Pub Date : 2024-08-20DOI: 10.1088/1538-3873/ad692d
Yeon-Ho Choi, Myeong-Gu Park, Kang-Min Kim, Jae-Rim Koo, Tae-Yang Bang, Chan Park, Jeong-Gyun Jang, Inwoo Han, Bi-Ho Jang, Jong Ung Lee, Ueejeong Jeong, Byeong-Cheol Lee
The SPECtrophotometer for TRansmission spectroscopy of exoplanets (SPECTR) is a new low-resolution optical (3800–6850 Å) spectrophotometer installed at the Bohyunsan Optical Astronomy Observatory 1.8 m telescope. SPECTR is designed for observing the transmission spectra of transiting exoplanets. Unique features of SPECTR are its long slit length of 10′ which facilitates observing the target and the comparison star simultaneously, and its wide slit width to minimize slit losses. SPECTR will be used to survey exoplanets, such as those identified by the Transiting Exoplanet Survey Satellite, providing information about their radii across the wavelength range. In this paper, we present the design of SPECTR and the observational results of the partial transit of HD 189733 b and a full transit of Qatar-8 b. Analyses show the SPECTR’s capability on the white light curves with an accuracy of one ppt. The transmission spectrum of HD 189733 b shows general agreement with previous studies.
用于系外行星透射光谱分析的分光光度计(SPECTR)是安装在宝云山光学天文观测台 1.8 米望远镜上的新型低分辨率光学分光光度计(3800-6850 Å)。SPECTR 专为观测凌日系外行星的透射光谱而设计。SPECTR 的独特之处在于其长达 10′的狭缝长度便于同时观测目标和对比恒星,其宽大的狭缝宽度可最大限度地减少狭缝损耗。SPECTR 将用于巡天系外行星,例如那些由凌日系外行星巡天卫星发现的系外行星,提供其在整个波长范围内的半径信息。本文介绍了 SPECTR 的设计以及 HD 189733 b 部分凌日和 Qatar-8 b 全部凌日的观测结果。HD 189733 b 的透射光谱与以前的研究结果基本一致。
{"title":"SPECtrophotometer for TRansmission Spectroscopy of Exoplanets (SPECTR)","authors":"Yeon-Ho Choi, Myeong-Gu Park, Kang-Min Kim, Jae-Rim Koo, Tae-Yang Bang, Chan Park, Jeong-Gyun Jang, Inwoo Han, Bi-Ho Jang, Jong Ung Lee, Ueejeong Jeong, Byeong-Cheol Lee","doi":"10.1088/1538-3873/ad692d","DOIUrl":"https://doi.org/10.1088/1538-3873/ad692d","url":null,"abstract":"The SPECtrophotometer for TRansmission spectroscopy of exoplanets (SPECTR) is a new low-resolution optical (3800–6850 Å) spectrophotometer installed at the Bohyunsan Optical Astronomy Observatory 1.8 m telescope. SPECTR is designed for observing the transmission spectra of transiting exoplanets. Unique features of SPECTR are its long slit length of 10′ which facilitates observing the target and the comparison star simultaneously, and its wide slit width to minimize slit losses. SPECTR will be used to survey exoplanets, such as those identified by the Transiting Exoplanet Survey Satellite, providing information about their radii across the wavelength range. In this paper, we present the design of SPECTR and the observational results of the partial transit of HD 189733 b and a full transit of Qatar-8 b. Analyses show the SPECTR’s capability on the white light curves with an accuracy of one ppt. The transmission spectrum of HD 189733 b shows general agreement with previous studies.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"152 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1088/1538-3873/ad68a4
Aswin Suresh, Viraj Karambelkar, Mansi M. Kasliwal, Michael C. B. Ashley, Kishalay De, Matthew J. Hankins, Anna M. Moore, Jamie Soon, Roberto Soria, Tony Travouillon, Kayton K. Truong
Long Period Variables (LPVs) are stars with periods of several hundred days, representing the late, dust-enshrouded phase of stellar evolution in low to intermediate mass stars. In this paper, we present a catalog of 154,755 LPVs using near-IR lightcurves from the Palomar Gattini-IR (PGIR) survey. PGIR has been surveying the entire accessible northern sky (δ > −28°) in the J-band at a cadence of 2–3 days since 2018 September, and has produced J-band lightcurves for more than 60 million sources. We used a gradient-boosted decision tree classifier trained on a comprehensive feature set extracted from PGIR lightcurves to search for LPVs in this data set. We developed a parallelized and optimized code to extract features at a rate of ∼0.1 s per lightcurve. Our model can successfully distinguish LPVs from other stars with a true positive rate of 95%. Cross-matching with known LPVs, we find 70,369 (∼46%) new LPVs in our catalog.
{"title":"An Automated Catalog of Long Period Variables using Infrared Lightcurves from Palomar Gattini-IR","authors":"Aswin Suresh, Viraj Karambelkar, Mansi M. Kasliwal, Michael C. B. Ashley, Kishalay De, Matthew J. Hankins, Anna M. Moore, Jamie Soon, Roberto Soria, Tony Travouillon, Kayton K. Truong","doi":"10.1088/1538-3873/ad68a4","DOIUrl":"https://doi.org/10.1088/1538-3873/ad68a4","url":null,"abstract":"Long Period Variables (LPVs) are stars with periods of several hundred days, representing the late, dust-enshrouded phase of stellar evolution in low to intermediate mass stars. In this paper, we present a catalog of 154,755 LPVs using near-IR lightcurves from the Palomar Gattini-IR (PGIR) survey. PGIR has been surveying the entire accessible northern sky (<italic toggle=\"yes\">δ</italic> > −28°) in the <italic toggle=\"yes\">J</italic>-band at a cadence of 2–3 days since 2018 September, and has produced <italic toggle=\"yes\">J</italic>-band lightcurves for more than 60 million sources. We used a gradient-boosted decision tree classifier trained on a comprehensive feature set extracted from PGIR lightcurves to search for LPVs in this data set. We developed a parallelized and optimized code to extract features at a rate of ∼0.1 s per lightcurve. Our model can successfully distinguish LPVs from other stars with a true positive rate of 95%. Cross-matching with known LPVs, we find 70,369 (∼46%) new LPVs in our catalog.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"34 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The groundbreaking detection of gravitational waves (GWs) has ushered in a new era of astronomical observation, granting us access to cosmic phenomena that are imperceptible to electromagnetic waves. The inherently weak GW signals coupled with the substantial uncertainties in source localization pose significant challenges to the field of astronomy. In this paper, we introduce innovative strategies to enhance the efficiency of observing electromagnetic counterparts to GW events, thereby unlocking further secrets of the cosmos. We present a novel technique for designing observation targets and establishing priorities, progressing from the epicenter to the periphery within the boundaries of the GW error sky region. This method has significantly reduced the average slewing distance of telescopes by 41% compared to traditional methods, thus enhancing observational efficiency. Additionally, we have developed a collaborative observation strategy for telescope networks, allocating observation targets based on the field-of-view (FOV) sizes of individual telescopes. This ensures comprehensive coverage without redundancy, allowing a network of four telescopes to cover a sky area and accumulate observation probability more than four times that of a single telescope operating independently over an equivalent period. Building upon these strategies, we have significantly upgraded GWOPS, the GW Follow-up Observation Planning System developed by the China-VO team, to provide precise observational planning for large FOV (greater than 1 square degree) telescope networks. The system also features a web-based user interface that presents the GW error sky area and observation planning results in a graphical format, significantly improving user interaction and experience. The research presented herein equips astronomers with a robust toolkit, advancing the efficiency of searching for and studying electromagnetic counterparts to GW events, and heralding new frontiers in the research of astrophysics and cosmology.
{"title":"Enhancing GWOPS Capabilities for Coordinated Multi-Telescope Detection of Gravitational Wave Electromagnetic Counterparts","authors":"Penghui Ma, Yunfei Xu, Jingwei Hu, Zhen Zhang, Liang Ge, Min He, Shanshan Li, Linying Mi, Changhua Li, Dongwei Fan, Chenzhou Cui","doi":"10.1088/1538-3873/ad6710","DOIUrl":"https://doi.org/10.1088/1538-3873/ad6710","url":null,"abstract":"The groundbreaking detection of gravitational waves (GWs) has ushered in a new era of astronomical observation, granting us access to cosmic phenomena that are imperceptible to electromagnetic waves. The inherently weak GW signals coupled with the substantial uncertainties in source localization pose significant challenges to the field of astronomy. In this paper, we introduce innovative strategies to enhance the efficiency of observing electromagnetic counterparts to GW events, thereby unlocking further secrets of the cosmos. We present a novel technique for designing observation targets and establishing priorities, progressing from the epicenter to the periphery within the boundaries of the GW error sky region. This method has significantly reduced the average slewing distance of telescopes by 41% compared to traditional methods, thus enhancing observational efficiency. Additionally, we have developed a collaborative observation strategy for telescope networks, allocating observation targets based on the field-of-view (FOV) sizes of individual telescopes. This ensures comprehensive coverage without redundancy, allowing a network of four telescopes to cover a sky area and accumulate observation probability more than four times that of a single telescope operating independently over an equivalent period. Building upon these strategies, we have significantly upgraded GWOPS, the GW Follow-up Observation Planning System developed by the China-VO team, to provide precise observational planning for large FOV (greater than 1 square degree) telescope networks. The system also features a web-based user interface that presents the GW error sky area and observation planning results in a graphical format, significantly improving user interaction and experience. The research presented herein equips astronomers with a robust toolkit, advancing the efficiency of searching for and studying electromagnetic counterparts to GW events, and heralding new frontiers in the research of astrophysics and cosmology.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"21 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Astrometry from Gaia DR3 has enabled the discovery of a sample of 3000+ binaries containing white dwarfs (WD) and main-sequence (MS) stars in relatively wide orbits, with orbital periods P