Background: DCM is a common cardiomyopathy worldwide, which is characterized by ventricular dilatation and systolic dysfunction. DCM is one of the most widespread diseases contributing to sudden death and heart failure. However, our understanding of its molecular mechanisms is limited because of its etiology and underlying mechanisms. Hence, this study explored the underlying molecular mechanism of dilated cardiomyopathy through integrative analysis of data mining, iTRAQ-PRM proteomics and bioinformatics METHODS: DCM target genes were downloaded from the public databases. Next, DCM was induced in 20 rats by 8 weeks doxorubicin treatment (2.5 mg/kg/week). We applied isobaric tags for a relative and absolute quantification (iTRAQ) coupled with proteomics approach to identify differentially expressed proteins (DEPs) in myocardial tissue. After association analysis of the DEPs and the key target genes, subsequent analyses, including functional annotation, pathway enrichment, validation, were performed.
Results: Nine hundred thirty-five genes were identified as key target genes from public databases. Meanwhile, a total of 782 DEPs, including 348 up-regulated and 434 down-regulated proteins, were identified in our animal experiment. The functional annotation of these DEPs revealed complicated molecular mechanisms including TCA cycle, Oxidative phosphorylation, Cardiac muscle contraction. Moreover, the DEPs were analyzed for association with the key target genes screened in the public dataset. We further determined the importance of these three pathways.
Conclusion: Our results demonstrate that TCA cycle, Oxidative phosphorylation, Cardiac muscle contraction played important roles in the detailed molecular mechanisms of DCM.
{"title":"Insight into the underlying molecular mechanism of dilated cardiomyopathy through integrative analysis of data mining, iTRAQ-PRM proteomics and bioinformatics.","authors":"Hongli Xiong, Zhe Zheng, Congcong Zhao, Minzhu Zhao, Qi Wang, Peng Zhang, Yongguo Li, Ying Zhu, Shisheng Zhu, Jianbo Li","doi":"10.1186/s12953-023-00214-9","DOIUrl":"10.1186/s12953-023-00214-9","url":null,"abstract":"<p><strong>Background: </strong>DCM is a common cardiomyopathy worldwide, which is characterized by ventricular dilatation and systolic dysfunction. DCM is one of the most widespread diseases contributing to sudden death and heart failure. However, our understanding of its molecular mechanisms is limited because of its etiology and underlying mechanisms. Hence, this study explored the underlying molecular mechanism of dilated cardiomyopathy through integrative analysis of data mining, iTRAQ-PRM proteomics and bioinformatics METHODS: DCM target genes were downloaded from the public databases. Next, DCM was induced in 20 rats by 8 weeks doxorubicin treatment (2.5 mg/kg/week). We applied isobaric tags for a relative and absolute quantification (iTRAQ) coupled with proteomics approach to identify differentially expressed proteins (DEPs) in myocardial tissue. After association analysis of the DEPs and the key target genes, subsequent analyses, including functional annotation, pathway enrichment, validation, were performed.</p><p><strong>Results: </strong>Nine hundred thirty-five genes were identified as key target genes from public databases. Meanwhile, a total of 782 DEPs, including 348 up-regulated and 434 down-regulated proteins, were identified in our animal experiment. The functional annotation of these DEPs revealed complicated molecular mechanisms including TCA cycle, Oxidative phosphorylation, Cardiac muscle contraction. Moreover, the DEPs were analyzed for association with the key target genes screened in the public dataset. We further determined the importance of these three pathways.</p><p><strong>Conclusion: </strong>Our results demonstrate that TCA cycle, Oxidative phosphorylation, Cardiac muscle contraction played important roles in the detailed molecular mechanisms of DCM.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"13"},"PeriodicalIF":2.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10517512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41126132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: In this study, we aimed to identify differentially expressed heat shock protein (HSP) profiles in the villi and decidua from patients with early missed abortion (EMA).
Methods: By using high-throughput and high-precision parallel reaction monitoring (PRM)-based targeted proteomics techniques, this study examined the abundance of HSPs in the villi and decidua of 10 patients with EMA and 10 controls. Moreover, the abundance of 3 HSPs in the villi of another 22 patients with EMA and 22 controls was verified with Western blotting and immunohistochemistry (IHC).
Results: There were potential differences in the abundance of 16 HSPs and 42 polypeptides in human villi and decidua compared with those of the control group. Among them, HSP90AB1, HSPD1 and HSPA13 were downregulated in abundance in villi of patients with EMA, with a statistically significant difference, which was consistent with the verification results of Western blots and IHC.
Conclusion: Using a PRM-based targeted proteomics technique, this study is the first to screen and quantitatively analyze the expression profile of HSPs in the villi and decidua of patients with EMA. The significant downregulation of HSP90AB1, HSPD1 and HSPA13 was found to have a potentially intimate association with the occurrence of EMA. The findings in our study may provide novel potential research targets related to HSPs for the pathogenesis, prevention and treatment of EMA.
{"title":"PRM-based quantitative proteomics analysis of altered HSP abundance in villi and decidua of patients with early missed abortion.","authors":"Xiao-Fang Chen, Xiao-Qing Chen, Hai-Lian Luo, Li-Na Xia, Shu-Hui Huang, Qi Chen","doi":"10.1186/s12953-023-00213-w","DOIUrl":"10.1186/s12953-023-00213-w","url":null,"abstract":"<p><strong>Objective: </strong>In this study, we aimed to identify differentially expressed heat shock protein (HSP) profiles in the villi and decidua from patients with early missed abortion (EMA).</p><p><strong>Methods: </strong>By using high-throughput and high-precision parallel reaction monitoring (PRM)-based targeted proteomics techniques, this study examined the abundance of HSPs in the villi and decidua of 10 patients with EMA and 10 controls. Moreover, the abundance of 3 HSPs in the villi of another 22 patients with EMA and 22 controls was verified with Western blotting and immunohistochemistry (IHC).</p><p><strong>Results: </strong>There were potential differences in the abundance of 16 HSPs and 42 polypeptides in human villi and decidua compared with those of the control group. Among them, HSP90AB1, HSPD1 and HSPA13 were downregulated in abundance in villi of patients with EMA, with a statistically significant difference, which was consistent with the verification results of Western blots and IHC.</p><p><strong>Conclusion: </strong>Using a PRM-based targeted proteomics technique, this study is the first to screen and quantitatively analyze the expression profile of HSPs in the villi and decidua of patients with EMA. The significant downregulation of HSP90AB1, HSPD1 and HSPA13 was found to have a potentially intimate association with the occurrence of EMA. The findings in our study may provide novel potential research targets related to HSPs for the pathogenesis, prevention and treatment of EMA.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"12"},"PeriodicalIF":2.0,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10429090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10046789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Effective diagnostic biomarkers for aortic aneurysm (AA) that are detectable in blood tests are required because early detection and rupture risk assessment of AA can provide insights into medical therapy and preventive treatments. However, known biomarkers for AA lack specificity and reliability for clinical diagnosis.
Methods: We performed proteome analysis of serum samples from patients with atherosclerotic thoracic AA (TAA) and healthy control (HC) subjects to identify diagnostic biomarkers for AA. Serum samples were separated into low-density lipoprotein, high-density lipoprotein, and protein fractions, and the major proteins were depleted. From the proteins identified in the three fractions, we narrowed down biomarker candidates to proteins uniformly altered in all fractions between patients with TAA and HC subjects and evaluated their capability to discriminate patients with TAA and those with abdominal AA (AAA) from HC subjects using receiver operating characteristic (ROC) analysis. For the clinical validation, serum concentrations of biomarker candidates were measured in patients with TAA and AAA registered in the biobank of the same institute, and their capability for the diagnosis was evaluated.
Results: Profilin 1 (PFN1) and complement factor D (CFD) showed the most contrasting profiles in all three fractions between patients with TAA and HC subjects and were selected as biomarker candidates. The PFN1 concentration decreased, whereas the CFD concentration increased in the sera of patients with TAA and AAA when compared with those of HC subjects. The ROC analysis showed that these proteins could discriminate patients with TAA and AAA from HC subjects. In the validation study, these candidates showed significant concentration differences between patients with TAA or AAA and controls. PFN1 and CFD showed sufficient area under the curve (AUC) in the ROC analysis, and their combination further increased the AUC. The serum concentrations of PFN1 and CFD also showed significant differences between patients with aortic dissection and controls in the validation study.
Conclusion: PFN1 and CFD are potential diagnostic biomarkers for TAA and AAA and measurable in blood samples; their diagnostic performance can be augmented by their combination. These biomarkers may facilitate the development of diagnostic systems to identify patients with AA.
{"title":"Serum proteomic identification and validation of two novel atherosclerotic aortic aneurysm biomarkers, profilin 1 and complement factor D.","authors":"Yusuke Murakami, Mitsuhiro Nishigori, Hiroaki Yagi, Tsukasa Osaki, Masaki Wakabayashi, Manabu Shirai, Cheol Son, Yutaka Iba, Kenji Minatoya, Kengo Kusano, Tsutomu Tomita, Hatsue Ishibashi-Ueda, Hitoshi Matsuda, Naoto Minamino","doi":"10.1186/s12953-023-00212-x","DOIUrl":"10.1186/s12953-023-00212-x","url":null,"abstract":"<p><strong>Background: </strong>Effective diagnostic biomarkers for aortic aneurysm (AA) that are detectable in blood tests are required because early detection and rupture risk assessment of AA can provide insights into medical therapy and preventive treatments. However, known biomarkers for AA lack specificity and reliability for clinical diagnosis.</p><p><strong>Methods: </strong>We performed proteome analysis of serum samples from patients with atherosclerotic thoracic AA (TAA) and healthy control (HC) subjects to identify diagnostic biomarkers for AA. Serum samples were separated into low-density lipoprotein, high-density lipoprotein, and protein fractions, and the major proteins were depleted. From the proteins identified in the three fractions, we narrowed down biomarker candidates to proteins uniformly altered in all fractions between patients with TAA and HC subjects and evaluated their capability to discriminate patients with TAA and those with abdominal AA (AAA) from HC subjects using receiver operating characteristic (ROC) analysis. For the clinical validation, serum concentrations of biomarker candidates were measured in patients with TAA and AAA registered in the biobank of the same institute, and their capability for the diagnosis was evaluated.</p><p><strong>Results: </strong>Profilin 1 (PFN1) and complement factor D (CFD) showed the most contrasting profiles in all three fractions between patients with TAA and HC subjects and were selected as biomarker candidates. The PFN1 concentration decreased, whereas the CFD concentration increased in the sera of patients with TAA and AAA when compared with those of HC subjects. The ROC analysis showed that these proteins could discriminate patients with TAA and AAA from HC subjects. In the validation study, these candidates showed significant concentration differences between patients with TAA or AAA and controls. PFN1 and CFD showed sufficient area under the curve (AUC) in the ROC analysis, and their combination further increased the AUC. The serum concentrations of PFN1 and CFD also showed significant differences between patients with aortic dissection and controls in the validation study.</p><p><strong>Conclusion: </strong>PFN1 and CFD are potential diagnostic biomarkers for TAA and AAA and measurable in blood samples; their diagnostic performance can be augmented by their combination. These biomarkers may facilitate the development of diagnostic systems to identify patients with AA.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"11"},"PeriodicalIF":2.0,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9951799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-07DOI: 10.1186/s12953-023-00210-z
Fredrik Ginstman, Bijar Ghafouri, Peter Zsigmond
Background: Subarachnoid haemorrhage (SAH) is one of the most severe forms of stroke in which delayed cerebral ischemia is one of the major complications. Neurointensive care aims at preventing and treating such complications and identification of biomarkers of early signs of ischemia might therefore be helpful.
Methods: We aimed at describing proteome profile in cerebral microdialysate in four patients with aneurysmal SAH using two dimensional gel electrophoresis in combination with mass spectrometry in search for new biomarkers for delayed cerebral ischemia and to investigate if there were temporal fluctuations in those biomarkers over time after aneurysmal bleed.
Results: The results showed transthyretin in nine different proteoforms (1001, 1102, 2101, 3101, 4101, 4102, 5001, 5101, 6101) in cerebral microdialysate samples from four patients having sustained SAH. Several proteoforms show highly differing levels and pooled analysis of all samples showed varying optical density related to time from aneurysmal bleed, indicating a temporal evolution.
Conclusions: Transthyretin proteoforms have not earlier been shown in cerebral microdialysate after SAH and we describe differing levels based on proteoform as well as time from subarachnoid bleed. Transthyretin is well known to be synthetized in choroid plexus, whilst intraparenchymal synthesis remains controversial. The results need to be confirmed in larger studies in order to further describe transthyretin.
{"title":"Altered levels of transthyretin in human cerebral microdialysate after subarachnoid haemorrhage using proteomics; a descriptive pilot study.","authors":"Fredrik Ginstman, Bijar Ghafouri, Peter Zsigmond","doi":"10.1186/s12953-023-00210-z","DOIUrl":"https://doi.org/10.1186/s12953-023-00210-z","url":null,"abstract":"<p><strong>Background: </strong>Subarachnoid haemorrhage (SAH) is one of the most severe forms of stroke in which delayed cerebral ischemia is one of the major complications. Neurointensive care aims at preventing and treating such complications and identification of biomarkers of early signs of ischemia might therefore be helpful.</p><p><strong>Methods: </strong>We aimed at describing proteome profile in cerebral microdialysate in four patients with aneurysmal SAH using two dimensional gel electrophoresis in combination with mass spectrometry in search for new biomarkers for delayed cerebral ischemia and to investigate if there were temporal fluctuations in those biomarkers over time after aneurysmal bleed.</p><p><strong>Results: </strong>The results showed transthyretin in nine different proteoforms (1001, 1102, 2101, 3101, 4101, 4102, 5001, 5101, 6101) in cerebral microdialysate samples from four patients having sustained SAH. Several proteoforms show highly differing levels and pooled analysis of all samples showed varying optical density related to time from aneurysmal bleed, indicating a temporal evolution.</p><p><strong>Conclusions: </strong>Transthyretin proteoforms have not earlier been shown in cerebral microdialysate after SAH and we describe differing levels based on proteoform as well as time from subarachnoid bleed. Transthyretin is well known to be synthetized in choroid plexus, whilst intraparenchymal synthesis remains controversial. The results need to be confirmed in larger studies in order to further describe transthyretin.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"10"},"PeriodicalIF":2.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9808788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1186/s12953-023-00209-6
Bo Wang, Qian Zhang, Lili Wu, Cunliang Deng, Meiyan Luo, Yu Xie, Gang Wu, Wen Chen, Yunjian Sheng, Peng Zhu, Gang Qin
Chronic hepatitis B is a significant public health problem and complex pathologic process, and unraveling the underlying mechanisms and pathophysiology is of great significance. Data independent acquisition mass spectrometry (DIA-MS) is a label-free quantitative proteomics method that has been successfully applied to the study of a wide range of diseases. The aim of this study was to apply DIA-MS for proteomic analysis of patients with chronic hepatitis B. We performed comprehensive proteomics analysis of protein expression in serum samples from HBV patients and healthy controls by using DIA-MS. Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein network analysis were performed on differentially expressed proteins and were further combined with literature analysis. We successfully identified a total of 3786 serum proteins with a high quantitative performance from serum samples in this study. We identified 310 differentially expressed proteins (DEPs) (fold change > 1.5 and P value < 0.05 as the criteria for a significant difference) between HBV and healthy samples. A total of 242 upregulated proteins and 68 downregulated proteins were among the DEPs. Some protein expression levels were significantly elevated or decreased in patients with chronic hepatitis B, indicating a relation to chronic liver disease, which should be further investigated.
{"title":"Data-independent acquisition-based mass spectrometry(DIA-MS) for quantitative analysis of patients with chronic hepatitis B.","authors":"Bo Wang, Qian Zhang, Lili Wu, Cunliang Deng, Meiyan Luo, Yu Xie, Gang Wu, Wen Chen, Yunjian Sheng, Peng Zhu, Gang Qin","doi":"10.1186/s12953-023-00209-6","DOIUrl":"https://doi.org/10.1186/s12953-023-00209-6","url":null,"abstract":"<p><p>Chronic hepatitis B is a significant public health problem and complex pathologic process, and unraveling the underlying mechanisms and pathophysiology is of great significance. Data independent acquisition mass spectrometry (DIA-MS) is a label-free quantitative proteomics method that has been successfully applied to the study of a wide range of diseases. The aim of this study was to apply DIA-MS for proteomic analysis of patients with chronic hepatitis B. We performed comprehensive proteomics analysis of protein expression in serum samples from HBV patients and healthy controls by using DIA-MS. Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein network analysis were performed on differentially expressed proteins and were further combined with literature analysis. We successfully identified a total of 3786 serum proteins with a high quantitative performance from serum samples in this study. We identified 310 differentially expressed proteins (DEPs) (fold change > 1.5 and P value < 0.05 as the criteria for a significant difference) between HBV and healthy samples. A total of 242 upregulated proteins and 68 downregulated proteins were among the DEPs. Some protein expression levels were significantly elevated or decreased in patients with chronic hepatitis B, indicating a relation to chronic liver disease, which should be further investigated.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"9"},"PeriodicalIF":2.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9953992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-08DOI: 10.1186/s12953-023-00206-9
Laurentia Stephani, Puji Rahayu, Debbie Retnoningrum, Maggy Thenawidjaja Suhartono, Heni Rachmawati, Raymond R Tjandrawinata
Background: Lumbrokinase derived from earthworms, Lumbricus rubellus is known to have fibrinolytic enzymes that have potential as therapeutic drugs due to its ability to dissolve fibrin. The current study is aimed to purify the Lumbrokinase from L. rubellus and identify its protein component.
Methods: Water extract of local earthworm Lumbricus rubellus revealed several proteins. Therefore, to identify its protein component, purification through HiPrep DEAE fast flow and proteomic analysis were conducted prior to identifications. A combination of two-dimension gel electrophoresis (2DE) and electrospray ionization mass spectrometry analysis was used to identify the purified fractions.
Results: The purified fractions contain five protein bands, namely F25-1, F25-2, F85-1, F85-2, and F85-3, which displayed strong fibrinogenolytic activity. F25 fractions showed fibrinogenolytic activity of 974.85 U/mg, while F85 fractions showed higher activity of 1,484.11 U/mg. Fractions F85-1, F85-2, and F85-3 showed molecular weights of 42.6 kDa, 27.03 kDa, and 14 kDa, respectively and were identified as Lumbrokinase iso-enzymes.
Conclusion: This preliminary study indicates that the F25 and F85 fractions are similar to published fibrinolytic protease-1 and lumbrokinase, respectively, in terms of their amino acid sequence.
{"title":"Purification and proteomic analysis of potent fibrinolytic enzymes extracted from Lumbricus rubellus.","authors":"Laurentia Stephani, Puji Rahayu, Debbie Retnoningrum, Maggy Thenawidjaja Suhartono, Heni Rachmawati, Raymond R Tjandrawinata","doi":"10.1186/s12953-023-00206-9","DOIUrl":"https://doi.org/10.1186/s12953-023-00206-9","url":null,"abstract":"<p><strong>Background: </strong>Lumbrokinase derived from earthworms, Lumbricus rubellus is known to have fibrinolytic enzymes that have potential as therapeutic drugs due to its ability to dissolve fibrin. The current study is aimed to purify the Lumbrokinase from L. rubellus and identify its protein component.</p><p><strong>Methods: </strong>Water extract of local earthworm Lumbricus rubellus revealed several proteins. Therefore, to identify its protein component, purification through HiPrep DEAE fast flow and proteomic analysis were conducted prior to identifications. A combination of two-dimension gel electrophoresis (2DE) and electrospray ionization mass spectrometry analysis was used to identify the purified fractions.</p><p><strong>Results: </strong>The purified fractions contain five protein bands, namely F25-1, F25-2, F85-1, F85-2, and F85-3, which displayed strong fibrinogenolytic activity. F25 fractions showed fibrinogenolytic activity of 974.85 U/mg, while F85 fractions showed higher activity of 1,484.11 U/mg. Fractions F85-1, F85-2, and F85-3 showed molecular weights of 42.6 kDa, 27.03 kDa, and 14 kDa, respectively and were identified as Lumbrokinase iso-enzymes.</p><p><strong>Conclusion: </strong>This preliminary study indicates that the F25 and F85 fractions are similar to published fibrinolytic protease-1 and lumbrokinase, respectively, in terms of their amino acid sequence.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"8"},"PeriodicalIF":2.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9795922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-29DOI: 10.1186/s12953-023-00208-7
Yesen Zhang, Yi Han, Yuchun Shang, Xiangyu Wang, Jiwei Sun
Objective: We investigated differentially expressed proteins (DEPs) in human glioblastoma U87 cells after treatment with hederagenin as a therapeutic screening mechanism and provided a theoretical basis for hederagenin in treating glioblastoma.
Methods: The Cell Counting Kit 8 assay was used to analyze the inhibitory effect of hederagenin on the proliferation of U87 cells. Protein was identified by tandem mass tags and LC-MS/MS analysis techniques. Annotation of DEPs, Gene Ontology enrichment and function, and Kyoto Encyclopedia of Genes and Genomes pathways and domains were all examined by bioinformatics. According to the TMT results, hub protein was selected from DEPs for WB verification.
Results: Protein quantitative analysis found 6522 proteins in total. Compared with the control group, 43 DEPs (P < 0.05) were involved in the highly enriched signaling pathway in the hederagenin group, among which 20 proteins were upregulated, and 23 proteins were downregulated. These different proteins are mainly involved in the longness regulating pathway-WORM, the hedgehog signaling pathway, Staphylococcus aureus infection, complement, coagulation cascades, and mineral absorption. KIF7 and ATAD2B expression were significantly down-regulated and PHEX and TIMM9 expression were significantly upregulated, according to WB analysis, supporting the TMT findings.
Conclusion: Hederagenin inhibition of GBM U87 cells may be related to KIF7, which is mainly involved in the hedgehog signaling pathway. Our findings lay a foundation for additional study of the therapeutic mechanism of hederagenin.
{"title":"Proteomics identifies differentially expressed proteins in glioblastoma U87 cells treated with hederagenin.","authors":"Yesen Zhang, Yi Han, Yuchun Shang, Xiangyu Wang, Jiwei Sun","doi":"10.1186/s12953-023-00208-7","DOIUrl":"https://doi.org/10.1186/s12953-023-00208-7","url":null,"abstract":"<p><strong>Objective: </strong>We investigated differentially expressed proteins (DEPs) in human glioblastoma U87 cells after treatment with hederagenin as a therapeutic screening mechanism and provided a theoretical basis for hederagenin in treating glioblastoma.</p><p><strong>Methods: </strong>The Cell Counting Kit 8 assay was used to analyze the inhibitory effect of hederagenin on the proliferation of U87 cells. Protein was identified by tandem mass tags and LC-MS/MS analysis techniques. Annotation of DEPs, Gene Ontology enrichment and function, and Kyoto Encyclopedia of Genes and Genomes pathways and domains were all examined by bioinformatics. According to the TMT results, hub protein was selected from DEPs for WB verification.</p><p><strong>Results: </strong>Protein quantitative analysis found 6522 proteins in total. Compared with the control group, 43 DEPs (P < 0.05) were involved in the highly enriched signaling pathway in the hederagenin group, among which 20 proteins were upregulated, and 23 proteins were downregulated. These different proteins are mainly involved in the longness regulating pathway-WORM, the hedgehog signaling pathway, Staphylococcus aureus infection, complement, coagulation cascades, and mineral absorption. KIF7 and ATAD2B expression were significantly down-regulated and PHEX and TIMM9 expression were significantly upregulated, according to WB analysis, supporting the TMT findings.</p><p><strong>Conclusion: </strong>Hederagenin inhibition of GBM U87 cells may be related to KIF7, which is mainly involved in the hedgehog signaling pathway. Our findings lay a foundation for additional study of the therapeutic mechanism of hederagenin.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"7"},"PeriodicalIF":2.0,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9391373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy cancer among the malignancies of thyroid. Despite of wide usages of proteomics in PTC, the profile of acetylated proteins in PTC remains unsettled, which is helpful for understanding the carcinogenesis mechanism and identifying useful biomarkers for PTC.
Methods: The surgically removed specimens of cancer tissues (Ca-T) and adjacent normal tissues (Ca-N) from 10 female patients pathological diagnosed as PTC (TNM stage III) were enrolled in the study. After preparing the pooled extracts of the whole proteins and the acetylated proteins from 10 cases, TMT labeling and LC/MS/MS methods were applied to the assays of global proteomics and acetylated proteomics separately. Bioinformatics analysis, including KEGG, gene ontology (GO) and hierarchical clustering were performed. Some differentially expressed proteins (DEPs) and differentially expressed acetylated proteins (DEAPs) were validated by individual Western blots.
Results: Controlled with the normal tissues adjacent to the lesions, 147 out of 1923 identified proteins in tumor tissues were considered as DEPs in global proteomics, including 78 up-regulated and 69 down-regulated ones, while 57 out of 311 identified acetylated proteins in tumor tissues were DEAPs in acetylated proteomics, including 32 up-regulated and 25 down-regulated, respectively. The top 3 up- and down-regulated DEPs were fibronectin 1, KRT1B protein and chitinase-3-like protein 1, as well as keratin, type I cytoskeletal 16, A-gamma globin Osilo variant and Huntingtin interacting protein-1. The top 3 up- and down-regulated DEAPs were ribosomal protein L18a-like protein, alpha-1-acid glycoprotein 2 and eukaryotic peptide chain release factor GTP-binding subunit ERF3A, as well as trefoil factor 3, thyroglobulin and histone H2B. Functional GO annotation and KEGG pathway analysis based on the DEPs and DEAPs showed completely different changing pictures. Contrary to the top 10 up- and -down regulated DEPs, most of which were addressed in PTC and other types of carcinomas, changes of the majority DEAPs were not mentioned in the literatures.
Conclusions: Taken the profiling of the global and acetylated proteomics together will provide more broad view of protein alterations on the carcinogenesis and new direction for selecting biomarker for diagnosis of PTC.
{"title":"Proteomics profiling for the global and acetylated proteins of papillary thyroid cancers.","authors":"Wei Wei, Yuezhang Wu, Dong-Dong Chen, Yuntao Song, Guohui Xu, Qi Shi, Xiao-Ping Dong","doi":"10.1186/s12953-023-00207-8","DOIUrl":"https://doi.org/10.1186/s12953-023-00207-8","url":null,"abstract":"<p><strong>Background: </strong>Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy cancer among the malignancies of thyroid. Despite of wide usages of proteomics in PTC, the profile of acetylated proteins in PTC remains unsettled, which is helpful for understanding the carcinogenesis mechanism and identifying useful biomarkers for PTC.</p><p><strong>Methods: </strong>The surgically removed specimens of cancer tissues (Ca-T) and adjacent normal tissues (Ca-N) from 10 female patients pathological diagnosed as PTC (TNM stage III) were enrolled in the study. After preparing the pooled extracts of the whole proteins and the acetylated proteins from 10 cases, TMT labeling and LC/MS/MS methods were applied to the assays of global proteomics and acetylated proteomics separately. Bioinformatics analysis, including KEGG, gene ontology (GO) and hierarchical clustering were performed. Some differentially expressed proteins (DEPs) and differentially expressed acetylated proteins (DEAPs) were validated by individual Western blots.</p><p><strong>Results: </strong>Controlled with the normal tissues adjacent to the lesions, 147 out of 1923 identified proteins in tumor tissues were considered as DEPs in global proteomics, including 78 up-regulated and 69 down-regulated ones, while 57 out of 311 identified acetylated proteins in tumor tissues were DEAPs in acetylated proteomics, including 32 up-regulated and 25 down-regulated, respectively. The top 3 up- and down-regulated DEPs were fibronectin 1, KRT1B protein and chitinase-3-like protein 1, as well as keratin, type I cytoskeletal 16, A-gamma globin Osilo variant and Huntingtin interacting protein-1. The top 3 up- and down-regulated DEAPs were ribosomal protein L18a-like protein, alpha-1-acid glycoprotein 2 and eukaryotic peptide chain release factor GTP-binding subunit ERF3A, as well as trefoil factor 3, thyroglobulin and histone H2B. Functional GO annotation and KEGG pathway analysis based on the DEPs and DEAPs showed completely different changing pictures. Contrary to the top 10 up- and -down regulated DEPs, most of which were addressed in PTC and other types of carcinomas, changes of the majority DEAPs were not mentioned in the literatures.</p><p><strong>Conclusions: </strong>Taken the profiling of the global and acetylated proteomics together will provide more broad view of protein alterations on the carcinogenesis and new direction for selecting biomarker for diagnosis of PTC.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"6"},"PeriodicalIF":2.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9360957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-15DOI: 10.1186/s12953-023-00204-x
BaiNian Zhang, Lan Bu, Hui Tian, ZhangQiang You, MingHai Zhao, Jie Tian, YuanYuan Zhang, Qian Wang, ChengJia Tan, Yu Cao, DaRen Feng, ZhenPeng Xi
Objective: This study aims to explore the effect of an extract of Atractylodes lancea (A. lancea) on antibiotics-induced intestinal tract disorder and the probable therapeutic mechanisms employed by this extract to ameliorate these disorders.
Methods: Three days after acclimatization, nine male and nine female specific-pathogen-free (SPF) mice were randomly assigned into three groups: Group C (normal saline), Group M (antibiotic: cefradine + gentamicin), and Group T (antibiotic + A. lancea extract). Each mouse in Groups M and T received intragastric (i.g.) gavage antibiotics containing cefradine and gentamicin sulfate (0.02 ml/g-1/D-1) for 7 days. A. lancea extract (0.02 ml/g-1/D-1) was administered by i.g. gavage to Group T mice for 7 days following the cessation of antibiotic therapy. Group M received an equivalent volume of normal saline for 7 days, while Group C received an equivalent volume of normal saline for 14 days. Afterwards, we collected mouse feces to assess changes in intestinal microbiota by 16S ribosomal ribonucleic acid (rRNA) sequencing and metabolomics. In addition, serum samples were gathered and analyzed using liquid chromatography-mass spectrometry (LS-MS). Finally, we performed a correlation analysis between intestinal microbiota and metabolites.
Results: After treatment with antibiotic, the richness and diversity of the flora, numbers of wall-breaking bacteria and Bacteroidetes, and the numbers of beneficial bacteria decreased, while the numbers of harmful bacteria increased. After i.g. administration of A. lancea extract, the imbalance of microbial flora began to recover. Antibiotics primarily influence the metabolism of lipids, steroids, peptides, organic acids, and carbohydrates, with lipid compounds ranking first. Arachidonic acid (AA), arginine, and proline have relatively strong effects on the metabolisms of antibiotic-stressed mice. Our findings revealed that A. lancea extract might restore the metabolism of AA and L-methionine. The content of differential metabolites detected in the serum of Group T mice was comparable to that in the serum of Group C mice, but significantly different from that of Group M mice. Compared to putative biomarkers in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, it was found that altered metabolites, such as amino acids, glycerol, and phospholipids, were primarily associated with the metabolism.
Conclusions: The effective mechanisms of A. lancea extract in regulating the disorder of intestinal flora in mice are related to the mechanisms of A. lancea. It could relate to lipid metabolism, bile acid metabolism, and amino acid metabolism. These results will provide a basis for further explaining the mechanism by which A. lancea regulats intestinal flora.
{"title":"Effects of Atractylodes lancea extracts on intestinal flora and serum metabolites in mice with intestinal dysbacteriosis.","authors":"BaiNian Zhang, Lan Bu, Hui Tian, ZhangQiang You, MingHai Zhao, Jie Tian, YuanYuan Zhang, Qian Wang, ChengJia Tan, Yu Cao, DaRen Feng, ZhenPeng Xi","doi":"10.1186/s12953-023-00204-x","DOIUrl":"https://doi.org/10.1186/s12953-023-00204-x","url":null,"abstract":"<p><strong>Objective: </strong>This study aims to explore the effect of an extract of Atractylodes lancea (A. lancea) on antibiotics-induced intestinal tract disorder and the probable therapeutic mechanisms employed by this extract to ameliorate these disorders.</p><p><strong>Methods: </strong>Three days after acclimatization, nine male and nine female specific-pathogen-free (SPF) mice were randomly assigned into three groups: Group C (normal saline), Group M (antibiotic: cefradine + gentamicin), and Group T (antibiotic + A. lancea extract). Each mouse in Groups M and T received intragastric (i.g.) gavage antibiotics containing cefradine and gentamicin sulfate (0.02 ml/g<sup>-1</sup>/D<sup>-1</sup>) for 7 days. A. lancea extract (0.02 ml/g<sup>-1</sup>/D<sup>-1</sup>) was administered by i.g. gavage to Group T mice for 7 days following the cessation of antibiotic therapy. Group M received an equivalent volume of normal saline for 7 days, while Group C received an equivalent volume of normal saline for 14 days. Afterwards, we collected mouse feces to assess changes in intestinal microbiota by 16S ribosomal ribonucleic acid (rRNA) sequencing and metabolomics. In addition, serum samples were gathered and analyzed using liquid chromatography-mass spectrometry (LS-MS). Finally, we performed a correlation analysis between intestinal microbiota and metabolites.</p><p><strong>Results: </strong>After treatment with antibiotic, the richness and diversity of the flora, numbers of wall-breaking bacteria and Bacteroidetes, and the numbers of beneficial bacteria decreased, while the numbers of harmful bacteria increased. After i.g. administration of A. lancea extract, the imbalance of microbial flora began to recover. Antibiotics primarily influence the metabolism of lipids, steroids, peptides, organic acids, and carbohydrates, with lipid compounds ranking first. Arachidonic acid (AA), arginine, and proline have relatively strong effects on the metabolisms of antibiotic-stressed mice. Our findings revealed that A. lancea extract might restore the metabolism of AA and L-methionine. The content of differential metabolites detected in the serum of Group T mice was comparable to that in the serum of Group C mice, but significantly different from that of Group M mice. Compared to putative biomarkers in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, it was found that altered metabolites, such as amino acids, glycerol, and phospholipids, were primarily associated with the metabolism.</p><p><strong>Conclusions: </strong>The effective mechanisms of A. lancea extract in regulating the disorder of intestinal flora in mice are related to the mechanisms of A. lancea. It could relate to lipid metabolism, bile acid metabolism, and amino acid metabolism. These results will provide a basis for further explaining the mechanism by which A. lancea regulats intestinal flora.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"5"},"PeriodicalIF":2.0,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10105428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9685288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Macrophages have a vital role in phagocytosis and antiviral effect against invading influenza viruses. Previously, we found that methionine enkephalin (MENK) inhibited influenza virus infection by upregulating the "antiviral state" of macrophages. To investigate the immunoregulatory mechanism of action of MENK on macrophages, we employed proteomic analysis to identify differentially expressed proteins (DEPs) between macrophages infected with the influenza-A virus and cells infected with the influenza-A virus after pretreatment with MENK. A total of 215 DEPs were identified: 164 proteins had upregulated expression and 51 proteins had downregulated expression. Proteomics analysis showed that DEPs were highly enriched in "cytokine-cytokine receptor interaction", "phagosome", and "complement and coagulation cascades pathway". Proteomics analysis revealed that MENK could be an immune modulator or prophylactic for the prevention and treatment of influenza. MENK promoted the polarization of M1 macrophages, activated inflammatory responses, and enhanced phagocytosis and killing function by upregulating opsonizing receptors.
{"title":"Proteomics analysis of methionine enkephalin upregulated macrophages against infection by the influenza-A virus.","authors":"Wenrui Fu, Zifeng Xie, Mei Bai, Zhen Zhang, Yuanlong Zhao, Jing Tian","doi":"10.1186/s12953-023-00205-w","DOIUrl":"https://doi.org/10.1186/s12953-023-00205-w","url":null,"abstract":"<p><p>Macrophages have a vital role in phagocytosis and antiviral effect against invading influenza viruses. Previously, we found that methionine enkephalin (MENK) inhibited influenza virus infection by upregulating the \"antiviral state\" of macrophages. To investigate the immunoregulatory mechanism of action of MENK on macrophages, we employed proteomic analysis to identify differentially expressed proteins (DEPs) between macrophages infected with the influenza-A virus and cells infected with the influenza-A virus after pretreatment with MENK. A total of 215 DEPs were identified: 164 proteins had upregulated expression and 51 proteins had downregulated expression. Proteomics analysis showed that DEPs were highly enriched in \"cytokine-cytokine receptor interaction\", \"phagosome\", and \"complement and coagulation cascades pathway\". Proteomics analysis revealed that MENK could be an immune modulator or prophylactic for the prevention and treatment of influenza. MENK promoted the polarization of M1 macrophages, activated inflammatory responses, and enhanced phagocytosis and killing function by upregulating opsonizing receptors.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"21 1","pages":"4"},"PeriodicalIF":2.0,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9669185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}