.240109","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-enhanced Mammography With Digital Breast Tomosynthesis for Breast Cancer Detection: Clinical Value and Comparison With Human Performance. 用数字乳腺断层合成技术进行乳腺癌检测的人工智能增强型乳腺 X 线照相术:临床价值及与人类表现的比较。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-07-01 DOI: 10.1148/rycan.230149
Daphne Resch, Roberto Lo Gullo, Jonas Teuwen, Friedrich Semturs, Johann Hummel, Alexandra Resch, Katja Pinker

Purpose To compare two deep learning-based commercially available artificial intelligence (AI) systems for mammography with digital breast tomosynthesis (DBT) and benchmark them against the performance of radiologists. Materials and Methods This retrospective study included consecutive asymptomatic patients who underwent mammography with DBT (2019-2020). Two AI systems (Transpara 1.7.0 and ProFound AI 3.0) were used to evaluate the DBT examinations. The systems were compared using receiver operating characteristic (ROC) analysis to calculate the area under the ROC curve (AUC) for detecting malignancy overall and within subgroups based on mammographic breast density. Breast Imaging Reporting and Data System results obtained from standard-of-care human double-reading were compared against AI results with use of the DeLong test. Results Of 419 female patients (median age, 60 years [IQR, 52-70 years]) included, 58 had histologically proven breast cancer. The AUC was 0.86 (95% CI: 0.85, 0.91), 0.93 (95% CI: 0.90, 0.95), and 0.98 (95% CI: 0.96, 0.99) for Transpara, ProFound AI, and human double-reading, respectively. For Transpara, a rule-out criterion of score 7 or lower yielded 100% (95% CI: 94.2, 100.0) sensitivity and 60.9% (95% CI: 55.7, 66.0) specificity. The rule-in criterion of higher than score 9 yielded 96.6% sensitivity (95% CI: 88.1, 99.6) and 78.1% specificity (95% CI: 73.8, 82.5). For ProFound AI, a rule-out criterion of lower than score 51 yielded 100% sensitivity (95% CI: 93.8, 100) and 67.0% specificity (95% CI: 62.2, 72.1). The rule-in criterion of higher than score 69 yielded 93.1% (95% CI: 83.3, 98.1) sensitivity and 82.0% (95% CI: 77.9, 86.1) specificity. Conclusion Both AI systems showed high performance in breast cancer detection but lower performance compared with human double-reading. Keywords: Mammography, Breast, Oncology, Artificial Intelligence, Deep Learning, Digital Breast Tomosynthesis © RSNA, 2024.

目的 比较两种基于深度学习的市售人工智能(AI)系统,用于数字乳腺断层合成(DBT)乳腺放射摄影,并将它们与放射科医生的表现进行比较。材料与方法 这项回顾性研究纳入了连续接受乳腺 X 射线摄影与 DBT 的无症状患者(2019-2020 年)。两套人工智能系统(Transpara 1.7.0 和 ProFound AI 3.0)用于评估 DBT 检查。使用接收器操作特征(ROC)分析对这两种系统进行了比较,以计算基于乳腺X线照相术乳腺密度的总体和亚组内检测恶性肿瘤的ROC曲线下面积(AUC)。乳腺成像报告和数据系统(Breast Imaging Reporting and Data System)的标准人工双读结果与人工智能(AI)的DeLong检验结果进行了比较。结果 在纳入的 419 名女性患者(中位年龄 60 岁 [IQR,52-70 岁])中,有 58 人经组织学证实患有乳腺癌。Transpara、ProFound AI和人类双读的AUC分别为0.86(95% CI:0.85,0.91)、0.93(95% CI:0.90,0.95)和0.98(95% CI:0.96,0.99)。对于 Transpara,7 分或更低的排除标准可产生 100% (95% CI: 94.2, 100.0) 的灵敏度和 60.9% (95% CI: 55.7, 66.0) 的特异性。高于 9 分的规则输入标准产生了 96.6% 的灵敏度(95% CI:88.1, 99.6)和 78.1% 的特异性(95% CI:73.8, 82.5)。对于 ProFound AI,低于 51 分的排除标准可产生 100% 的灵敏度(95% CI:93.8, 100)和 67.0% 的特异性(95% CI:62.2, 72.1)。以高于 69 分为入选标准,灵敏度为 93.1%(95% CI:83.3,98.1),特异度为 82.0%(95% CI:77.9,86.1)。结论 两种人工智能系统在乳腺癌检测中都表现出较高的性能,但与人工双读相比性能较低。关键词乳腺放射摄影术、乳腺、肿瘤学、人工智能、深度学习、数字乳腺断层扫描 © RSNA, 2024.
{"title":"AI-enhanced Mammography With Digital Breast Tomosynthesis for Breast Cancer Detection: Clinical Value and Comparison With Human Performance.","authors":"Daphne Resch, Roberto Lo Gullo, Jonas Teuwen, Friedrich Semturs, Johann Hummel, Alexandra Resch, Katja Pinker","doi":"10.1148/rycan.230149","DOIUrl":"10.1148/rycan.230149","url":null,"abstract":"<p><p>Purpose To compare two deep learning-based commercially available artificial intelligence (AI) systems for mammography with digital breast tomosynthesis (DBT) and benchmark them against the performance of radiologists. Materials and Methods This retrospective study included consecutive asymptomatic patients who underwent mammography with DBT (2019-2020). Two AI systems (Transpara 1.7.0 and ProFound AI 3.0) were used to evaluate the DBT examinations. The systems were compared using receiver operating characteristic (ROC) analysis to calculate the area under the ROC curve (AUC) for detecting malignancy overall and within subgroups based on mammographic breast density. Breast Imaging Reporting and Data System results obtained from standard-of-care human double-reading were compared against AI results with use of the DeLong test. Results Of 419 female patients (median age, 60 years [IQR, 52-70 years]) included, 58 had histologically proven breast cancer. The AUC was 0.86 (95% CI: 0.85, 0.91), 0.93 (95% CI: 0.90, 0.95), and 0.98 (95% CI: 0.96, 0.99) for Transpara, ProFound AI, and human double-reading, respectively. For Transpara, a rule-out criterion of score 7 or lower yielded 100% (95% CI: 94.2, 100.0) sensitivity and 60.9% (95% CI: 55.7, 66.0) specificity. The rule-in criterion of higher than score 9 yielded 96.6% sensitivity (95% CI: 88.1, 99.6) and 78.1% specificity (95% CI: 73.8, 82.5). For ProFound AI, a rule-out criterion of lower than score 51 yielded 100% sensitivity (95% CI: 93.8, 100) and 67.0% specificity (95% CI: 62.2, 72.1). The rule-in criterion of higher than score 69 yielded 93.1% (95% CI: 83.3, 98.1) sensitivity and 82.0% (95% CI: 77.9, 86.1) specificity. Conclusion Both AI systems showed high performance in breast cancer detection but lower performance compared with human double-reading. <b>Keywords:</b> Mammography, Breast, Oncology, Artificial Intelligence, Deep Learning, Digital Breast Tomosynthesis © RSNA, 2024.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcified Primary Signet Ring Cell Carcinoma of the Colon with Metastases. 结肠钙化性原发性信号环细胞癌伴转移。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-07-01 DOI: 10.1148/rycan.240079
Sanil Garg, Amit Gupta, Krithika Rangarajan, Rajni Yadav, Mukesh Kumar
{"title":"Calcified Primary Signet Ring Cell Carcinoma of the Colon with Metastases.","authors":"Sanil Garg, Amit Gupta, Krithika Rangarajan, Rajni Yadav, Mukesh Kumar","doi":"10.1148/rycan.240079","DOIUrl":"10.1148/rycan.240079","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative Advances in Molecular Breast Imaging Biopsy. 分子乳腺成像活检的创新进展。
IF 5.6 Q1 ONCOLOGY Pub Date : 2024-07-01 DOI: 10.1148/rycan.240135
Amy M Fowler
{"title":"Innovative Advances in Molecular Breast Imaging Biopsy.","authors":"Amy M Fowler","doi":"10.1148/rycan.240135","DOIUrl":"10.1148/rycan.240135","url":null,"abstract":"","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Radiology. Imaging cancer
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1