The stability of carotenoids in puff-dried yellow peach powder during commercial storage under different water activity conditions was studied. The results showed that when the corresponding water activity was above 0.576, the loss of adsorbed water in yellow peach powder was closely related to the crystallinity of the amorphous sugar matrix. However, the adsorption isotherms confirmed by water absorption behavior, X-ray diffraction (XRD) pat-terns, and scanning electron microscopy did not clearly indicate this loss of adsorbed water. The content changes of individual carotenoids (lutein, zeaxanthin, β-cryptoxanthin, α-carotene, and β-carotene) during storage followed pseudo first-order kinetics, and the degradation of lutein and zeaxanthin occurred quickly over time. The stability of total carotenoids gradually increased when the water activity was less than 0.576, but the carotenoids degraded sharply when the water activity was between 0.753 and 0.843. The loss of carotenoids was related to the water absorption and crystallization of the sugar matrix in the powder.
{"title":"Effects of different water activities on the stability of carotenoids in puff-dried yellow peach powder during storage","authors":"Gorby Gonzalles, Ningning Geng, Shuwei Luo, Chenchen Zhang, Cai-E. Wu, Dajing Li, Ying Li, Jiangfeng Song","doi":"10.15586/qas.v13sp2.944","DOIUrl":"https://doi.org/10.15586/qas.v13sp2.944","url":null,"abstract":"The stability of carotenoids in puff-dried yellow peach powder during commercial storage under different water activity conditions was studied. The results showed that when the corresponding water activity was above 0.576, the loss of adsorbed water in yellow peach powder was closely related to the crystallinity of the amorphous sugar matrix. However, the adsorption isotherms confirmed by water absorption behavior, X-ray diffraction (XRD) pat-terns, and scanning electron microscopy did not clearly indicate this loss of adsorbed water. The content changes of individual carotenoids (lutein, zeaxanthin, β-cryptoxanthin, α-carotene, and β-carotene) during storage followed pseudo first-order kinetics, and the degradation of lutein and zeaxanthin occurred quickly over time. The stability of total carotenoids gradually increased when the water activity was less than 0.576, but the carotenoids degraded sharply when the water activity was between 0.753 and 0.843. The loss of carotenoids was related to the water absorption and crystallization of the sugar matrix in the powder.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44378031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Hou, Rongyao Luo, Hui Ni, Ke Li, Fedrick C. Mgomi, Luyao Fan, Lei Yuan
The survival of foodborne pathogens under stressful food processing conditions and in host’s gastrointestinal tract has been widely reported to cause the outbreak of human diseases. Generally, antibiotics have been used to elimi-nate the microbial flora of foodborne pathogens. However, the overuse of antibiotics has contributed to the emergence and spread of multi-drug-resistant foodborne pathogens. Kombucha is a beverage prepared by fermenting sugared tea or other substrates with a symbiotic culture of yeasts and bacteria, and has been proved to fight food-borne pathogens and affect gastrointestinal microbial flora to prevent foodborne illnesses. In this context, this review primarily focused on microbiological and chemical compositions of kombucha obtained by fermenting different substrates. It further discussed the antimicrobial activity of kombucha, as well as potential antimicrobial agents found in kombucha, and the limitations of kombucha in the food industry. In addition, the need for developing antimicrobial agents from kombucha has been discussed for potential applications. The information provided in this review indicates that kombucha could serve as an alternative approach to control pathogens in place of using antibiotics.
{"title":"Antimicrobial potential of kombucha against foodborne pathogens","authors":"J. Hou, Rongyao Luo, Hui Ni, Ke Li, Fedrick C. Mgomi, Luyao Fan, Lei Yuan","doi":"10.15586/qas.v13i3.920","DOIUrl":"https://doi.org/10.15586/qas.v13i3.920","url":null,"abstract":"The survival of foodborne pathogens under stressful food processing conditions and in host’s gastrointestinal tract has been widely reported to cause the outbreak of human diseases. Generally, antibiotics have been used to elimi-nate the microbial flora of foodborne pathogens. However, the overuse of antibiotics has contributed to the emergence and spread of multi-drug-resistant foodborne pathogens. Kombucha is a beverage prepared by fermenting sugared tea or other substrates with a symbiotic culture of yeasts and bacteria, and has been proved to fight food-borne pathogens and affect gastrointestinal microbial flora to prevent foodborne illnesses. In this context, this review primarily focused on microbiological and chemical compositions of kombucha obtained by fermenting different substrates. It further discussed the antimicrobial activity of kombucha, as well as potential antimicrobial agents found in kombucha, and the limitations of kombucha in the food industry. In addition, the need for developing antimicrobial agents from kombucha has been discussed for potential applications. The information provided in this review indicates that kombucha could serve as an alternative approach to control pathogens in place of using antibiotics.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43173665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Huaxiang, Yang Xiaojun, Xiao-yan Zhu, Lu Gao, Sheng-qi Rao, Lei Yuan, Zhen-quan Yang
Cronobacter sakazakii (C. sakazakii) is an important pathogen contaminating dairy products (e.g., milk pow-der) and causes high mortality in infants. Bacteriophage as a potential biocontrol agent is a good alternative method for the control of this pathogen in dairy production and its environment. Thus, it is important to complete the C. sakazakii phage library by isolating and characterizing the broad host range of bacteriophage against C. sakazakii for control use. In this study, C. sakazakii strains from different sources were used as hosts to isolate and purify phages from human stool and sewage samples by double-layer plates. The biological characteristics, antibacterial properties, and genomes of these phages were then studied. Finally, ten virulent phages (EspYZU01–EspYZU10) infecting C. sakazakii were isolated and identified as belonging to the Myoviridae, Podoviridae, Tectivirus, and Stylovinidae families. Phage EspYZU08 presented the broadest host range and could infect all the five host strains of C. sakazakii. All 10 phages retained their infectivity at 50°C and pH 5–9. Both genomes of EspYZU05 and EspYZU08 were double-stranded DNAs with sizes of 41723 bp and 145582 bp, G+C contents of 55.69% and 46.75%, and open reading frames of 47 and 103, respectively. No toxins and antibiotic resistance genes were detected in both EspYZU05 and EspYZU08. Phage EspYZU08 and phage cocktail-3 (EspYZU01 + EspYZU03 + EspYZU08 + EspYZU09 + EspYZU10) presented excellent antibacterial efficacy for C. sakazakii in liquid broth and milk at 4°C, 25°C, and 37°C, suggesting that the phages in this study have great potential for the development of biocontrol agents against C. sakazakii in dairy and its processing environment.
{"title":"Isolation and characterization of broad host-range of bacteriophages infecting Cronobacter sakazakii and its biocontrol potential in dairy products","authors":"Li Huaxiang, Yang Xiaojun, Xiao-yan Zhu, Lu Gao, Sheng-qi Rao, Lei Yuan, Zhen-quan Yang","doi":"10.15586/qas.v13i3.890","DOIUrl":"https://doi.org/10.15586/qas.v13i3.890","url":null,"abstract":"Cronobacter sakazakii (C. sakazakii) is an important pathogen contaminating dairy products (e.g., milk pow-der) and causes high mortality in infants. Bacteriophage as a potential biocontrol agent is a good alternative method for the control of this pathogen in dairy production and its environment. Thus, it is important to complete the C. sakazakii phage library by isolating and characterizing the broad host range of bacteriophage against C. sakazakii for control use. In this study, C. sakazakii strains from different sources were used as hosts to isolate and purify phages from human stool and sewage samples by double-layer plates. The biological characteristics, antibacterial properties, and genomes of these phages were then studied. Finally, ten virulent phages (EspYZU01–EspYZU10) infecting C. sakazakii were isolated and identified as belonging to the Myoviridae, Podoviridae, Tectivirus, and Stylovinidae families. Phage EspYZU08 presented the broadest host range and could infect all the five host strains of C. sakazakii. All 10 phages retained their infectivity at 50°C and pH 5–9. Both genomes of EspYZU05 and EspYZU08 were double-stranded DNAs with sizes of 41723 bp and 145582 bp, G+C contents of 55.69% and 46.75%, and open reading frames of 47 and 103, respectively. No toxins and antibiotic resistance genes were detected in both EspYZU05 and EspYZU08. Phage EspYZU08 and phage cocktail-3 (EspYZU01 + EspYZU03 + EspYZU08 + EspYZU09 + EspYZU10) presented excellent antibacterial efficacy for C. sakazakii in liquid broth and milk at 4°C, 25°C, and 37°C, suggesting that the phages in this study have great potential for the development of biocontrol agents against C. sakazakii in dairy and its processing environment.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43285480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, the optimal process to improve the efficiency of microwave drying of rice is studied. The optimal conditions for reducing the crack rate and improving the head rice rate are analyzed according to the principle of the orthogonal experiment. The optimization method of the rice microwave drying process parameters is proposed to simultaneously consider the two indicators, namely, crack and head rice rates, based on the grey system theory. The grey correlation degree analysis is carried out on the process conditions of the microwave drying rice. The result shows that the main factor affecting the integrity rate of the rice grain is the vacuum degree, and the main factor affecting the crack rate is the loading density. The grey correlation degree curve of head rice and crack rate fluctuates greatly, and the correlation between the two indexes is high. According to the grey correlation degree, the optimal parameters are microwave power of 500 W, vacuum degree of 0.02 MPa, and loading density of 1289.89 kg/m3. The head rice and crack rate are both optimized when drying under the parameters. The results provide a guiding method for the study of the correlation degree between drying indexes and provide a method basis for the further selection of the best drying process.
{"title":"Optimization method of microwave drying process parameters for rice","authors":"T. Sun, Fan Ling","doi":"10.15586/qas.v13i3.917","DOIUrl":"https://doi.org/10.15586/qas.v13i3.917","url":null,"abstract":"In this work, the optimal process to improve the efficiency of microwave drying of rice is studied. The optimal conditions for reducing the crack rate and improving the head rice rate are analyzed according to the principle of the orthogonal experiment. The optimization method of the rice microwave drying process parameters is proposed to simultaneously consider the two indicators, namely, crack and head rice rates, based on the grey system theory. The grey correlation degree analysis is carried out on the process conditions of the microwave drying rice. The result shows that the main factor affecting the integrity rate of the rice grain is the vacuum degree, and the main factor affecting the crack rate is the loading density. The grey correlation degree curve of head rice and crack rate fluctuates greatly, and the correlation between the two indexes is high. According to the grey correlation degree, the optimal parameters are microwave power of 500 W, vacuum degree of 0.02 MPa, and loading density of 1289.89 kg/m3. The head rice and crack rate are both optimized when drying under the parameters. The results provide a guiding method for the study of the correlation degree between drying indexes and provide a method basis for the further selection of the best drying process.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43960945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yajun Zhu, Haoran Wu, Futian Wang, Shaotong Jiang, Lin Lin, Jianfeng Lu
Flavor crab meat sauce (FCMS) is a new type of aquatic condiment that is not only rich in nutrition but also unique in terms of flavor. However, very little is known about how sterilization methods affect the sensory quality and volatile flavor of FCMS. In the present study, canned FCMS was subjected to the following sterilization methods: pasteurization (PS), microwave sterilization (MS), ultrasonic sterilization (US), and high temperature sterilization (HTS). Each sterilization method was evaluated on the basis of texture, color, sensory score, volatile flavor, and total viable counts in FCMS observed after sterilization. Results demonstrated that the total viable count decreased to 28, 26, 58, and 18 CFU/g respectively after PS, MS, US, and HTS treatments; no coliform group was detected in any of these samples. PS and MS had no significant effect on the texture of FCMS (P > 0.05), but US and HTS reduced hardness and viscosity of FCMS. MS and HTS significantly reduced the L*, a*, and b* values of FCMS (P < 0.05). The original brightness and red value of FCMS remained the same after PS and US. MS and HTS reduced the sensory score of FCMS to a great extent, while PS and US maintained the original sensory score of FCMS. Assessment of volatile flavor profile of FCMS post different sterilization treatments revealed that MS and HTS reduced the total ester content, while US reduced the total amount of alcohols in FCMS. However, PS not only maintained the original total amount of esters in FCMS, but also increased the content of alcohols, aldehydes, and ketones. Therefore, PS could be selected as a feasible sterilization method for FCMS among the four different sterilization methods.
{"title":"Effect of different sterilization methods on sensory quality and volatile flavor of flavor crab meat sauce","authors":"Yajun Zhu, Haoran Wu, Futian Wang, Shaotong Jiang, Lin Lin, Jianfeng Lu","doi":"10.15586/QAS.V13I3.896","DOIUrl":"https://doi.org/10.15586/QAS.V13I3.896","url":null,"abstract":"Flavor crab meat sauce (FCMS) is a new type of aquatic condiment that is not only rich in nutrition but also unique in terms of flavor. However, very little is known about how sterilization methods affect the sensory quality and volatile flavor of FCMS. In the present study, canned FCMS was subjected to the following sterilization methods: pasteurization (PS), microwave sterilization (MS), ultrasonic sterilization (US), and high temperature sterilization (HTS). Each sterilization method was evaluated on the basis of texture, color, sensory score, volatile flavor, and total viable counts in FCMS observed after sterilization. Results demonstrated that the total viable count decreased to 28, 26, 58, and 18 CFU/g respectively after PS, MS, US, and HTS treatments; no coliform group was detected in any of these samples. PS and MS had no significant effect on the texture of FCMS (P > 0.05), but US and HTS reduced hardness and viscosity of FCMS. MS and HTS significantly reduced the L*, a*, and b* values of FCMS (P < 0.05). The original brightness and red value of FCMS remained the same after PS and US. MS and HTS reduced the sensory score of FCMS to a great extent, while PS and US maintained the original sensory score of FCMS. Assessment of volatile flavor profile of FCMS post different sterilization treatments revealed that MS and HTS reduced the total ester content, while US reduced the total amount of alcohols in FCMS. However, PS not only maintained the original total amount of esters in FCMS, but also increased the content of alcohols, aldehydes, and ketones. Therefore, PS could be selected as a feasible sterilization method for FCMS among the four different sterilization methods.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49578845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Histamine is a toxic metabolite produced in foods containing a high level of free histidine. This compound can be present in various food sources, especially seafood, dairy products, and fermented foods. Histamine poisoning is one of the most common health risks caused by consuming spoiled foods or improper processed and stored foods. This food poisoning usually causes mild symptoms with higher recovery rates, so people underestimate this hazard. Thus, understanding histamine formation food sources with a high risk for this poisonous agent is critical in improving the awareness of this hazard for food producers and consumers. To avoid histamine-associated food poisoning, the development of control solutions to minimize the formation of histamine and the sufficient detection methods to examine the content of this metabolite in food products are vital. In addition to quality control application and hazards management programs in food processing, the appropriate food regulations identifying the precise limit of histamine in foods are essential for preventing this poisoning from occurring in the food supply chain. This review discusses the prevalence, control strategies, detection techniques, and regulations related to histamine hazards in foods.
{"title":"Prevalence, determination, and control of histamine formation in food concerning food safety aspect","authors":"C. Hoang, T. Nguyen, T. Le","doi":"10.15586/QAS.V13I2.886","DOIUrl":"https://doi.org/10.15586/QAS.V13I2.886","url":null,"abstract":"Histamine is a toxic metabolite produced in foods containing a high level of free histidine. This compound can be present in various food sources, especially seafood, dairy products, and fermented foods. Histamine poisoning is one of the most common health risks caused by consuming spoiled foods or improper processed and stored foods. This food poisoning usually causes mild symptoms with higher recovery rates, so people underestimate this hazard. Thus, understanding histamine formation food sources with a high risk for this poisonous agent is critical in improving the awareness of this hazard for food producers and consumers. To avoid histamine-associated food poisoning, the development of control solutions to minimize the formation of histamine and the sufficient detection methods to examine the content of this metabolite in food products are vital. In addition to quality control application and hazards management programs in food processing, the appropriate food regulations identifying the precise limit of histamine in foods are essential for preventing this poisoning from occurring in the food supply chain. This review discusses the prevalence, control strategies, detection techniques, and regulations related to histamine hazards in foods.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":"13 1","pages":"101-117"},"PeriodicalIF":4.0,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46696254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study aimed to investigate total flavonoid (TFC), cyanidin-3-glucoside (Cyd-3-glu) content, and antioxidant and antibacterial activities of ethanolic seed coat extract of two safflower genotypes (genotype C111 and A82) with contrasting seed coat colors. Despite the absence of Cyd-3-glu in seed coat extracts of white-seeded genotype C111 versus black-seeded genotype A82 and equal TFC index between the two genotypes, there was no significant difference in their antioxidant activity. Also, the ethanolic extract has growth inhibitory properties in pathogenic bacteria. It seems that differences in type and level of secondary metabolites of the seed coat with different color patterns can result in the ethanolic extract’s antioxidant activity. In addition, the results confirmed that seed coat color has not effect on the level (or severity) of the antibacterial properties of ethanolic seed coat extract.
{"title":"Antioxidant and antibacterial activity of ethanolic extract of safflower with contrasting seed coat colors","authors":"Basaki Tayebeh, Karami Soraya, A. Khaneghah","doi":"10.15586/QAS.V13I2.866","DOIUrl":"https://doi.org/10.15586/QAS.V13I2.866","url":null,"abstract":"The present study aimed to investigate total flavonoid (TFC), cyanidin-3-glucoside (Cyd-3-glu) content, and antioxidant and antibacterial activities of ethanolic seed coat extract of two safflower genotypes (genotype C111 and A82) with contrasting seed coat colors. Despite the absence of Cyd-3-glu in seed coat extracts of white-seeded genotype C111 versus black-seeded genotype A82 and equal TFC index between the two genotypes, there was no significant difference in their antioxidant activity. Also, the ethanolic extract has growth inhibitory properties in pathogenic bacteria. It seems that differences in type and level of secondary metabolites of the seed coat with different color patterns can result in the ethanolic extract’s antioxidant activity. In addition, the results confirmed that seed coat color has not effect on the level (or severity) of the antibacterial properties of ethanolic seed coat extract.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":"13 1","pages":"94-100"},"PeriodicalIF":4.0,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48768855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Bashiry, H. Hoseini, Abdoreza Mohammadi, E. Sadeghi, Nader Karimian-khosroshahi, F. Barba, A. Khaneghah
Polyamines, including putrescine, spermidine, and spermine, are biological compounds present in nearly all food items. Their desirable physiological effects include cell division and growth. Hence, are undesirable in the diet of patients with tumor. This study aimed to assess the impact of curing agents (sodium chloride (0–2 g), sodium nitrite (0–200 ppm), sodium polyphosphate (0–0.5 g), and ascorbic acid (0–500 ppm)), cooking (frying (180°C), and boiling (100°C)) on polyamine contents in turkey breast meat using response surface methodology based on central composite design and dispersive liquid-liquid microextraction. Postprocessing changes were investigated using a high-performance liquid chromatography equipped with an ultraviolet detector. Study outcomes showed the presence of sodium chloride, sodium nitrite, and sodium polyphosphate in turkey meat reduced the putrescine and spermine content significantly (P < 0.0001). The addition of ascorbic acid as a curing agent slightly increased the concentration of polyamines, while no significant linear effects were associated with the thermal processes. The study observed that curing agents like sodium chloride, sodium nitrite, sodium polyphosphate, and ascorbic acid at 2 g, 200 ppm, 0.5 g, and 382 ppm, respectively, in frying mode minimized spermine and putrescine content with more than 96% desirability. In conclusion, curing additives and cooking are promising procedures for polyamine reduction in turkey breast meat.
{"title":"Industrial and culinary practice effects on biologically active polyamines level in turkey meat","authors":"M. Bashiry, H. Hoseini, Abdoreza Mohammadi, E. Sadeghi, Nader Karimian-khosroshahi, F. Barba, A. Khaneghah","doi":"10.15586/QAS.V13I2.775","DOIUrl":"https://doi.org/10.15586/QAS.V13I2.775","url":null,"abstract":"Polyamines, including putrescine, spermidine, and spermine, are biological compounds present in nearly all food items. Their desirable physiological effects include cell division and growth. Hence, are undesirable in the diet of patients with tumor. This study aimed to assess the impact of curing agents (sodium chloride (0–2 g), sodium nitrite (0–200 ppm), sodium polyphosphate (0–0.5 g), and ascorbic acid (0–500 ppm)), cooking (frying (180°C), and boiling (100°C)) on polyamine contents in turkey breast meat using response surface methodology based on central composite design and dispersive liquid-liquid microextraction. Postprocessing changes were investigated using a high-performance liquid chromatography equipped with an ultraviolet detector. Study outcomes showed the presence of sodium chloride, sodium nitrite, and sodium polyphosphate in turkey meat reduced the putrescine and spermine content significantly (P < 0.0001). The addition of ascorbic acid as a curing agent slightly increased the concentration of polyamines, while no significant linear effects were associated with the thermal processes. The study observed that curing agents like sodium chloride, sodium nitrite, sodium polyphosphate, and ascorbic acid at 2 g, 200 ppm, 0.5 g, and 382 ppm, respectively, in frying mode minimized spermine and putrescine content with more than 96% desirability. In conclusion, curing additives and cooking are promising procedures for polyamine reduction in turkey breast meat.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":"13 1","pages":"67-78"},"PeriodicalIF":4.0,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43823459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wickerhamomyces anomalus and Saccharomyces cerevisiae were mixed by co-inoculation or sequential inocula-tion, and the physicochemical properties, electronic sensory characteristics, and aromatic characteristics of longan (Dimocarpus longan Lour.) wine were evaluated to analyze the effects of mixed fermentation on wine quality. The results demonstrate that mixed fermentation obtained by co-inoculation or sequential inoculation decreases the alcohol content of longan wine. Furthermore, mixed fermentation also leads to the reduction of the electronic sensory acidity and richness of longan wine. Moreover, the two mixed inoculation methods resulted in different effects on the aromatic characteristics of longan wine. The varieties of aldehyde and ketone aromatic compounds increase in longan wine fermented by co-inoculation, with increasing amounts of acids, aldehydes, ketones, and other compounds, and a decrease in the amounts of ester compounds. However, the variety of ester aromatic compounds and the amounts of acids, aldehydes, and ketones increase when using sequential inoculation. Therefore, the application of mixed fermentation can regulate the physicochemical properties, as well as the electronic sensory characteristics and aromatic characteristics of longan wine, and this contributes to the enrichment of the different types of longan wine.
{"title":"Effects of co-inoculation and sequential inoculation of Wickerhamomyces anomalus and Saccharomyces cerevisiae on the physicochemical properties and aromatic characteristics of longan (Dimocarpus longan Lour.) wine","authors":"Xiaozhu Liu, Yinfeng Li, Jichuang Zhou, Mingzheng Huang","doi":"10.15586/QAS.V13I2.893","DOIUrl":"https://doi.org/10.15586/QAS.V13I2.893","url":null,"abstract":"Wickerhamomyces anomalus and Saccharomyces cerevisiae were mixed by co-inoculation or sequential inocula-tion, and the physicochemical properties, electronic sensory characteristics, and aromatic characteristics of longan (Dimocarpus longan Lour.) wine were evaluated to analyze the effects of mixed fermentation on wine quality. The results demonstrate that mixed fermentation obtained by co-inoculation or sequential inoculation decreases the alcohol content of longan wine. Furthermore, mixed fermentation also leads to the reduction of the electronic sensory acidity and richness of longan wine. Moreover, the two mixed inoculation methods resulted in different effects on the aromatic characteristics of longan wine. The varieties of aldehyde and ketone aromatic compounds increase in longan wine fermented by co-inoculation, with increasing amounts of acids, aldehydes, ketones, and other compounds, and a decrease in the amounts of ester compounds. However, the variety of ester aromatic compounds and the amounts of acids, aldehydes, and ketones increase when using sequential inoculation. Therefore, the application of mixed fermentation can regulate the physicochemical properties, as well as the electronic sensory characteristics and aromatic characteristics of longan wine, and this contributes to the enrichment of the different types of longan wine.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":"13 1","pages":"56-66"},"PeriodicalIF":4.0,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43041481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mycotoxins, such as Ochratoxins, are widely distributed in nature and are common contaminants of human foodstuffs. Ochratoxins are a group of mycotoxins produced by a wide range of molds. Ochratoxin A (OTA), the most prominent member of this toxin family, is produced by various Aspergillus and Penicillium species. OTA is frequently found in foods such as cereals, oleaginous seeds, coffee, and meat products. This mycotoxin has been described as teratogenic, genotoxic, carcinogenic, and immunotoxic, and has been proven to be a potent neurotoxin. In the present study, the neurotoxicological perspective of OTA was reviewed and discussed. The main possible mechanisms of neurotoxicity are oxidative DNA, protein and lipid damage, and apoptosis. However, further studies are needed to conclude the exact neurotoxicity mechanism of OTA and find the approaches that reduce the neurotoxicity induced by OTA.
{"title":"Neurotoxicity mechanism of Ochratoxin A","authors":"F. Nourbakhsh, E. Tajbakhsh","doi":"10.15586/QAS.V13I2.837","DOIUrl":"https://doi.org/10.15586/QAS.V13I2.837","url":null,"abstract":"Mycotoxins, such as Ochratoxins, are widely distributed in nature and are common contaminants of human foodstuffs. Ochratoxins are a group of mycotoxins produced by a wide range of molds. Ochratoxin A (OTA), the most prominent member of this toxin family, is produced by various Aspergillus and Penicillium species. OTA is frequently found in foods such as cereals, oleaginous seeds, coffee, and meat products. This mycotoxin has been described as teratogenic, genotoxic, carcinogenic, and immunotoxic, and has been proven to be a potent neurotoxin. In the present study, the neurotoxicological perspective of OTA was reviewed and discussed. The main possible mechanisms of neurotoxicity are oxidative DNA, protein and lipid damage, and apoptosis. However, further studies are needed to conclude the exact neurotoxicity mechanism of OTA and find the approaches that reduce the neurotoxicity induced by OTA.","PeriodicalId":20868,"journal":{"name":"Quality Assurance and Safety of Crops & Foods","volume":"13 1","pages":"34-45"},"PeriodicalIF":4.0,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45684857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}