Pub Date : 2024-02-20DOI: 10.1088/1538-3873/ad119f
Leo Kamgar, Kevin France, Allison Youngblood
The physical and chemical properties of planetary atmospheres are affected by temporal evolution of ultraviolet (UV) radiation inputs from their host stars at all time scales. While studies of X-ray/UV flare properties and long-term stellar evolution of exoplanet host stars have provided new constraints regarding stellar inputs to exoplanetary systems, the UV temporal variability of cool stars on the timescale of stellar cycles remains largely unexplored. To address this gap in our understanding of the UV temporal variability of cool stars, we analyze far-ultraviolet (FUV) emission lines of ions that trace the chromosphere and transition region of nearby stars (C <sc>ii</sc>, Si <sc>iii</sc>, Si <sc>iv</sc>, and N <sc>v</sc>; formation temperatures ∼ 20–150 kK) using data from the Hubble Space Telescope (HST) and International Ultraviolet Explorer (IUE) archives spanning temporal baselines of months to years. We select 33 unique stars of spectral types F-M with observing campaigns spanning over a year, and create ionic light curves to evaluate the characteristic variability of cool stars on such timescales. Screening for large flare events, we observe that the relative variability of FUV light curves decreases with increasing stellar effective temperature, from 30% to 70% variability for M-type stars to <30% variability for F and G-type stars. We also observe a weak trend in the temporal variability with the Ca <sc>ii</sc>