Pub Date : 2024-02-28DOI: 10.1186/s12953-023-00226-5
Hui-Su Kim, Je-Yoel Cho
Objective: Numerous evidence has highlighted the differences between primary tumors and metastases. Nonetheless, the differences in exosomal proteins derived from primary tumor and metastases remain elusive. Here, we aimed to identify differentially expressed exosomal proteins from primary canine mammary gland tumor and metastases to understand how they shape their own tumor microenvironment.
Methods: We clearly distinguished primary canine mammary gland tumors (CHMp) from metastases (CHMm) and profiled the proteins within their secreted exosomes using LC-MS/MS. Moreover, the abundance of glycolysis enzymes (GPI, LDHA) in CHMp exosome was verified with Western blotting, To broaden the scope, we extended to human colorectal cancer-derived exosomes (SW480 vs. SW620) for comparison.
Results: We identified significant differences in 87 and 65 proteins derived from CHMp and CHMm, respectively. Notably, glycolysis enzymes (GPI, LDHA, LDHB, TPI1, and ALDOA) showed specific enrichment in exosomes from the primary tumor.
Conclusion: We observed significant differences in the cellular proteome between primary tumors and metastases, and intriguingly, we identified a parallel heterogeneity the protein composition of exosomes. Specifically, we reported that glycolysis enzymes were significantly enriched in CHMp exosomes compared to CHMm exosomes. We further demonstrated that this quantitative difference in glycolysis enzymes persisted across primary and metastases, extending to human colorectal cancer-derived exosomes (SW480 vs. SW620). Our findings of the specific enrichment of glycolysis enzymes in primary tumor-derived exosomes contribute to a better understanding of tumor microenvironment modulation and heterogeneity between primary tumors and metastases.
{"title":"Exosome proteomes reveal glycolysis-related enzyme enrichment in primary canine mammary gland tumor compared to metastases.","authors":"Hui-Su Kim, Je-Yoel Cho","doi":"10.1186/s12953-023-00226-5","DOIUrl":"10.1186/s12953-023-00226-5","url":null,"abstract":"<p><strong>Objective: </strong>Numerous evidence has highlighted the differences between primary tumors and metastases. Nonetheless, the differences in exosomal proteins derived from primary tumor and metastases remain elusive. Here, we aimed to identify differentially expressed exosomal proteins from primary canine mammary gland tumor and metastases to understand how they shape their own tumor microenvironment.</p><p><strong>Methods: </strong>We clearly distinguished primary canine mammary gland tumors (CHMp) from metastases (CHMm) and profiled the proteins within their secreted exosomes using LC-MS/MS. Moreover, the abundance of glycolysis enzymes (GPI, LDHA) in CHMp exosome was verified with Western blotting, To broaden the scope, we extended to human colorectal cancer-derived exosomes (SW480 vs. SW620) for comparison.</p><p><strong>Results: </strong>We identified significant differences in 87 and 65 proteins derived from CHMp and CHMm, respectively. Notably, glycolysis enzymes (GPI, LDHA, LDHB, TPI1, and ALDOA) showed specific enrichment in exosomes from the primary tumor.</p><p><strong>Conclusion: </strong>We observed significant differences in the cellular proteome between primary tumors and metastases, and intriguingly, we identified a parallel heterogeneity the protein composition of exosomes. Specifically, we reported that glycolysis enzymes were significantly enriched in CHMp exosomes compared to CHMm exosomes. We further demonstrated that this quantitative difference in glycolysis enzymes persisted across primary and metastases, extending to human colorectal cancer-derived exosomes (SW480 vs. SW620). Our findings of the specific enrichment of glycolysis enzymes in primary tumor-derived exosomes contribute to a better understanding of tumor microenvironment modulation and heterogeneity between primary tumors and metastases.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"22 1","pages":"4"},"PeriodicalIF":2.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-26DOI: 10.1186/s12953-024-00227-y
Nima Haji Begli, Cora Freund, Karl-Heinz Weiss, Daniel Gotthardt, Andreas Wannhoff
Background: The role of platelets in disease progression as well as the function of platelets as part of the haemostatic and immunological system in patients with liver cirrhosis is only incompletely understood. This is partly due to difficulties in assessing platelet function. Proteome analyses of platelets have been used to further investigate the role of platelets in other diseases.
Aim: To assess possible changes in the platelet proteome during different stages of alcohol induced liver cirrhosis compared to healthy donors.
Patients and methods: A 45 ml blood sample was drawn from 18 participants aged 18-80 years evenly divided into three groups of healthy donors, patients with less advanced alcohol induced liver cirrhosis (Child-Pugh < 7) and patients with advanced liver cirrhosis (Child-Pugh > 10). The blood was processed to isolate platelets and perform subsequent two-dimensional gel-electrophoresis using a SYPRO™ Ruby dye. After computational analysation significantly in- or decreased protein spots (defined as a two-fold abundance change between different study cohorts and ANOVA < 0.05) were identified via liquid chromatography-mass spectrometry (LCMS) and searching against human protein databases.
Results: The comparative analysis identified four platelet proteins with progressively decreased protein expression in patients with liver cirrhosis. More specifically Ras-related protein Rab-7a (Rab-7a), Ran-specific binding protein 1 (RANBP1), Rho GDP-dissociation inhibitor 1 (RhoGDI1), and 14-3-3 gamma.
Conclusion: There is significant change in protein expression in the platelet proteome throughout the disease progression of alcohol induced liver cirrhosis. The identified proteins are possibly involved in haemostatic and immunoregulatory function of platelets.
{"title":"Comparative proteomics reveals different protein expression in platelets in patients with alcoholic liver cirrhosis.","authors":"Nima Haji Begli, Cora Freund, Karl-Heinz Weiss, Daniel Gotthardt, Andreas Wannhoff","doi":"10.1186/s12953-024-00227-y","DOIUrl":"10.1186/s12953-024-00227-y","url":null,"abstract":"<p><strong>Background: </strong>The role of platelets in disease progression as well as the function of platelets as part of the haemostatic and immunological system in patients with liver cirrhosis is only incompletely understood. This is partly due to difficulties in assessing platelet function. Proteome analyses of platelets have been used to further investigate the role of platelets in other diseases.</p><p><strong>Aim: </strong>To assess possible changes in the platelet proteome during different stages of alcohol induced liver cirrhosis compared to healthy donors.</p><p><strong>Patients and methods: </strong>A 45 ml blood sample was drawn from 18 participants aged 18-80 years evenly divided into three groups of healthy donors, patients with less advanced alcohol induced liver cirrhosis (Child-Pugh < 7) and patients with advanced liver cirrhosis (Child-Pugh > 10). The blood was processed to isolate platelets and perform subsequent two-dimensional gel-electrophoresis using a SYPRO™ Ruby dye. After computational analysation significantly in- or decreased protein spots (defined as a two-fold abundance change between different study cohorts and ANOVA < 0.05) were identified via liquid chromatography-mass spectrometry (LCMS) and searching against human protein databases.</p><p><strong>Results: </strong>The comparative analysis identified four platelet proteins with progressively decreased protein expression in patients with liver cirrhosis. More specifically Ras-related protein Rab-7a (Rab-7a), Ran-specific binding protein 1 (RANBP1), Rho GDP-dissociation inhibitor 1 (RhoGDI1), and 14-3-3 gamma.</p><p><strong>Conclusion: </strong>There is significant change in protein expression in the platelet proteome throughout the disease progression of alcohol induced liver cirrhosis. The identified proteins are possibly involved in haemostatic and immunoregulatory function of platelets.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"22 1","pages":"3"},"PeriodicalIF":2.1,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this work was to investigate the immunological effect of MENK by analyzing the protein spectrum and bioinformatics of macrophage RAW264.7, and to explore the relationship between macrophage and ferroptosis. We employed proteomic analysis to identify differentially expressed proteins (DEPs) between macrophages and macrophages intervened by MENK. A total of 208 DEPs were identified. Among these, 96 proteins had upregulated expression and 112 proteins had downregulated expression. Proteomic analysis revealed a significant enrichment of DEPs associated with iron metabolism. The identification of hub genes was conducted using KEGG pathway diagrams and protein-protein interaction (PPI) analysis. The hub genes identified in this study include HMOX1 and Ferritin (FTH and FTL). A correlation was established between HMOX1, FTH, and FTL in the GO and KEGG databases. The results of PCR, WB and immunofluorescence showed that MENK downregulated the level of HMOX1 and FTH. MENK had the potential to become an adjuvant chemotherapy drug by regulating iron metabolism in macrophages, reducing levels of HMOX1 and ferritin. We proposed an innovative research direction on the therapeutic potential of MENK, focusing on the relationship between ferroptosis and macrophage activity.
{"title":"Methionine enkephalin (MENK) protected macrophages from ferroptosis by downregulating HMOX1 and ferritin","authors":"Jing Tian, Wenrui Fu, Zifeng Xie, Yuanlong Zhao, Haochen Yang, Jiafan Zhao","doi":"10.1186/s12953-024-00228-x","DOIUrl":"https://doi.org/10.1186/s12953-024-00228-x","url":null,"abstract":"The aim of this work was to investigate the immunological effect of MENK by analyzing the protein spectrum and bioinformatics of macrophage RAW264.7, and to explore the relationship between macrophage and ferroptosis. We employed proteomic analysis to identify differentially expressed proteins (DEPs) between macrophages and macrophages intervened by MENK. A total of 208 DEPs were identified. Among these, 96 proteins had upregulated expression and 112 proteins had downregulated expression. Proteomic analysis revealed a significant enrichment of DEPs associated with iron metabolism. The identification of hub genes was conducted using KEGG pathway diagrams and protein-protein interaction (PPI) analysis. The hub genes identified in this study include HMOX1 and Ferritin (FTH and FTL). A correlation was established between HMOX1, FTH, and FTL in the GO and KEGG databases. The results of PCR, WB and immunofluorescence showed that MENK downregulated the level of HMOX1 and FTH. MENK had the potential to become an adjuvant chemotherapy drug by regulating iron metabolism in macrophages, reducing levels of HMOX1 and ferritin. We proposed an innovative research direction on the therapeutic potential of MENK, focusing on the relationship between ferroptosis and macrophage activity.","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"105 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.1186/s12953-023-00225-6
Daniel Padilla-Chacón, Laura Campos-Patiño, Cecilia B Peña-Valdivia, Antonio García-Esteva, José Cruz Jiménez-Galindo, Jorge Luis Pizeno-García
Background: Tepary bean (Phaseolus acutifolius A. Gray) is one of the five species domesticated from the genus Phaseolus with genetic resistance to biotic and abiotic stress. To understand the mechanisms underlying drought responses in seed storage proteins germinated on water and polyethylene glycol (PEG-6000) at -0.49 MPa, we used a proteomics approach to identify potential molecular target proteins associated with the low water potential stress response.
Methods: Storage proteins from cotyledons of Tepary bean seeds germinated at 24, 48 and 72 h on water and PEG-6000 at -0.49 MPa were analyzed by one-dimensional electrophoresis (DE) with 2-DE analysis and shotgun mass spectrometry. Using computational database searching and bioinformatics analyses, we performed Gene Ontology (GO) and protein interactome (functional protein association network) String analyses.
Results: Comparative analysis showed that the effect of PEG-6000 on root growth was parallel to that on germination. Based on the SDS‒PAGE protein banding patterns and 2-DE analysis, ten differentially abundant seed storage proteins showed changes in storage proteins, principally in the phaseolin and lectin fractions. We found many proteins that are recognized as drought stress-responsive proteins, and several of them are predicted to be intrinsically related to abiotic stress. The shotgun analysis searched against UniProt's legume database, and Gene Ontology (GO) analysis indicated that most of the seed proteins were cytosolic, with catalytic activity and associated with carbohydrate metabolism. The protein‒protein interaction networks from functional enrichment analysis showed that phytohemagglutinin interacts with proteins associated with the degradation of storage proteins in the cotyledons of common bean during germination.
Conclusion: These findings suggest that Tepary bean seed proteins provide valuable information with the potential to be used in genetic improvement and are part of the drought stress response, making our approach a potentially useful strategy for discovering novel drought-responsive proteins in other plant models.
{"title":"Proteomic profile of tepary bean seed storage proteins in germination with low water potential.","authors":"Daniel Padilla-Chacón, Laura Campos-Patiño, Cecilia B Peña-Valdivia, Antonio García-Esteva, José Cruz Jiménez-Galindo, Jorge Luis Pizeno-García","doi":"10.1186/s12953-023-00225-6","DOIUrl":"10.1186/s12953-023-00225-6","url":null,"abstract":"<p><strong>Background: </strong>Tepary bean (Phaseolus acutifolius A. Gray) is one of the five species domesticated from the genus Phaseolus with genetic resistance to biotic and abiotic stress. To understand the mechanisms underlying drought responses in seed storage proteins germinated on water and polyethylene glycol (PEG-6000) at -0.49 MPa, we used a proteomics approach to identify potential molecular target proteins associated with the low water potential stress response.</p><p><strong>Methods: </strong>Storage proteins from cotyledons of Tepary bean seeds germinated at 24, 48 and 72 h on water and PEG-6000 at -0.49 MPa were analyzed by one-dimensional electrophoresis (DE) with 2-DE analysis and shotgun mass spectrometry. Using computational database searching and bioinformatics analyses, we performed Gene Ontology (GO) and protein interactome (functional protein association network) String analyses.</p><p><strong>Results: </strong>Comparative analysis showed that the effect of PEG-6000 on root growth was parallel to that on germination. Based on the SDS‒PAGE protein banding patterns and 2-DE analysis, ten differentially abundant seed storage proteins showed changes in storage proteins, principally in the phaseolin and lectin fractions. We found many proteins that are recognized as drought stress-responsive proteins, and several of them are predicted to be intrinsically related to abiotic stress. The shotgun analysis searched against UniProt's legume database, and Gene Ontology (GO) analysis indicated that most of the seed proteins were cytosolic, with catalytic activity and associated with carbohydrate metabolism. The protein‒protein interaction networks from functional enrichment analysis showed that phytohemagglutinin interacts with proteins associated with the degradation of storage proteins in the cotyledons of common bean during germination.</p><p><strong>Conclusion: </strong>These findings suggest that Tepary bean seed proteins provide valuable information with the potential to be used in genetic improvement and are part of the drought stress response, making our approach a potentially useful strategy for discovering novel drought-responsive proteins in other plant models.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"22 1","pages":"1"},"PeriodicalIF":2.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-04DOI: 10.1186/s12953-023-00224-7
Concepción Gamboa-Sánchez, Enrique Becerril-Villanueva, Samantha Alvarez-Herrera, Gabriela Leyva-Mascareño, Sandra L González-López, Enrique Estudillo, Alberto E Fernández-Molina, José Miguel Elizalde-Contreras, Eliel Ruiz-May, Aldo Segura-Cabrera, Janeth Jiménez-Genchi, Lenin Pavón, Sergio Roberto Zamudio, Gilberto Pérez-Sánchez
Background: Major depressive disorder (MDD) affects more than 350 million people worldwide, and there is currently no laboratory test to diagnose it. This pilot study aimed to identify potential biomarkers in peripheral blood mononuclear cells (PBMCs) from MDD patients.
Methods: We used tandem mass tagging coupled to synchronous precursor selection (mass spectrometry) to obtain the differential proteomic profile from a pool of PBMCs from MDD patients and healthy subjects, and quantitative PCR to assess gene expression of differentially expressed proteins (DEPs) of our interest.
Results: We identified 247 proteins, of which 133 had a fold change ≥ 2.0 compared to healthy volunteers. Using pathway enrichment analysis, we found that some processes, such as platelet degranulation, coagulation, and the inflammatory response, are perturbed in MDD patients. The gene-disease association analysis showed that molecular alterations in PBMCs from MDD patients are associated with cerebral ischemia, vascular disease, thrombosis, acute coronary syndrome, and myocardial ischemia, in addition to other conditions such as inflammation and diabetic retinopathy.
Conclusions: We confirmed by qRT-PCR that S100A8 is upregulated in PBMCs from MDD patients and thus could be an emerging biomarker of this disorder. This report lays the groundwork for future studies in a broader and more diverse population and contributes to a deeper characterization of MDD.
{"title":"Upregulation of S100A8 in peripheral blood mononuclear cells from patients with depression treated with SSRIs: a pilot study.","authors":"Concepción Gamboa-Sánchez, Enrique Becerril-Villanueva, Samantha Alvarez-Herrera, Gabriela Leyva-Mascareño, Sandra L González-López, Enrique Estudillo, Alberto E Fernández-Molina, José Miguel Elizalde-Contreras, Eliel Ruiz-May, Aldo Segura-Cabrera, Janeth Jiménez-Genchi, Lenin Pavón, Sergio Roberto Zamudio, Gilberto Pérez-Sánchez","doi":"10.1186/s12953-023-00224-7","DOIUrl":"10.1186/s12953-023-00224-7","url":null,"abstract":"<p><strong>Background: </strong>Major depressive disorder (MDD) affects more than 350 million people worldwide, and there is currently no laboratory test to diagnose it. This pilot study aimed to identify potential biomarkers in peripheral blood mononuclear cells (PBMCs) from MDD patients.</p><p><strong>Methods: </strong>We used tandem mass tagging coupled to synchronous precursor selection (mass spectrometry) to obtain the differential proteomic profile from a pool of PBMCs from MDD patients and healthy subjects, and quantitative PCR to assess gene expression of differentially expressed proteins (DEPs) of our interest.</p><p><strong>Results: </strong>We identified 247 proteins, of which 133 had a fold change ≥ 2.0 compared to healthy volunteers. Using pathway enrichment analysis, we found that some processes, such as platelet degranulation, coagulation, and the inflammatory response, are perturbed in MDD patients. The gene-disease association analysis showed that molecular alterations in PBMCs from MDD patients are associated with cerebral ischemia, vascular disease, thrombosis, acute coronary syndrome, and myocardial ischemia, in addition to other conditions such as inflammation and diabetic retinopathy.</p><p><strong>Conclusions: </strong>We confirmed by qRT-PCR that S100A8 is upregulated in PBMCs from MDD patients and thus could be an emerging biomarker of this disorder. This report lays the groundwork for future studies in a broader and more diverse population and contributes to a deeper characterization of MDD.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"23"},"PeriodicalIF":2.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138482899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lung tissue is an important organ of the fetus, and genomic research on its development has improved our understanding of the biology of this tissue. However, the proteomic research of developing fetal lung tissue is still very scarce. We conducted comprehensive analysis of two developmental stages of fetal lung tissue of proteomics. It showed the developmental characteristics of lung tissue, such as the down-regulation of metabolism-related protein expression, the up-regulation of cell cycle-related proteins, and the regulation in proteins and pathways related to lung development. In addition, we also discovered some key core proteins related to lung development, and provided some key crotonylation modification sites that regulation during lung tissue development. Our comprehensive analysis of lung proteomics can provide a more comprehensive understanding of the developmental status of lung tissue, and provide a certain reference for future research and epigenetics of lung tissue.
{"title":"Systematic proteomics profiling of lysine crotonylation of the lung at Pseudoglandular and Canalicular phases in human fetus.","authors":"Wei Wang, Wei Shi, Yinglan Wang, Yane Yang, Ping Li, Zhipeng Zeng, Wenlong Hu, Yumei Chen, Donge Tang, Yong Dai","doi":"10.1186/s12953-023-00215-8","DOIUrl":"10.1186/s12953-023-00215-8","url":null,"abstract":"<p><p>Lung tissue is an important organ of the fetus, and genomic research on its development has improved our understanding of the biology of this tissue. However, the proteomic research of developing fetal lung tissue is still very scarce. We conducted comprehensive analysis of two developmental stages of fetal lung tissue of proteomics. It showed the developmental characteristics of lung tissue, such as the down-regulation of metabolism-related protein expression, the up-regulation of cell cycle-related proteins, and the regulation in proteins and pathways related to lung development. In addition, we also discovered some key core proteins related to lung development, and provided some key crotonylation modification sites that regulation during lung tissue development. Our comprehensive analysis of lung proteomics can provide a more comprehensive understanding of the developmental status of lung tissue, and provide a certain reference for future research and epigenetics of lung tissue.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"22"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138470724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-22DOI: 10.1186/s12953-023-00223-8
Pinpin Jiang, Dan Liang, Hang Wang, Raorao Zhou, Xianda Che, Linlin Cong, Penghua Li, Chunfang Wang, Wenjin Li, Xiaochun Wei, Pengcui Li
Osteoarthritis (OA) is the second-commonest arthritis, but pathogenic and regulatory mechanisms underlying OA remain incompletely understood. Here, we aimed to identify the mechanisms associated with microRNA-1 (miR-1) treatment of OA in rodent OA models using a proteomic approach. First, N = 18 Sprague Dawley (SD) rats underwent sham surgery (n = 6) or ACL transection (n = 12), followed at an interval of one week by randomization of the ACL transection group to intra-articular administration of either 50 µL placebo (control group) or miR-1 agomir, a mimic of endogenous miR-1 (experimental group). After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and immunohistochemically stained for the presence of MMP-13. Second, N = 30 Col2a1-cre-ERT2 /GFPf1/fl -RFP-miR-1 transgenic mice were randomized to intra-articular administration of either placebo (control group, N = 15) or tamoxifen, an inducer of miR-1 expression (experimental group, N = 15), before undergoing surgical disruption of the medial meniscus (DMM) after an interval of five days. After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and underwent differential proteomic analysis. Specifically, tandem mass tagging (TMT) quantitative proteomic analysis was employed to identify inter-group differentially-expressed proteins (DEP), and selected DEPs were validated using real-time quantitative polymerase chain reaction (RT-qPCR) technology. Immunohistochemically-detected MMP-13 expression was significantly lower in the experimental rat group, and proteomic analyses of mouse tissue homogenate demonstrated that of 3526 identified proteins, 345 were differentially expressed (relative up- and down-regulation) in the experimental group. Proteins Fn1, P4ha1, P4ha2, Acan, F2, Col3a1, Fga, Rps29, Rpl34, and Fgg were the *top ten most-connected proteins, implying that miR-1 may regulate an expression network involving these proteins. Of these ten proteins, three were selected for further validation by RT-qPCR: the transcript of Fn1, known to be associated with OA, exhibited relative upregulation in the experimental group, whereas the transcripts of P4ha1 and Acan exhibited relative downregulation. These proteins may thus represent key miR-1 targets during OA-regulatory mechanisms, and may provide additional insights regarding therapeutic mechanisms of miR-1 in context of OA.
{"title":"TMT quantitative proteomics reveals key proteins relevant to microRNA-1-mediated regulation in osteoarthritis.","authors":"Pinpin Jiang, Dan Liang, Hang Wang, Raorao Zhou, Xianda Che, Linlin Cong, Penghua Li, Chunfang Wang, Wenjin Li, Xiaochun Wei, Pengcui Li","doi":"10.1186/s12953-023-00223-8","DOIUrl":"10.1186/s12953-023-00223-8","url":null,"abstract":"<p><p>Osteoarthritis (OA) is the second-commonest arthritis, but pathogenic and regulatory mechanisms underlying OA remain incompletely understood. Here, we aimed to identify the mechanisms associated with microRNA-1 (miR-1) treatment of OA in rodent OA models using a proteomic approach. First, N = 18 Sprague Dawley (SD) rats underwent sham surgery (n = 6) or ACL transection (n = 12), followed at an interval of one week by randomization of the ACL transection group to intra-articular administration of either 50 µL placebo (control group) or miR-1 agomir, a mimic of endogenous miR-1 (experimental group). After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and immunohistochemically stained for the presence of MMP-13. Second, N = 30 Col2a1-cre-ERT2 /GFPf1/fl -RFP-miR-1 transgenic mice were randomized to intra-articular administration of either placebo (control group, N = 15) or tamoxifen, an inducer of miR-1 expression (experimental group, N = 15), before undergoing surgical disruption of the medial meniscus (DMM) after an interval of five days. After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and underwent differential proteomic analysis. Specifically, tandem mass tagging (TMT) quantitative proteomic analysis was employed to identify inter-group differentially-expressed proteins (DEP), and selected DEPs were validated using real-time quantitative polymerase chain reaction (RT-qPCR) technology. Immunohistochemically-detected MMP-13 expression was significantly lower in the experimental rat group, and proteomic analyses of mouse tissue homogenate demonstrated that of 3526 identified proteins, 345 were differentially expressed (relative up- and down-regulation) in the experimental group. Proteins Fn1, P4ha1, P4ha2, Acan, F2, Col3a1, Fga, Rps29, Rpl34, and Fgg were the *top ten most-connected proteins, implying that miR-1 may regulate an expression network involving these proteins. Of these ten proteins, three were selected for further validation by RT-qPCR: the transcript of Fn1, known to be associated with OA, exhibited relative upregulation in the experimental group, whereas the transcripts of P4ha1 and Acan exhibited relative downregulation. These proteins may thus represent key miR-1 targets during OA-regulatory mechanisms, and may provide additional insights regarding therapeutic mechanisms of miR-1 in context of OA.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"21"},"PeriodicalIF":2.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664301/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138295803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Thoracic aortic aneurysm (TAA) is a cardiovascular disease with high morbidity and mortality. However, the causes and mechanisms of TAA are not fully understood. Serum exosomes from mice with TAA were used to explore the markers associated with this disease.
Methods: C57BL/6 mice were divided into three groups and given ordinary drinking water, ordinary drinking water plus a saline osmotic pump, or drinking water containing β-aminopropionitrile (BAPN) (1 g/kg/d) plus an angiotensin II (Ang II) (1 μg/kg/min) osmotic pump. Haematoxylin and eosin staining of thoracic aortic tissues was performed. The basic characteristics of exosomes were analysed. Differentially expressed proteins (DEPs) were identified by LC‒MS/MS. Protein‒protein networks and enrichment analysis were used to explore possible molecular mechanisms.
Results: The present study elucidated the protein expression profile of serum exosomes in mice with TAA induced by BAPN combined with Ang II. In this work, the expression of a total of 196 proteins was significantly dysregulated in serum exosomes of mice with TAA, with 122 proteins significantly upregulated and 74 proteins markedly downregulated. Notably, Haptoglobin (Hp) and Serum amyloid p-component (Sap) identified based on the PPI network were significantly upregulated and have been strongly linked to cardiovascular disease. Interestingly, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the upregulated and downregulated proteins were involved in the complement and coagulation cascade pathways.
Conclusions: This study showed that the identified DEPs have potential as biomarkers for the diagnosis of TAA and provided a more comprehensive understanding of the pathophysiological mechanisms of TAA.
{"title":"Label-free quantitative proteomic analysis of serum exosomes in mice with thoracic aortic aneurysm.","authors":"Jia Xu, Jiacheng Liu, Yibai Qu, Linhui Jiang, Rongxin Liang, Bohai Li, Lei Li, Yong Jiang","doi":"10.1186/s12953-023-00220-x","DOIUrl":"10.1186/s12953-023-00220-x","url":null,"abstract":"<p><strong>Objective: </strong>Thoracic aortic aneurysm (TAA) is a cardiovascular disease with high morbidity and mortality. However, the causes and mechanisms of TAA are not fully understood. Serum exosomes from mice with TAA were used to explore the markers associated with this disease.</p><p><strong>Methods: </strong>C57BL/6 mice were divided into three groups and given ordinary drinking water, ordinary drinking water plus a saline osmotic pump, or drinking water containing β-aminopropionitrile (BAPN) (1 g/kg/d) plus an angiotensin II (Ang II) (1 μg/kg/min) osmotic pump. Haematoxylin and eosin staining of thoracic aortic tissues was performed. The basic characteristics of exosomes were analysed. Differentially expressed proteins (DEPs) were identified by LC‒MS/MS. Protein‒protein networks and enrichment analysis were used to explore possible molecular mechanisms.</p><p><strong>Results: </strong>The present study elucidated the protein expression profile of serum exosomes in mice with TAA induced by BAPN combined with Ang II. In this work, the expression of a total of 196 proteins was significantly dysregulated in serum exosomes of mice with TAA, with 122 proteins significantly upregulated and 74 proteins markedly downregulated. Notably, Haptoglobin (Hp) and Serum amyloid p-component (Sap) identified based on the PPI network were significantly upregulated and have been strongly linked to cardiovascular disease. Interestingly, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the upregulated and downregulated proteins were involved in the complement and coagulation cascade pathways.</p><p><strong>Conclusions: </strong>This study showed that the identified DEPs have potential as biomarkers for the diagnosis of TAA and provided a more comprehensive understanding of the pathophysiological mechanisms of TAA.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"19"},"PeriodicalIF":2.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50158582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Proteins related to sperm motility and sperm morphology have an important impact on sperm function such as metabolism, motility and fertilisation etc. An understanding of the key proteins related to semen quality in Niangya yaks would help to provide support for breeding. However, the key proteins that affect semen quality in Niangya yaks remain unclear.
Methods: Herein, we applied tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC‒MS/MS) to analyze the expression levels of sperm proteins in groups of high- and low-quality semen from Niangya yaks. And fifteen differentially expressed proteins (DEPs) were randomly selected for expression level validation by parallel reaction monitoring (PRM).
Results: Of the 2,092 quantified proteins, 280 were identified as DEPs in the high-quality group versus the low-quality group. Gene Ontology (GO) analysis revealed that in terms of biological pathways, the DEPs were mainly involved in metabolic processes, cell transformation processes, and single organism metabolic processes. In terms of cell composition, the DEPs were mainly located in the cell membrane, organelle, molecular complex. In terms of molecular functions, the most abundant functions of the DEPs were catalytic activity, binding activity, transport activity, and enzyme regulation activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEPs were mainly involved in the cytokine and cytokine receptor interaction, notch signaling pathway, lysine biosynthesis, renal function-related protein and proteasome pathway. From protein-protein interaction (PPI) analysis of DEPs involved in important pathways, 6 related proteins affecting the semen quality of Niangya yaks were identified. And the results of the PRM and TMT analysis were consistent.
Conclusions: The differential sperm proteomic analysis of high- and low-quality semen from Niangya yaks, revealed 6 proteins (PSMC5, PSMD8, PSMB3, HSP90AA1, UGP2 and HSPB1), were mainly concentrated in energy production and metabolism, might play important roles in semen quality, which could serve as candidates for the selection and breeding of Niangya yaks.
{"title":"Quantitative proteomics analysis reveals the key proteins related to semen quality in Niangya yaks.","authors":"Yaomei Wang, Yuchao Liu, Tingting Cao, Chunyuan Shi, Zili Ren, Yanling Zhao","doi":"10.1186/s12953-023-00222-9","DOIUrl":"10.1186/s12953-023-00222-9","url":null,"abstract":"<p><strong>Background: </strong>Proteins related to sperm motility and sperm morphology have an important impact on sperm function such as metabolism, motility and fertilisation etc. An understanding of the key proteins related to semen quality in Niangya yaks would help to provide support for breeding. However, the key proteins that affect semen quality in Niangya yaks remain unclear.</p><p><strong>Methods: </strong>Herein, we applied tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC‒MS/MS) to analyze the expression levels of sperm proteins in groups of high- and low-quality semen from Niangya yaks. And fifteen differentially expressed proteins (DEPs) were randomly selected for expression level validation by parallel reaction monitoring (PRM).</p><p><strong>Results: </strong>Of the 2,092 quantified proteins, 280 were identified as DEPs in the high-quality group versus the low-quality group. Gene Ontology (GO) analysis revealed that in terms of biological pathways, the DEPs were mainly involved in metabolic processes, cell transformation processes, and single organism metabolic processes. In terms of cell composition, the DEPs were mainly located in the cell membrane, organelle, molecular complex. In terms of molecular functions, the most abundant functions of the DEPs were catalytic activity, binding activity, transport activity, and enzyme regulation activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEPs were mainly involved in the cytokine and cytokine receptor interaction, notch signaling pathway, lysine biosynthesis, renal function-related protein and proteasome pathway. From protein-protein interaction (PPI) analysis of DEPs involved in important pathways, 6 related proteins affecting the semen quality of Niangya yaks were identified. And the results of the PRM and TMT analysis were consistent.</p><p><strong>Conclusions: </strong>The differential sperm proteomic analysis of high- and low-quality semen from Niangya yaks, revealed 6 proteins (PSMC5, PSMD8, PSMB3, HSP90AA1, UGP2 and HSPB1), were mainly concentrated in energy production and metabolism, might play important roles in semen quality, which could serve as candidates for the selection and breeding of Niangya yaks.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"20"},"PeriodicalIF":2.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50158583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.1186/s12953-023-00211-y
Ruqi Tan, Dandan Li, Nan Hu, Jing Qiu, Zhipeng Zeng, Wanxia Cai, Yafang Zhong, Xinzhou Zhang, Pearl Pai, Kang Wang, Donge Tang, Yong Dai
Background: End-stage renal disease (ESRD) is a condition that is characterized by the loss of kidney function. ESRD patients suffer from various endothelial dysfunctions, inflammation, and immune system defects. Lysine malonylation (Kmal) is a recently discovered post-translational modification (PTM). Although Kmal has the ability to regulate a wide range of biological processes in various organisms, its specific role in ESRD is limited.
Methods: In this study, the affinity enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have been used to create the first global proteome and malonyl proteome (malonylome) profiles of peripheral blood mononuclear cells (PBMCs) from twenty patients with ESRD and eighty-one controls.
Results: On analysis, 793 differentially expressed proteins (DEPs) and 12 differentially malonylated proteins (DMPs) with 16 Kmal sites were identified. The Rap1 signaling pathway and platelet activation pathway were found to be important in the development of chronic kidney disease (CKD), as were DMPs TLN1 and ACTB, as well as one malonylated site. One conserved Kmal motif was also discovered.
Conclusions: These findings provided the first report on the Kmal profile in ESRD, which could be useful in understanding the potential role of lysine malonylation modification in the development of ESRD.
{"title":"Integrated proteome and malonylome analyses reveal the potential meaning of TLN1 and ACTB in end-stage renal disease.","authors":"Ruqi Tan, Dandan Li, Nan Hu, Jing Qiu, Zhipeng Zeng, Wanxia Cai, Yafang Zhong, Xinzhou Zhang, Pearl Pai, Kang Wang, Donge Tang, Yong Dai","doi":"10.1186/s12953-023-00211-y","DOIUrl":"10.1186/s12953-023-00211-y","url":null,"abstract":"<p><strong>Background: </strong>End-stage renal disease (ESRD) is a condition that is characterized by the loss of kidney function. ESRD patients suffer from various endothelial dysfunctions, inflammation, and immune system defects. Lysine malonylation (Kmal) is a recently discovered post-translational modification (PTM). Although Kmal has the ability to regulate a wide range of biological processes in various organisms, its specific role in ESRD is limited.</p><p><strong>Methods: </strong>In this study, the affinity enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques have been used to create the first global proteome and malonyl proteome (malonylome) profiles of peripheral blood mononuclear cells (PBMCs) from twenty patients with ESRD and eighty-one controls.</p><p><strong>Results: </strong>On analysis, 793 differentially expressed proteins (DEPs) and 12 differentially malonylated proteins (DMPs) with 16 Kmal sites were identified. The Rap1 signaling pathway and platelet activation pathway were found to be important in the development of chronic kidney disease (CKD), as were DMPs TLN1 and ACTB, as well as one malonylated site. One conserved Kmal motif was also discovered.</p><p><strong>Conclusions: </strong>These findings provided the first report on the Kmal profile in ESRD, which could be useful in understanding the potential role of lysine malonylation modification in the development of ESRD.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"18"},"PeriodicalIF":2.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41210877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}