Bruno F E Matarèse, Rhea Desai, Deborah H Oughton, Carmel Mothersill
This paper starts with a brief history of the birth of the field of radioecology during the Cold War with a focus on US activity. We review the establishment of the international system for radiation protection and the science underlying the guidelines. We then discuss the famous ICRP 60 statement that if "Man" is protected, so is everything else and show how this led to a focus in radioecology on pathways to "Man" rather than concern about impacts on environments or ecosystems. We then review the contributions of Radiation Research Society members and papers published in Radiation Research which contributed to the knowledge base about effects on non-human species. These fed into international databases and computer-based tools such as ERICA and ResRad Biota to guide regulators. We then examine the origins of the concern that ICRP 60 is not sufficient to protect ecosystems and discuss the establishment of ICRP Committee 5 and its recommendations to establish reference animals and plants. The review finishes with current concerns that reference animals and plants (RAPs) are not sufficient to protect ecosystems, given the complexity of interacting factors such as the climate emergency and discusses the efforts of ICRP, the International Union of Radioecologists and other bodies to capture the concepts of ecosystem services and ecosystem complexity modelling in radioecology.
{"title":"EGO to ECO: Tracing the History of Radioecology from the 1950's to the Present Day.","authors":"Bruno F E Matarèse, Rhea Desai, Deborah H Oughton, Carmel Mothersill","doi":"10.1667/RADE-24-00035.1","DOIUrl":"10.1667/RADE-24-00035.1","url":null,"abstract":"<p><p>This paper starts with a brief history of the birth of the field of radioecology during the Cold War with a focus on US activity. We review the establishment of the international system for radiation protection and the science underlying the guidelines. We then discuss the famous ICRP 60 statement that if \"Man\" is protected, so is everything else and show how this led to a focus in radioecology on pathways to \"Man\" rather than concern about impacts on environments or ecosystems. We then review the contributions of Radiation Research Society members and papers published in Radiation Research which contributed to the knowledge base about effects on non-human species. These fed into international databases and computer-based tools such as ERICA and ResRad Biota to guide regulators. We then examine the origins of the concern that ICRP 60 is not sufficient to protect ecosystems and discuss the establishment of ICRP Committee 5 and its recommendations to establish reference animals and plants. The review finishes with current concerns that reference animals and plants (RAPs) are not sufficient to protect ecosystems, given the complexity of interacting factors such as the climate emergency and discusses the efforts of ICRP, the International Union of Radioecologists and other bodies to capture the concepts of ecosystem services and ecosystem complexity modelling in radioecology.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"273-288"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Susan M Bailey, Stephen R Kunkel, Joel S Bedford, Michael N Cornforth
Radiation cytogenetics has a rich history seldom appreciated by those outside the field. Early radiobiology was dominated by physics and biophysical concepts that borrowed heavily from the study of radiation-induced chromosome aberrations. From such studies, quantitative relationships between biological effect and changes in absorbed dose, dose rate and ionization density were codified into key concepts of radiobiological theory that have persisted for nearly a century. This review aims to provide a historical perspective of some of these concepts, including evidence supporting the contention that chromosome aberrations underlie development of many, if not most, of the biological effects of concern for humans exposed to ionizing radiations including cancer induction, on the one hand, and tumor eradication on the other. The significance of discoveries originating from these studies has widened and extended far beyond their original scope. Chromosome structural rearrangements viewed in mitotic cells were first attributed to the production of breaks by the radiations during interphase, followed by the rejoining or mis-rejoining among ends of other nearby breaks. These relatively modest beginnings eventually led to the discovery and characterization of DNA repair of double-strand breaks by non-homologous end joining, whose importance to various biological processes is now widely appreciated. Two examples, among many, are V(D)J recombination and speciation. Rapid technological advancements in cytogenetics, the burgeoning fields of molecular radiobiology and third-generation sequencing served as a point of confluence between the old and new. As a result, the emergent field of "cytogenomics" now becomes uniquely positioned for the purpose of more fully understanding mechanisms underlying the biological effects of ionizing radiation exposure.
辐射细胞遗传学有着丰富的历史,但该领域以外的人却很少了解。早期的放射生物学以物理学和生物物理学概念为主,这些概念大量借鉴了辐射诱导染色体畸变的研究。从这些研究中,生物效应与吸收剂量、剂量率和电离密度变化之间的定量关系被编纂成放射生物学理论的关键概念,这些概念已延续了近一个世纪。本综述旨在从历史的角度阐述其中的一些概念,包括支持以下论点的证据,即染色体畸变是许多(如果不是大多数)电离辐射对人类产生的生物效应的基础,包括诱发癌症和根除肿瘤。这些研究发现的意义已远远超出其最初的范围。有丝分裂细胞中的染色体结构重排最初被认为是由于间期辐射产生的断裂,随后是附近其他断裂末端的重新连接或错误连接。这些相对温和的开端最终导致了通过非同源末端连接对双链断裂进行 DNA 修复的发现和特征描述,其对各种生物过程的重要性现已得到广泛重视。V(D)J 重组和物种形成就是其中的两个例子。细胞遗传学、新兴的分子放射生物学和第三代测序技术的快速发展成为新旧技术的交汇点。因此,新兴的 "细胞基因组学 "领域在更全面地了解电离辐照的生物效应机制方面具有独特的优势。
{"title":"The Central Role of Cytogenetics in Radiation Biology.","authors":"Susan M Bailey, Stephen R Kunkel, Joel S Bedford, Michael N Cornforth","doi":"10.1667/RADE-24-00038.1","DOIUrl":"10.1667/RADE-24-00038.1","url":null,"abstract":"<p><p>Radiation cytogenetics has a rich history seldom appreciated by those outside the field. Early radiobiology was dominated by physics and biophysical concepts that borrowed heavily from the study of radiation-induced chromosome aberrations. From such studies, quantitative relationships between biological effect and changes in absorbed dose, dose rate and ionization density were codified into key concepts of radiobiological theory that have persisted for nearly a century. This review aims to provide a historical perspective of some of these concepts, including evidence supporting the contention that chromosome aberrations underlie development of many, if not most, of the biological effects of concern for humans exposed to ionizing radiations including cancer induction, on the one hand, and tumor eradication on the other. The significance of discoveries originating from these studies has widened and extended far beyond their original scope. Chromosome structural rearrangements viewed in mitotic cells were first attributed to the production of breaks by the radiations during interphase, followed by the rejoining or mis-rejoining among ends of other nearby breaks. These relatively modest beginnings eventually led to the discovery and characterization of DNA repair of double-strand breaks by non-homologous end joining, whose importance to various biological processes is now widely appreciated. Two examples, among many, are V(D)J recombination and speciation. Rapid technological advancements in cytogenetics, the burgeoning fields of molecular radiobiology and third-generation sequencing served as a point of confluence between the old and new. As a result, the emergent field of \"cytogenomics\" now becomes uniquely positioned for the purpose of more fully understanding mechanisms underlying the biological effects of ionizing radiation exposure.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"227-259"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From Radiation Genetics, Mutagenesis, Gap Junctions, Epigenetics, Stem Cells and an Integration of Radiation and Chemical Carcinogenesis.","authors":"James E Trosko","doi":"10.1667/RADE-24-00009.1","DOIUrl":"10.1667/RADE-24-00009.1","url":null,"abstract":"","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"408-419"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preface to Platinum Issue of Radiation Research.","authors":"Carmel Mothersill, Eleanor A Blakely","doi":"10.1667/RADE-24-PLATI.1","DOIUrl":"10.1667/RADE-24-PLATI.1","url":null,"abstract":"","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"101"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1667/RADE-24-00023.1.S1
L Marignol, S J McMahon
The relative biological effectiveness is a mathematical quantity first defined in the 1950s. This has resulted in more than 4,000 scientific papers published to date. Yet defining the correct value of the RBE to use in clinical practice remains a challenge. A scientific analysis in the radiation research literature can provide an understanding of how this mathematical quantity has evolved. The purpose of this study is to investigate documents published since 1950 using bibliometric indicators and network visualization. This analysis seeks to provide an assessment of global research activities, key themes, and RBE research within the radiation-related field. It strives to highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions. The Scopus Collection was searched for articles and reviews pertaining to RBE in radiation research from 1950 through 2023. Scopus and Bibiometrix analytic tools were used to investigate the most productive countries, researchers, collaboration networks, journals, along with the citation analysis of references and keywords. A total of 4,632 documents were retrieved produced by authors originating from 71 countries. Publication trends could be separated in 20-year groupings beginning with slow accrual from 1950 to 1970, an early rise from 1970-1990, followed by a sharp increase in the years 1990s-2010s that matches the development of charged particle therapy in clinics worldwide and opened discussion on the true value of the RBE in proton beam therapy. Since the 2010s, a steady 200 papers, on average, have been published per year. The United States produced the most publications overall (N = 1,378) and Radiation Research was the most likely journal to have published articles related to the RBE (606 publications during this period). J. Debus was the most prolific author (112 contributions, with 2,900 citations). The RBE has captured the research interest of over 7,000 authors in the past decade alone. This study supports that notion that the growth of the body of evidence surrounding the RBE, which started 75 years ago, is far from reaching its end. Applications to medicine have continuously dominated the field, with physics competing with Biochemistry, Genetics and Molecular Biology for second place over the decades. Future research can be predicted to continue.
{"title":"Research Trends in the Study of the Relative Biological Effectiveness: A Bibliometric Study.","authors":"L Marignol, S J McMahon","doi":"10.1667/RADE-24-00023.1.S1","DOIUrl":"10.1667/RADE-24-00023.1.S1","url":null,"abstract":"<p><p>The relative biological effectiveness is a mathematical quantity first defined in the 1950s. This has resulted in more than 4,000 scientific papers published to date. Yet defining the correct value of the RBE to use in clinical practice remains a challenge. A scientific analysis in the radiation research literature can provide an understanding of how this mathematical quantity has evolved. The purpose of this study is to investigate documents published since 1950 using bibliometric indicators and network visualization. This analysis seeks to provide an assessment of global research activities, key themes, and RBE research within the radiation-related field. It strives to highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions. The Scopus Collection was searched for articles and reviews pertaining to RBE in radiation research from 1950 through 2023. Scopus and Bibiometrix analytic tools were used to investigate the most productive countries, researchers, collaboration networks, journals, along with the citation analysis of references and keywords. A total of 4,632 documents were retrieved produced by authors originating from 71 countries. Publication trends could be separated in 20-year groupings beginning with slow accrual from 1950 to 1970, an early rise from 1970-1990, followed by a sharp increase in the years 1990s-2010s that matches the development of charged particle therapy in clinics worldwide and opened discussion on the true value of the RBE in proton beam therapy. Since the 2010s, a steady 200 papers, on average, have been published per year. The United States produced the most publications overall (N = 1,378) and Radiation Research was the most likely journal to have published articles related to the RBE (606 publications during this period). J. Debus was the most prolific author (112 contributions, with 2,900 citations). The RBE has captured the research interest of over 7,000 authors in the past decade alone. This study supports that notion that the growth of the body of evidence surrounding the RBE, which started 75 years ago, is far from reaching its end. Applications to medicine have continuously dominated the field, with physics competing with Biochemistry, Genetics and Molecular Biology for second place over the decades. Future research can be predicted to continue.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"177-184"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William F Blakely, Matthias Port, Patrick Ostheim, Michael Abend
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
{"title":"Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions.","authors":"William F Blakely, Matthias Port, Patrick Ostheim, Michael Abend","doi":"10.1667/RADE-24-00121.1","DOIUrl":"10.1667/RADE-24-00121.1","url":null,"abstract":"<p><p>A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize \"dose\" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"185-204"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Preparation for medical responses to major radiation accidents, further driven by increases in the threat of nuclear warfare, has led to a pressing need to understand the underlying mechanisms of radiation injury (RI) alone or in combination with other trauma (combined injury, CI). The identification of these mechanisms suggests molecules and signaling pathways that can be targeted to develop radiation medical countermeasures. Thus far, the United States Food and Drug Administration (U.S. FDA) has approved seven countermeasures to mitigate hematopoietic acute radiation syndrome (H-ARS), but no drugs are available for prophylaxis and no agents have been approved to combat the other sub-syndromes of ARS, let alone delayed effects of acute radiation exposure or the effects of combined injury. From its inception, Radiation Research has significantly contributed to the understanding of the underlying mechanisms of radiation injury and combined injury, and to the development of radiation medical countermeasures for these indications through the publication of peer-reviewed research and review articles.
核战争威胁的增加进一步推动了对重大辐射事故医疗响应的准备工作,这导致人们迫切需要了解辐射损伤(RI)单独或与其他创伤(合并损伤,CI)一起发生的基本机制。对这些机制的鉴定提示了可作为开发辐射医疗对策目标的分子和信号通路。迄今为止,美国食品和药物管理局(U.S. FDA)已经批准了六种缓解造血急性辐射综合征(H-ARS)的对策,但还没有用于预防的药物,也没有批准用于抗击 ARS 的其他亚综合征的药物,更不用说急性辐照的延迟效应或合并损伤的效应了。自成立以来,《辐射研究》通过发表同行评审的研究和评论文章,为了解辐射损伤和合并损伤的基本机制以及针对这些适应症的辐射医疗对策的开发做出了重大贡献。
{"title":"An Overview of Radiation Countermeasure Development in Radiation Research from 1954 to 2024.","authors":"Juliann G Kiang, Georgetta Cannon, Vijay K Singh","doi":"10.1667/RADE-24-00036.1","DOIUrl":"10.1667/RADE-24-00036.1","url":null,"abstract":"<p><p>Preparation for medical responses to major radiation accidents, further driven by increases in the threat of nuclear warfare, has led to a pressing need to understand the underlying mechanisms of radiation injury (RI) alone or in combination with other trauma (combined injury, CI). The identification of these mechanisms suggests molecules and signaling pathways that can be targeted to develop radiation medical countermeasures. Thus far, the United States Food and Drug Administration (U.S. FDA) has approved seven countermeasures to mitigate hematopoietic acute radiation syndrome (H-ARS), but no drugs are available for prophylaxis and no agents have been approved to combat the other sub-syndromes of ARS, let alone delayed effects of acute radiation exposure or the effects of combined injury. From its inception, Radiation Research has significantly contributed to the understanding of the underlying mechanisms of radiation injury and combined injury, and to the development of radiation medical countermeasures for these indications through the publication of peer-reviewed research and review articles.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"420-431"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kareena Sukhnanan, Joel R Ross, Nelson J Chao, Benny J Chen
Extracellular vesicles (EVs) have been recognized as a novel way of cell-to-cell communication in the last several decades. It is believed that EVs exert their functions on nearby or distant cells through transfer of the cargo that they carry. In this review, we focus on EVs produced by endothelial cells, with emphasis on their role in hematopoiesis. We first describe how endothelial cells interact with hematopoietic stem/progenitor cells during development and in disease conditions. We then discuss EVs, ranging from their subtypes to isolation methods and analysis of EVs. With the above background information, we next review the literature related to endothelial cell derived EVs (ECEVs), including physiological functions and their clinical uses. In the last sections, we summarize the current results about the effect of ECEVs on hematopoiesis under physiological and stress conditions.
{"title":"Endothelial Cell Derived Extracellular Vesicles and Hematopoiesis.","authors":"Kareena Sukhnanan, Joel R Ross, Nelson J Chao, Benny J Chen","doi":"10.1667/RADE-24-00039.1","DOIUrl":"10.1667/RADE-24-00039.1","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) have been recognized as a novel way of cell-to-cell communication in the last several decades. It is believed that EVs exert their functions on nearby or distant cells through transfer of the cargo that they carry. In this review, we focus on EVs produced by endothelial cells, with emphasis on their role in hematopoiesis. We first describe how endothelial cells interact with hematopoietic stem/progenitor cells during development and in disease conditions. We then discuss EVs, ranging from their subtypes to isolation methods and analysis of EVs. With the above background information, we next review the literature related to endothelial cell derived EVs (ECEVs), including physiological functions and their clinical uses. In the last sections, we summarize the current results about the effect of ECEVs on hematopoiesis under physiological and stress conditions.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"215-226"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.
{"title":"Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation.","authors":"Fiona M Lyng, Edouard I Azzam","doi":"10.1667/RADE-24-00040.1","DOIUrl":"10.1667/RADE-24-00040.1","url":null,"abstract":"<p><p>In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"355-367"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carmel Mothersill, Rhea Desai, Colin B Seymour, Marc S Mendonca
The aim of this paper is to review the history surrounding the discovery of lethal mutations, later described as delayed reproductive death. Lethal mutations were suggested very early on, to be due to a generalised instability in a cell population and are considered now to be one of the first demonstrations of "radiation-induced genomic instability" which led later to the establishment of the field of "non-targeted effects." The phenomenon was first described by Seymour et al. in 1986 and was confirmed by Trott's group in Europe and by Little and colleagues in the United States before being extended by Mendonca et al. in 1989, who showed conclusively that the distinguishing feature of lethal mutation occurrence was that it happened suddenly after about 9-10 population doublings in progeny which had survived the original dose of ionizing radiation. However, many authors then suggested that in fact, lethal mutations were implicit in the original experiments by Puck and Marcus in 1956 and were described in the extensive work by Sinclair in 1964, who followed clonal progeny for up to a year after irradiation and described "small colony formation" as a persistent consequence of ionizing radiation exposure. In this paper, we examine the history from 1956 to the present using the period from 1986-1989 as an anchor point to reach into the past and to go forward through the evolution of the field of low dose radiobiology where non-targeted effects predominate.
{"title":"\"Lethal Mutations\" a Misnomer or the Start of a Scientific Revolution?","authors":"Carmel Mothersill, Rhea Desai, Colin B Seymour, Marc S Mendonca","doi":"10.1667/RADE-24-00018.1","DOIUrl":"10.1667/RADE-24-00018.1","url":null,"abstract":"<p><p>The aim of this paper is to review the history surrounding the discovery of lethal mutations, later described as delayed reproductive death. Lethal mutations were suggested very early on, to be due to a generalised instability in a cell population and are considered now to be one of the first demonstrations of \"radiation-induced genomic instability\" which led later to the establishment of the field of \"non-targeted effects.\" The phenomenon was first described by Seymour et al. in 1986 and was confirmed by Trott's group in Europe and by Little and colleagues in the United States before being extended by Mendonca et al. in 1989, who showed conclusively that the distinguishing feature of lethal mutation occurrence was that it happened suddenly after about 9-10 population doublings in progeny which had survived the original dose of ionizing radiation. However, many authors then suggested that in fact, lethal mutations were implicit in the original experiments by Puck and Marcus in 1956 and were described in the extensive work by Sinclair in 1964, who followed clonal progeny for up to a year after irradiation and described \"small colony formation\" as a persistent consequence of ionizing radiation exposure. In this paper, we examine the history from 1956 to the present using the period from 1986-1989 as an anchor point to reach into the past and to go forward through the evolution of the field of low dose radiobiology where non-targeted effects predominate.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"205-214"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}