首页 > 最新文献

Radiation research最新文献

英文 中文
Direct and Indirect Effects for Radiosensitization of Gold Nanoparticles in Proton Therapy. 质子疗法中金纳米粒子放射增敏的直接和间接效应
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-11-01 DOI: 10.1667/RADE-23-00199.1
Sobia Zareen, Sajid Bashir, Aamir Shahzad, Muhammad Kashif, Guogang Ren

The radiosensitization characteristics of gold nanoparticles (GNPs) have been investigated in a single cell irradiated with monoenergetic beams of protons of various energies using TOPAS-nBio, an advanced toolkit of TOPAS. Both direct and indirect effects against single-strand breaks (SSBs) are investigated and their double-strand breaks (DSBs) have been calculated. A single spherical cell interaction with a detailed DNA structure has been modeled and simulated under different conditions such as particle sizes and concentrations of GNPs, their biodistributions and associated proton energies. The physical interaction among protons, suspension water and GNPs has been simulated using a dual physics approach, while the interaction between water radiolysis and OH radicals was considered in the chemical process to save computational time. The present simulations involve irradiating the cell geometry with a dose of 1 Gy. The range of DSBs (Gy-1 Gbp-1) obtained was 2.1 ± 0.09 to 21.74 ± 0.4 for all GNPs of sizes 6-50 nm the proton energies in the range of 5-50 MeV. Regardless of proton energy and GNP size, the calculations showed that the contribution of indirect and hybrid DSBs remains higher in all simulation types than that of direct DSBs. New simulation outcomes of the indirect DSBs illustrate a percentage increase, while we cannot get an increase in the direct and hybrid DSBs in most cases when compared with no GNPs cases. The indirect DSBs provide the highest enhancement factor of 1.89 at 30 nm GNPs in size for 30 MeV protons energy, and the direct and hybrid DSBs indicate a slight increase in enhancement. The work indicates that the use of GNPs increased indirect DNA DSBs, while hybrid DSBs show only a slight increase in enhancement, and no enhancement is shown in direct DNA DSBs. It is significant to consider other mechanisms such as DNA damage repair when investigating DNA damage.

利用 TOPAS 的高级工具包 TOPAS-nBio,研究了金纳米粒子(GNPs)在单细胞中接受各种能量的单能质子束照射时的辐射增敏特性。研究了对单链断裂(SSB)的直接和间接影响,并计算了其双链断裂(DSB)。在不同条件下,如 GNPs 的粒度和浓度、生物分布和相关质子能量,对单个球形细胞与详细 DNA 结构的相互作用进行了建模和模拟。质子、悬浮水和 GNPs 之间的物理相互作用采用双重物理方法进行模拟,而水的辐射分解和 OH 自由基之间的相互作用则在化学过程中考虑,以节省计算时间。本模拟涉及用 1 Gy 的剂量照射细胞几何结构。对于所有尺寸为 6-50 nm、质子能量在 5-50 MeV 范围内的 GNP,获得的 DSBs(Gy-1 Gbp-1)范围为 2.1 ± 0.09 至 21.74 ± 0.4。无论质子能量和 GNP 大小如何,计算结果都表明,在所有模拟类型中,间接和混合 DSB 的贡献率仍然高于直接 DSB。与没有 GNPs 的情况相比,间接 DSB 的新模拟结果显示了百分比的增加,而在大多数情况下,我们无法获得直接和混合 DSB 的增加。在质子能量为 30 MeV、尺寸为 30 nm GNPs 的情况下,间接 DSB 的增强因子最高,为 1.89,而直接和混合 DSB 的增强因子略有增加。研究结果表明,GNPs 的使用增加了间接 DNA DSB,而混合 DSB 的增强仅略有增加,直接 DNA DSB 没有增强。在研究 DNA 损伤时,考虑 DNA 损伤修复等其他机制具有重要意义。
{"title":"Direct and Indirect Effects for Radiosensitization of Gold Nanoparticles in Proton Therapy.","authors":"Sobia Zareen, Sajid Bashir, Aamir Shahzad, Muhammad Kashif, Guogang Ren","doi":"10.1667/RADE-23-00199.1","DOIUrl":"10.1667/RADE-23-00199.1","url":null,"abstract":"<p><p>The radiosensitization characteristics of gold nanoparticles (GNPs) have been investigated in a single cell irradiated with monoenergetic beams of protons of various energies using TOPAS-nBio, an advanced toolkit of TOPAS. Both direct and indirect effects against single-strand breaks (SSBs) are investigated and their double-strand breaks (DSBs) have been calculated. A single spherical cell interaction with a detailed DNA structure has been modeled and simulated under different conditions such as particle sizes and concentrations of GNPs, their biodistributions and associated proton energies. The physical interaction among protons, suspension water and GNPs has been simulated using a dual physics approach, while the interaction between water radiolysis and OH radicals was considered in the chemical process to save computational time. The present simulations involve irradiating the cell geometry with a dose of 1 Gy. The range of DSBs (Gy-1 Gbp-1) obtained was 2.1 ± 0.09 to 21.74 ± 0.4 for all GNPs of sizes 6-50 nm the proton energies in the range of 5-50 MeV. Regardless of proton energy and GNP size, the calculations showed that the contribution of indirect and hybrid DSBs remains higher in all simulation types than that of direct DSBs. New simulation outcomes of the indirect DSBs illustrate a percentage increase, while we cannot get an increase in the direct and hybrid DSBs in most cases when compared with no GNPs cases. The indirect DSBs provide the highest enhancement factor of 1.89 at 30 nm GNPs in size for 30 MeV protons energy, and the direct and hybrid DSBs indicate a slight increase in enhancement. The work indicates that the use of GNPs increased indirect DNA DSBs, while hybrid DSBs show only a slight increase in enhancement, and no enhancement is shown in direct DNA DSBs. It is significant to consider other mechanisms such as DNA damage repair when investigating DNA damage.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"795-806"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
56Fe-ion Exposure Increases the Incidence of Lung and Brain Tumors at a Similar Rate in Male and Female Mice. 雌雄小鼠暴露于 56Fe 离子会以相似的速度增加肺癌和脑瘤的发病率。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-11-01 DOI: 10.1667/RADE-24-00004.1
Sophie R Finkelstein, Rutulkumar Patel, Katherine Deland, Joshua Mercer, Bryce Starr, Daniel Zhu, Hooney Min, Michael Reinsvold, Lorraine Da Silva Campos, Nerissa T Williams, Lixia Luo, Yan Ma, Jadee Neff, Mark J Hoenerhoff, Everett J Moding, David G Kirsch

The main deterrent to long-term space travel is the risk of Radiation Exposure Induced Death (REID). The National Aeronautics and Space Administration (NASA) has adopted Permissible Exposure Levels (PELs) to limit the probability of REID to 3% for the risk of death due to radiation-induced carcinogenesis. The most significant contributor to current REID estimates for astronauts is the risk of lung cancer. Recently updated lung cancer estimates from Japan's atomic bomb survivors showed that the excess relative risk of lung cancer by age 70 is roughly fourfold higher in females compared to males. However, whether sex differences may impact the risk of lung cancer due to exposure to high charge and energy (HZE) radiation is not well studied. Thus, to evaluate the impact of sex differences on the risk of solid cancer development after HZE radiation exposure, we irradiated Rbfl/fl, Trp53fl/+ male and female mice infected with Adeno-Cre with various doses of 320 kVp X rays or 600 MeV/n 56Fe ions and monitored them for any radiation-induced malignancies. We conducted complete necropsy and histopathology of major organs on 183 male and 157 female mice after following them for 350 days postirradiation. We observed that lung adenomas/carcinomas and esthesioneuroblastomas (ENBs) were the most common primary malignancies in mice exposed to X rays and 56Fe ions, respectively. In addition, 1 Gy 56Fe-ion exposure compared to X-ray exposure led to a significantly increased incidence of lung adenomas/carcinomas (P = 0.02) and ENBs (P < 0.0001) in mice. However, we did not find a significantly higher incidence of any solid malignancies in female mice as compared to male mice, regardless of radiation quality. Furthermore, gene expression analysis of ENBs suggested a distinct gene expression pattern with similar hallmark pathways altered, such as MYC targets and MTORC1 signaling, in ENBs induced by X rays and 56Fe ions. Thus, our data revealed that 56Fe-ion exposure significantly accelerated the development of lung adenomas/carcinomas and ENBs compared to X rays, but the rate of solid malignancies was similar between male and female mice, regardless of radiation quality.

长期太空旅行的主要障碍是辐射诱发死亡(REID)的风险。美国国家航空航天局(NASA)通过了允许暴露水平(PEL),将辐射诱发致癌死亡风险的概率限制在 3%。对宇航员目前的 REID 估计值影响最大的是肺癌风险。最近更新的日本原子弹爆炸幸存者肺癌估计值显示,女性到 70 岁时罹患肺癌的超额相对风险比男性高出约四倍。然而,性别差异是否会影响因暴露于高电荷和高能量(HZE)辐射而罹患肺癌的风险,目前还没有很好的研究。因此,为了评估性别差异对受到高电荷高能量(HZE)辐射后罹患实体癌风险的影响,我们用不同剂量的 320 kVp X 射线或 600 MeV/n 56Fe 离子照射感染了 Adeno-Cre 的 Rbfl/fl、Trp53fl/+ 雄性和雌性小鼠,并监测它们是否出现任何辐射诱发的恶性肿瘤。我们对辐照后 350 天的 183 只雄性小鼠和 157 只雌性小鼠的主要器官进行了全面解剖和组织病理学检查。我们观察到,肺腺瘤/癌和雌血管神经母细胞瘤(ENBs)分别是受到 X 射线和 56Fe 离子照射的小鼠最常见的原发性恶性肿瘤。此外,与 X 射线暴露相比,1 Gy 的 56Fe 离子暴露导致小鼠肺腺瘤/癌(P = 0.02)和 ENBs(P < 0.0001)的发病率明显提前。然而,无论辐射质量如何,我们都没有发现雌性小鼠的实体恶性肿瘤发病率明显高于雄性小鼠。此外,ENB 的基因表达分析表明,在 X 射线和 56Fe 离子诱导的 ENB 中,基因表达模式与 MYC 靶点和 MTORC1 信号转导等标志性通路发生了类似的改变。因此,我们的数据显示,与 X 射线相比,56Fe 离子照射明显加速了肺腺瘤/癌和 ENB 的发展,但无论辐射质量如何,雌雄小鼠的实体恶性肿瘤发生率相似。
{"title":"56Fe-ion Exposure Increases the Incidence of Lung and Brain Tumors at a Similar Rate in Male and Female Mice.","authors":"Sophie R Finkelstein, Rutulkumar Patel, Katherine Deland, Joshua Mercer, Bryce Starr, Daniel Zhu, Hooney Min, Michael Reinsvold, Lorraine Da Silva Campos, Nerissa T Williams, Lixia Luo, Yan Ma, Jadee Neff, Mark J Hoenerhoff, Everett J Moding, David G Kirsch","doi":"10.1667/RADE-24-00004.1","DOIUrl":"10.1667/RADE-24-00004.1","url":null,"abstract":"<p><p>The main deterrent to long-term space travel is the risk of Radiation Exposure Induced Death (REID). The National Aeronautics and Space Administration (NASA) has adopted Permissible Exposure Levels (PELs) to limit the probability of REID to 3% for the risk of death due to radiation-induced carcinogenesis. The most significant contributor to current REID estimates for astronauts is the risk of lung cancer. Recently updated lung cancer estimates from Japan's atomic bomb survivors showed that the excess relative risk of lung cancer by age 70 is roughly fourfold higher in females compared to males. However, whether sex differences may impact the risk of lung cancer due to exposure to high charge and energy (HZE) radiation is not well studied. Thus, to evaluate the impact of sex differences on the risk of solid cancer development after HZE radiation exposure, we irradiated Rbfl/fl, Trp53fl/+ male and female mice infected with Adeno-Cre with various doses of 320 kVp X rays or 600 MeV/n 56Fe ions and monitored them for any radiation-induced malignancies. We conducted complete necropsy and histopathology of major organs on 183 male and 157 female mice after following them for 350 days postirradiation. We observed that lung adenomas/carcinomas and esthesioneuroblastomas (ENBs) were the most common primary malignancies in mice exposed to X rays and 56Fe ions, respectively. In addition, 1 Gy 56Fe-ion exposure compared to X-ray exposure led to a significantly increased incidence of lung adenomas/carcinomas (P = 0.02) and ENBs (P < 0.0001) in mice. However, we did not find a significantly higher incidence of any solid malignancies in female mice as compared to male mice, regardless of radiation quality. Furthermore, gene expression analysis of ENBs suggested a distinct gene expression pattern with similar hallmark pathways altered, such as MYC targets and MTORC1 signaling, in ENBs induced by X rays and 56Fe ions. Thus, our data revealed that 56Fe-ion exposure significantly accelerated the development of lung adenomas/carcinomas and ENBs compared to X rays, but the rate of solid malignancies was similar between male and female mice, regardless of radiation quality.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"734-744"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RPS15 Coordinates with CtIP to Facilitate Homologous Recombination and Confer Therapeutic Resistance in Breast Cancer. RPS15 与 CtIP 相互配合,促进同源重组并增强乳腺癌的治疗抵抗力
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-11-01 DOI: 10.1667/RADE-24-00134.1
Baohang Lin, Guan Huang, Zishan Yuan, Xun Peng, Chunliang Yu, Jialu Zheng, Zequn Li, Juanyun Li, Jinan Liang, Bo Xu

The repair of DNA double-strand breaks (DSBs) through homologous recombination (HR) is vital for maintaining the stability and integrity of the genome. RNA binding proteins (RBPs) intricately regulate the DNA damage repair process, yet the precise molecular mechanisms underlying their function remain incompletely understood. In this study, we highlight the pivotal role of RPS15, a representative RBP, in homologous recombination repair. Specifically, we demonstrate that RPS15 promotes DNA end resection, a crucial step in homologous recombination. Notably, we identify an interaction between RPS15 and CtIP, a key factor in homologous recombination repair. This interaction is essential for CtIP recruitment to DSB sites, subsequent RPA coating, and RAD51 replacement, all critical steps in efficient homologous recombination repair and conferring resistance to genotoxic treatments. Functionally, suppressing RPS15 expression sensitizes cancer cells to X-ray radiation and enhances the therapeutic synergistic effect of PARP1 inhibitors in breast cancer cells. In summary, our findings reveal that RPS15 promotes DNA end resection to ensure effective homologous recombination repair, suggesting its potential as a therapeutic target in cancer treatment.

通过同源重组(HR)修复 DNA 双链断裂(DSB)对于维持基因组的稳定性和完整性至关重要。RNA 结合蛋白(RBPs)错综复杂地调控着 DNA 损伤修复过程,但人们对其功能的确切分子机制仍然知之甚少。在本研究中,我们强调了具有代表性的 RBP RPS15 在同源重组修复中的关键作用。具体来说,我们证明了 RPS15 能促进 DNA 末端切除,这是同源重组中的一个关键步骤。值得注意的是,我们发现了 RPS15 与同源重组修复的关键因素 CtIP 之间的相互作用。这种相互作用对 CtIP 招募到 DSB 位点、随后的 RPA 包被和 RAD51 替换至关重要,这些都是高效同源重组修复和赋予抗基因毒性治疗的关键步骤。从功能上讲,抑制 RPS15 的表达可使癌细胞对 X 射线辐射敏感,并增强 PARP1 抑制剂对乳腺癌细胞的治疗协同效应。总之,我们的研究结果表明,RPS15能促进DNA末端切除,确保有效的同源重组修复,这表明它有可能成为癌症治疗的靶点。
{"title":"RPS15 Coordinates with CtIP to Facilitate Homologous Recombination and Confer Therapeutic Resistance in Breast Cancer.","authors":"Baohang Lin, Guan Huang, Zishan Yuan, Xun Peng, Chunliang Yu, Jialu Zheng, Zequn Li, Juanyun Li, Jinan Liang, Bo Xu","doi":"10.1667/RADE-24-00134.1","DOIUrl":"10.1667/RADE-24-00134.1","url":null,"abstract":"<p><p>The repair of DNA double-strand breaks (DSBs) through homologous recombination (HR) is vital for maintaining the stability and integrity of the genome. RNA binding proteins (RBPs) intricately regulate the DNA damage repair process, yet the precise molecular mechanisms underlying their function remain incompletely understood. In this study, we highlight the pivotal role of RPS15, a representative RBP, in homologous recombination repair. Specifically, we demonstrate that RPS15 promotes DNA end resection, a crucial step in homologous recombination. Notably, we identify an interaction between RPS15 and CtIP, a key factor in homologous recombination repair. This interaction is essential for CtIP recruitment to DSB sites, subsequent RPA coating, and RAD51 replacement, all critical steps in efficient homologous recombination repair and conferring resistance to genotoxic treatments. Functionally, suppressing RPS15 expression sensitizes cancer cells to X-ray radiation and enhances the therapeutic synergistic effect of PARP1 inhibitors in breast cancer cells. In summary, our findings reveal that RPS15 promotes DNA end resection to ensure effective homologous recombination repair, suggesting its potential as a therapeutic target in cancer treatment.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"775-784"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiosensitivity-related Variation in MicroRNA-34a-5p Levels and Subsequent Neuronal Loss in the Hilus of the Dentate Gyrus after Irradiation at Postnatal Days 10 and 21 in Mice. 小鼠出生后第 10 天和第 21 天受到辐照后齿状回脊髓中与辐射敏感性相关的 MicroRNA-34a-5p 水平变化及随后的神经元丢失。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-10-01 DOI: 10.1667/RADE-23-00248.1
Lian Liu, Hong Wang, Zhao Wu Ma, Feng Ru Tang

The radiosensitivity of mice differs between postnatal days 10 (P10) and 21(P21); these days mark different stages of brain development. In the present study, Ki67 and doublecotin (DCX) immunostaining and hematoxylin staining was performed, which showed that acute radiation exposure at postnatal day 10 induced higher cell apoptosis and loss in the hilus of the dentate gyrus at day 1 postirradiation than postnatal day 21. MicroRNA (miRNA) sequencing and real-time quantitative reverse transcription PCR (qRT-PCR) analysis indicated the upregulation of miRNA-34a-5p at days 1 and 7 after irradiation at postnatal day 10, but not at postnatal day 21. Down-regulation of T-cell intracytoplasmic antigen-1 pathway (Tia1) was indicated by qRT-PCR at day 1 day but not day 7 after irradiation at postnatal day 10. Neurobehavioral testing in mature mice irradiated at postnatal day 10 demonstrated the impairment of short-term memory in novel object recognition and spatial memory, compared to those irradiated at postnatal day 21. Combined with our previous luciferase assay showing the direct interaction of miRNA34a-5p and Tia1, these findings suggest that radiation-induced abnormal miR-34a-5p/Tial interaction at day 1 after irradiation at postnatal day 10 may be involved in apoptosis of the dentate gyrus hilar, impairment of neurogenesis and subsequent short-term memory loss as observed in the novel object recognition and Barnes maze tests.

小鼠对辐射的敏感性在出生后第 10 天(P10)和第 21 天(P21)有所不同,这两天标志着大脑发育的不同阶段。本研究对小鼠进行了Ki67和双胞素(DCX)免疫染色和苏木精染色,结果表明,出生后第10天的急性辐射照射在辐射后第1天诱导的齿状回脊髓细胞凋亡和丢失高于出生后第21天。微RNA(miRNA)测序和实时定量反转录PCR(qRT-PCR)分析表明,miRNA-34a-5p在出生后第10天照射后第1天和第7天上调,而在出生后第21天则没有上调。qRT-PCR显示,T细胞胞浆内抗原-1通路(Tia1)在出生后第10天照射后第1天出现下调,但在第7天没有出现下调。对出生后第 10 天接受辐照的成熟小鼠进行的神经行为测试表明,与出生后第 21 天接受辐照的小鼠相比,出生后第 10 天接受辐照的小鼠在新物体识别和空间记忆方面的短期记忆受到了损害。结合我们之前进行的荧光素酶测定显示的 miRNA34a-5p 和 Tia1 的直接相互作用,这些研究结果表明,在出生后第 10 天接受辐照后的第 1 天,辐射诱导的 miR34a-5p/Tial 异常相互作用可能参与了在新物体识别和巴恩斯迷宫测试中观察到的齿状回细丝凋亡、神经发生障碍和随后的短期记忆丧失。
{"title":"Radiosensitivity-related Variation in MicroRNA-34a-5p Levels and Subsequent Neuronal Loss in the Hilus of the Dentate Gyrus after Irradiation at Postnatal Days 10 and 21 in Mice.","authors":"Lian Liu, Hong Wang, Zhao Wu Ma, Feng Ru Tang","doi":"10.1667/RADE-23-00248.1","DOIUrl":"10.1667/RADE-23-00248.1","url":null,"abstract":"<p><p>The radiosensitivity of mice differs between postnatal days 10 (P10) and 21(P21); these days mark different stages of brain development. In the present study, Ki67 and doublecotin (DCX) immunostaining and hematoxylin staining was performed, which showed that acute radiation exposure at postnatal day 10 induced higher cell apoptosis and loss in the hilus of the dentate gyrus at day 1 postirradiation than postnatal day 21. MicroRNA (miRNA) sequencing and real-time quantitative reverse transcription PCR (qRT-PCR) analysis indicated the upregulation of miRNA-34a-5p at days 1 and 7 after irradiation at postnatal day 10, but not at postnatal day 21. Down-regulation of T-cell intracytoplasmic antigen-1 pathway (Tia1) was indicated by qRT-PCR at day 1 day but not day 7 after irradiation at postnatal day 10. Neurobehavioral testing in mature mice irradiated at postnatal day 10 demonstrated the impairment of short-term memory in novel object recognition and spatial memory, compared to those irradiated at postnatal day 21. Combined with our previous luciferase assay showing the direct interaction of miRNA34a-5p and Tia1, these findings suggest that radiation-induced abnormal miR-34a-5p/Tial interaction at day 1 after irradiation at postnatal day 10 may be involved in apoptosis of the dentate gyrus hilar, impairment of neurogenesis and subsequent short-term memory loss as observed in the novel object recognition and Barnes maze tests.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"677-684"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dose Reconstruction for Epidemiological Studies among Ukrainian Chernobyl Cleanup Workers. 乌克兰切尔诺贝利清理工人流行病学研究的剂量重建。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-10-01 DOI: 10.1667/RADE-23-00117.1
Vladimir Drozdovitch, Victor Kryuchkov, Elena Bakhanova, Petro Bondarenko, Konstantin Chizhov, Ivan Golovanov, Vadim Chumak
<p><p>The present paper provides an overview of the methods and summarizes the results of estimating radiation doses and their uncertainties for Ukrainian-American epidemiological studies among the Chernobyl (Chornobyl) cleanup workers. After the Chernobyl accident occurred on April 26, 1986, more than 300,000 Ukrainian cleanup workers took part between 1986 and 1990 in decontamination and recovery activities at the site of the Chernobyl Nuclear Power Plant. The U.S. National Cancer Institute in collaboration with the Ukrainian National Research Center for Radiation Medicine conducted several epidemiological studies in this population. An important part of these studies was the reconstruction of the study participants' radiation doses and the assessment of uncertainties in doses. A method called realistic analytical dose reconstruction with uncertainty estimation (RADRUE) was used to calculate the doses from external irradiation during cleanup missions, which was the main exposure pathway for most study participants. At the initial phase of the accident during the atmospheric releases of radioactivity from the destroyed reactor, the cleanup workers also received doses from inhalation of radionuclides. In addition, study participants received doses at their places of residence, especially those who lived in highly contaminated areas. The radiation doses estimated for 2,048 male cleanup workers included in the Ukrainian-American epidemiological studies varied widely: (i) bone-marrow doses from external irradiation in the case-control study of leukemia of 1,000 cleanup workers ranged from 3.7 × 10-5 mGy to 3.3 Gy (mean = 92 mGy); (ii) thyroid doses in the case-control study of thyroid cancer in 607 persons from all exposure pathways combined were from 0.15 mGy to 9.0 Gy (mean = 199 mGy); (iii) gonadal doses in 183 cleanup workers from all exposure pathways combined in the study of germline mutations in the offspring after parental irradiation (trio study) ranged from 0.58 mGy to 4.1 Gy (mean = 392 mGy); (iv) thyroid doses in the human factor uncertainties study among 47 persons were from 20 mGy to 2.1 Gy (mean = 295 mGy); and (v) lung doses in the study of germline genetic variants associated with host susceptibility to COVID-19 estimated for 211 cleanup workers were from 0.024 mGy to 2.5 Gy (mean = 249 mGy). Doses of female cleanup workers were much lower than those of male cleanup workers: the mean doses for female cleanup workers were 27 mGy for 34 women included in the trio study and 56 mGy for 48 women participated in the study of germline genetic variants associated with host susceptibility to COVID-19. Uncertainties in dose estimates included two components: (i) inherent uncertainties arising from the stochastic random variability of the parameters used in exposure assessment and from a lack of knowledge about the true values of the parameters; and (ii) human factor uncertainties due to poor memory recall resulting in incomplete, inaccurate,
本文概述了切尔诺贝利(切尔诺贝利)清理工人中乌克兰裔美国人流行病学研究的辐射剂量及其不确定性的估算方法和结果。1986 年 4 月 26 日切尔诺贝利事故发生后,1986 年至 1990 年间,30 多万乌克兰清理工人参与了切尔诺贝利核电站现场的去污和恢复活动。美国国家癌症研究所与乌克兰国家辐射医学研究中心合作,对这一人群进行了多项流行病学研究。这些研究的一个重要部分是重建研究参与者的辐射剂量和评估剂量的不确定性。使用了一种名为 "带不确定性估计的现实分析剂量重建"(RADRUE)的方法来计算清理任务期间的外部辐照剂量,这是大多数研究参与者的主要辐照途径。在事故初期,被摧毁的反应堆向大气释放放射性时,清理人员也会因吸入放射性核素而受到辐射剂量。此外,研究参与者在其居住地也受到了辐射,特别是那些居住在高污染地区的人。乌克兰-美国流行病学研究中包括的 2,048 名男性清理工人估计的辐射剂量差别很大:(i) 在对 1,000 名清理工人进行的白血病病例对照研究中,外照射造成的骨髓剂量从 3.7 × 10-5 mGy 到 3.3 Gy 不等(平均值 = 92 mGy);(ii) 在对 607 人进行的甲状腺癌病例对照研究中,所有照射途径合计造成的甲状腺剂量从 0.15 mGy 到 9.0 Gy (平均值 = 199 mGy);(iii) 在父母辐照后子代生殖突变的研究(三重研究)中,183 名来自所有辐照途径的清理工人的性腺剂量介于 0.58 mGy 至 4.1 Gy(平均值 = 392 mGy);(iv) 47 人在人体因素不确定性研究中的甲状腺剂量为 20 mGy 至 2.1 Gy(平均值 = 295 mGy);(v) 在与宿主对 COVID-19 易感性相关的种系遗传变异研究中,估计 211 名清理工人的肺部剂量为 0.024 mGy 至 2.5 Gy(平均值 = 249 mGy)。女性清洁工人的剂量远低于男性清洁工人:34 名女性清洁工人参加了三人研究,其平均剂量为 27 mGy;48 名女性清洁工人参加了与宿主对 COVID-19 易感性相关的种系遗传变异研究,其平均剂量为 56 mGy。剂量估算的不确定性包括两部分:(i) 暴露评估中使用的参数的随机变异性和对参数真实值的不了解所产生的固有不确定性;以及 (ii) 暴露后很长时间对清理工人进行个人访谈时,由于记忆力差导致回答不完整、不准确或缺失而产生的人为因素不确定性。本文还讨论了评估清理工人辐射剂量和相关不确定性的方法的可能发展和改进。
{"title":"Dose Reconstruction for Epidemiological Studies among Ukrainian Chernobyl Cleanup Workers.","authors":"Vladimir Drozdovitch, Victor Kryuchkov, Elena Bakhanova, Petro Bondarenko, Konstantin Chizhov, Ivan Golovanov, Vadim Chumak","doi":"10.1667/RADE-23-00117.1","DOIUrl":"10.1667/RADE-23-00117.1","url":null,"abstract":"&lt;p&gt;&lt;p&gt;The present paper provides an overview of the methods and summarizes the results of estimating radiation doses and their uncertainties for Ukrainian-American epidemiological studies among the Chernobyl (Chornobyl) cleanup workers. After the Chernobyl accident occurred on April 26, 1986, more than 300,000 Ukrainian cleanup workers took part between 1986 and 1990 in decontamination and recovery activities at the site of the Chernobyl Nuclear Power Plant. The U.S. National Cancer Institute in collaboration with the Ukrainian National Research Center for Radiation Medicine conducted several epidemiological studies in this population. An important part of these studies was the reconstruction of the study participants' radiation doses and the assessment of uncertainties in doses. A method called realistic analytical dose reconstruction with uncertainty estimation (RADRUE) was used to calculate the doses from external irradiation during cleanup missions, which was the main exposure pathway for most study participants. At the initial phase of the accident during the atmospheric releases of radioactivity from the destroyed reactor, the cleanup workers also received doses from inhalation of radionuclides. In addition, study participants received doses at their places of residence, especially those who lived in highly contaminated areas. The radiation doses estimated for 2,048 male cleanup workers included in the Ukrainian-American epidemiological studies varied widely: (i) bone-marrow doses from external irradiation in the case-control study of leukemia of 1,000 cleanup workers ranged from 3.7 × 10-5 mGy to 3.3 Gy (mean = 92 mGy); (ii) thyroid doses in the case-control study of thyroid cancer in 607 persons from all exposure pathways combined were from 0.15 mGy to 9.0 Gy (mean = 199 mGy); (iii) gonadal doses in 183 cleanup workers from all exposure pathways combined in the study of germline mutations in the offspring after parental irradiation (trio study) ranged from 0.58 mGy to 4.1 Gy (mean = 392 mGy); (iv) thyroid doses in the human factor uncertainties study among 47 persons were from 20 mGy to 2.1 Gy (mean = 295 mGy); and (v) lung doses in the study of germline genetic variants associated with host susceptibility to COVID-19 estimated for 211 cleanup workers were from 0.024 mGy to 2.5 Gy (mean = 249 mGy). Doses of female cleanup workers were much lower than those of male cleanup workers: the mean doses for female cleanup workers were 27 mGy for 34 women included in the trio study and 56 mGy for 48 women participated in the study of germline genetic variants associated with host susceptibility to COVID-19. Uncertainties in dose estimates included two components: (i) inherent uncertainties arising from the stochastic random variability of the parameters used in exposure assessment and from a lack of knowledge about the true values of the parameters; and (ii) human factor uncertainties due to poor memory recall resulting in incomplete, inaccurate, ","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"626-638"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Risks of Circulatory Diseases among Korean Radiation Workers Exposed to Low-dose Radiation. 暴露于低剂量辐射的韩国辐射工人患循环系统疾病的风险。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-10-01 DOI: 10.1667/RADE-23-00148.1
Eun Shil Cha, Dalnim Lee, Hyoju Sung, Won Il Jang, Tae-Eun Kwon, Ho Yeon Jeong, Songwon Seo

High-dose radiation has been widely recognized as a risk factor for circulatory diseases. There is increasing evidence for risk of circulatory diseases in response to low and moderate radiation doses in recent years, but the results are not always consistent. We aimed to evaluate the associations between low-dose radiation exposure (<0.1 Gy) and the incidence of circulatory disease in a large cohort of Korean radiation workers. We collected data from a cohort of 187,001 radiation workers monitored for personal radiation dose since 1984 and linked with the National Health Insurance Service data from 2002 to 2021. Excess relative risks (ERRs) per 100 mGy were calculated to quantify the radiation dose-response relationship. The mean duration of follow-up was 13.3 years. A total of 12,705 cases of cerebrovascular disease (CeVD) and 19,647 cases of ischemic heart disease (IHD) were diagnosed during the follow-up period (2002-2021). The average cumulative heart dose was 4.10 mGy, ranging from 0 to 992.62 mGy. The ERR per 100 mGy with 10-year lagged cumulative heart doses was estimated at -0.094 (95% CI -0.248, 0.070) for CeVD and -0.173 (95% CI -0.299, -0.041) for IHD. The ERRs were not significantly changed after adjusting for confounding factors such as smoking, income, blood pressure, body mass index, and blood glucose level. A linear quadratic model was found to provide a better fit for the ERR of CeVD and IHD than a linear model (P = 0.009 and 0.030, respectively). There were no statistically significant variations in ERR/100 mGy estimates for either CeVD or IHD in terms of sex, attained age, and duration of employment; however, heterogeneity in the ERR/100 mGy estimates for CeVD among occupations was observed (P = 0.001). Our study did not find conclusive evidence supporting the association between occupational low-dose radiation and an increased risk of circulatory diseases. The significant negative ERR estimates for IHD need further investigation with a more extended follow-up period.

高剂量辐射已被广泛认为是循环系统疾病的风险因素。近年来,有越来越多的证据表明,中低剂量辐射会导致循环系统疾病,但结果并不总是一致的。我们的目的是评估低剂量辐射照射(例如:辐照)与循环系统疾病之间的关联。
{"title":"Risks of Circulatory Diseases among Korean Radiation Workers Exposed to Low-dose Radiation.","authors":"Eun Shil Cha, Dalnim Lee, Hyoju Sung, Won Il Jang, Tae-Eun Kwon, Ho Yeon Jeong, Songwon Seo","doi":"10.1667/RADE-23-00148.1","DOIUrl":"10.1667/RADE-23-00148.1","url":null,"abstract":"<p><p>High-dose radiation has been widely recognized as a risk factor for circulatory diseases. There is increasing evidence for risk of circulatory diseases in response to low and moderate radiation doses in recent years, but the results are not always consistent. We aimed to evaluate the associations between low-dose radiation exposure (<0.1 Gy) and the incidence of circulatory disease in a large cohort of Korean radiation workers. We collected data from a cohort of 187,001 radiation workers monitored for personal radiation dose since 1984 and linked with the National Health Insurance Service data from 2002 to 2021. Excess relative risks (ERRs) per 100 mGy were calculated to quantify the radiation dose-response relationship. The mean duration of follow-up was 13.3 years. A total of 12,705 cases of cerebrovascular disease (CeVD) and 19,647 cases of ischemic heart disease (IHD) were diagnosed during the follow-up period (2002-2021). The average cumulative heart dose was 4.10 mGy, ranging from 0 to 992.62 mGy. The ERR per 100 mGy with 10-year lagged cumulative heart doses was estimated at -0.094 (95% CI -0.248, 0.070) for CeVD and -0.173 (95% CI -0.299, -0.041) for IHD. The ERRs were not significantly changed after adjusting for confounding factors such as smoking, income, blood pressure, body mass index, and blood glucose level. A linear quadratic model was found to provide a better fit for the ERR of CeVD and IHD than a linear model (P = 0.009 and 0.030, respectively). There were no statistically significant variations in ERR/100 mGy estimates for either CeVD or IHD in terms of sex, attained age, and duration of employment; however, heterogeneity in the ERR/100 mGy estimates for CeVD among occupations was observed (P = 0.001). Our study did not find conclusive evidence supporting the association between occupational low-dose radiation and an increased risk of circulatory diseases. The significant negative ERR estimates for IHD need further investigation with a more extended follow-up period.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"649-661"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimethyl Sulfoxide Attenuates Ionizing Radiation-induced Centrosome Overduplication and Multipolar Cell Division in Human Induced Pluripotent Stem Cells. 二甲基亚砜可减轻电离辐射诱导的人类诱导多能干细胞中心体过度复制和多极细胞分裂。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-10-01 DOI: 10.1667/RADE-24-00069.1
Mikio Shimada, Ryoichi Hirayama, Yoshihisa Matsumoto

Centrosomes are important organelles for cell division and genome stability. Ionizing radiation exposure efficiently induces centrosome overduplication via the disconnection of the cell and centrosome duplication cycles. Over duplicated centrosomes cause mitotic catastrophe or chromosome aberrations, leading to cell death or tumorigenesis. Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), can differentiate into all organs. To maintain pluripotency, PSCs show specific cellular dynamics, such as a short G1 phase and silenced cell-cycle checkpoints for high cellular proliferation. However, how exogenous DNA damage affects cell cycle-dependent centrosome number regulation in PSCs remains unknown. This study used human iPSCs (hiPSCs) derived from primary skin fibroblasts as a PSC model to address this question. hiPSCs derived from somatic cells could be a useful tool for addressing the radiation response in cell lineage differentiation. After radiation exposure, the hiPSCs showed a higher frequency of centrosome overduplication and multipolar cell division than the differentiated cells. To suppress the indirect effect of radiation exposure, we used the radical scavenger dimethyl sulfoxide (DMSO). Combined treatment with radiation and DMSO efficiently suppressed DNA damage and centrosome overduplication in hiPSCs. Our results will contribute to the understanding of the dynamics of stem cells and the assessment of the risk of genome instability for regenerative medicine.

中心体是细胞分裂和基因组稳定的重要细胞器。电离辐射照射可通过细胞与中心体复制周期的断开,有效诱导中心体过度复制。过度复制的中心体会造成有丝分裂灾难或染色体畸变,导致细胞死亡或肿瘤发生。多能干细胞,包括胚胎干细胞(ESC)和诱导多能干细胞(iPSC),可以分化成所有器官。为了保持多能性,多能干细胞表现出特定的细胞动态,如短G1期和沉默的细胞周期检查点,以实现高细胞增殖。然而,外源 DNA 损伤如何影响 PSCs 中依赖细胞周期的中心体数量调控仍是未知数。本研究使用源自原代皮肤成纤维细胞的人类 iPSCs(hiPSCs)作为 PSC 模型来解决这一问题。辐照后,与分化细胞相比,hiPSCs 表现出更高的中心体过度复制和多极细胞分裂频率。为了抑制辐射的间接影响,我们使用了自由基清除剂二甲基亚砜(DMSO)。辐射和二甲基亚砜联合处理可有效抑制 hiPSCs 中的 DNA 损伤和中心体过度复制。我们的研究结果将有助于了解干细胞的动态变化,并评估再生医学中基因组不稳定的风险。
{"title":"Dimethyl Sulfoxide Attenuates Ionizing Radiation-induced Centrosome Overduplication and Multipolar Cell Division in Human Induced Pluripotent Stem Cells.","authors":"Mikio Shimada, Ryoichi Hirayama, Yoshihisa Matsumoto","doi":"10.1667/RADE-24-00069.1","DOIUrl":"10.1667/RADE-24-00069.1","url":null,"abstract":"<p><p>Centrosomes are important organelles for cell division and genome stability. Ionizing radiation exposure efficiently induces centrosome overduplication via the disconnection of the cell and centrosome duplication cycles. Over duplicated centrosomes cause mitotic catastrophe or chromosome aberrations, leading to cell death or tumorigenesis. Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), can differentiate into all organs. To maintain pluripotency, PSCs show specific cellular dynamics, such as a short G1 phase and silenced cell-cycle checkpoints for high cellular proliferation. However, how exogenous DNA damage affects cell cycle-dependent centrosome number regulation in PSCs remains unknown. This study used human iPSCs (hiPSCs) derived from primary skin fibroblasts as a PSC model to address this question. hiPSCs derived from somatic cells could be a useful tool for addressing the radiation response in cell lineage differentiation. After radiation exposure, the hiPSCs showed a higher frequency of centrosome overduplication and multipolar cell division than the differentiated cells. To suppress the indirect effect of radiation exposure, we used the radical scavenger dimethyl sulfoxide (DMSO). Combined treatment with radiation and DMSO efficiently suppressed DNA damage and centrosome overduplication in hiPSCs. Our results will contribute to the understanding of the dynamics of stem cells and the assessment of the risk of genome instability for regenerative medicine.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"719-725"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Natural Background Radiation in Maintaining Genomic Stability in the CGL1 Human Hybrid Model System. 自然本底辐射在维持 CGL1 人类杂交模型系统基因组稳定性中的作用》(The Role of Natural Background Radiation in Maintaining Genomic Stability in the CGL1 Human Hybrid Model System)。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-10-01 DOI: 10.1667/RADE-23-00243.1
Jake Pirkkanen, Taylor Laframboise, Jayden Peterson, Alyssa Labelle, Forest Mahoney, Michel Lapointe, Marc S Mendonca, T C Tai, Simon J Lees, Sujeenthar Tharmalingam, Douglas R Boreham, Christopher Thome

Natural background ionizing radiation is present on the earth's surface; however, the biological role of this chronic low-dose-rate exposure remains unknown. The Researching the Effects of the Presence and Absence of Ionizing Radiation (REPAIR) project is examining the impacts of sub-natural background radiation exposure through experiments conducted 2 km underground in SNOLAB. The rock overburden combined with experiment-specific shielding provides a background radiation dose rate 30 times lower than on the surface. We hypothesize that natural background radiation is essential for life and maintains genomic stability and that prolonged exposure to sub-background environments will be detrimental to biological systems. To evaluate this, human hybrid CGL1 cells were continuously cultured in SNOLAB and our surface control laboratory for 16 weeks. Cells were assayed every 4 weeks for growth rate, alkaline phosphatase (ALP) activity (a marker of cellular transformation in the CGL1 system), and the expression of genes related to DNA damage and cell cycle regulation. A subset of cells was also exposed to a challenge radiation dose (0.1 to 8 Gy of X rays) and assayed for clonogenic survival and DNA double-strand break induction to examine if prolonged sub-background exposure alters the cellular response to high-dose irradiation. At each 4-week time point, sub-background radiation exposure did not significantly alter cell growth rates, survival, DNA damage, or gene expression. However, cells cultured in SNOLAB showed significantly higher ALP activity, a marker of carcinogenesis in these cells, which increased with longer exposure to the sub-background environment, indicative of neoplastic progression. Overall, these data suggest that sub-background radiation exposure does not impact growth, survival, or DNA damage in CGL1 cells but may lead to increased rates of neoplastic transformation, highlighting a potentially important role for natural background radiation in maintaining normal cellular function and genomic stability.

地球表面存在天然本底电离辐射;然而,这种长期低剂量辐射的生物作用仍然未知。电离辐射存在和不存在的影响研究(REPAIR)项目正在通过在 SNOLAB 地下 2 千米处进行的实验,研究亚天然本底辐射照射的影响。岩石覆盖层与特定实验屏蔽相结合,提供了比地面低 30 倍的本底辐射剂量率。我们假设,天然本底辐射是生命所必需的,并能维持基因组的稳定性,而长期暴露在亚本底辐射环境中将会对生物系统造成损害。为了评估这一点,我们在 SNOLAB 和我们的表面控制实验室连续培养人类杂交 CGL1 细胞 16 周。每 4 周对细胞的生长率、碱性磷酸酶 (ALP) 活性(CGL1 系统中细胞转化的标志)以及 DNA 损伤和细胞周期调节相关基因的表达进行一次检测。还有一部分细胞暴露于挑战辐射剂量(0.1 至 8 Gy 的 X 射线),并进行克隆存活率和 DNA 双链断裂诱导测定,以研究长期的亚背景暴露是否会改变细胞对高剂量辐照的反应。在每个 4 周的时间点,亚背景辐照都不会显著改变细胞的生长率、存活率、DNA 损伤或基因表达。然而,在 SNOLAB 中培养的细胞显示出明显更高的 ALP 活性,这是这些细胞发生癌变的标志物,随着暴露于亚背景环境时间的延长,ALP 活性也在增加,这表明了肿瘤的进展。总之,这些数据表明,亚本底辐射照射不会影响 CGL1 细胞的生长、存活或 DNA 损伤,但可能会导致肿瘤转化率的增加,突出了天然本底辐射在维持正常细胞功能和基因组稳定性方面的潜在重要作用。
{"title":"The Role of Natural Background Radiation in Maintaining Genomic Stability in the CGL1 Human Hybrid Model System.","authors":"Jake Pirkkanen, Taylor Laframboise, Jayden Peterson, Alyssa Labelle, Forest Mahoney, Michel Lapointe, Marc S Mendonca, T C Tai, Simon J Lees, Sujeenthar Tharmalingam, Douglas R Boreham, Christopher Thome","doi":"10.1667/RADE-23-00243.1","DOIUrl":"10.1667/RADE-23-00243.1","url":null,"abstract":"<p><p>Natural background ionizing radiation is present on the earth's surface; however, the biological role of this chronic low-dose-rate exposure remains unknown. The Researching the Effects of the Presence and Absence of Ionizing Radiation (REPAIR) project is examining the impacts of sub-natural background radiation exposure through experiments conducted 2 km underground in SNOLAB. The rock overburden combined with experiment-specific shielding provides a background radiation dose rate 30 times lower than on the surface. We hypothesize that natural background radiation is essential for life and maintains genomic stability and that prolonged exposure to sub-background environments will be detrimental to biological systems. To evaluate this, human hybrid CGL1 cells were continuously cultured in SNOLAB and our surface control laboratory for 16 weeks. Cells were assayed every 4 weeks for growth rate, alkaline phosphatase (ALP) activity (a marker of cellular transformation in the CGL1 system), and the expression of genes related to DNA damage and cell cycle regulation. A subset of cells was also exposed to a challenge radiation dose (0.1 to 8 Gy of X rays) and assayed for clonogenic survival and DNA double-strand break induction to examine if prolonged sub-background exposure alters the cellular response to high-dose irradiation. At each 4-week time point, sub-background radiation exposure did not significantly alter cell growth rates, survival, DNA damage, or gene expression. However, cells cultured in SNOLAB showed significantly higher ALP activity, a marker of carcinogenesis in these cells, which increased with longer exposure to the sub-background environment, indicative of neoplastic progression. Overall, these data suggest that sub-background radiation exposure does not impact growth, survival, or DNA damage in CGL1 cells but may lead to increased rates of neoplastic transformation, highlighting a potentially important role for natural background radiation in maintaining normal cellular function and genomic stability.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"617-625"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organ-specific Biodosimetry Modeling Using Proteomic Biomarkers of Radiation Exposure. 利用辐照的蛋白质组生物标志物建立器官特异性生物模拟模型
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-10-01 DOI: 10.1667/RADE-24-00092.1
M Sproull, Y Fan, Q Chen, D Meerzaman, K Camphausen

In future mass casualty medical management scenarios involving radiation injury, medical diagnostics to both identify those who have been exposed and the level of exposure will be needed. As almost all exposures in the field are heterogeneous, determination of degree of exposure and which vital organs have been exposed will be essential for effective medical management. In the current study we sought to characterize novel proteomic biomarkers of radiation exposure and develop exposure and dose prediction algorithms for a variety of exposure paradigms to include uniform total-body exposures, and organ-specific partial-body exposures to only the brain, only the gut and only the lung. C57BL6 female mice received a single total-body irradiation (TBI) of 2, 4 or 8 Gy, 2 and 8 Gy for lung or gut exposures, and 2, 8 or 16 Gy for exposure to only the brain. Plasma was then screened using the SomaScan v4.1 assay for ∼7,000 protein analytes. A subset panel of protein biomarkers demonstrating significant (FDR<0.05 and |logFC|>0.2) changes in expression after radiation exposure was characterized. All proteins were used for feature selection to build 7 different predictive models of radiation exposure using different sample cohort combinations. These models were structured according to practical field considerations to differentiate level of exposure, in addition to identification of organ-specific exposures. Each model algorithm built using a unique sample cohort was validated with a training set of samples and tested with a separate new sample series. The overall predictive accuracy for all models was 100% at the model training level. When tested with reserved samples Model 1 which compared an "exposure" group inclusive of all TBI and organ-specific partial-body exposures in the study vs. control, and Model 2 which differentiated between control, TBI and partials (all organ-specific partial-body exposures) the resulting prediction accuracy was 92.3% and 95.4%, respectively. For identification of organ-specific exposures vs. control, Model 3 (only brain), Model 4 (only gut) and Model 5 (only lung) were developed with predictive accuracies of 78.3%, 88.9% and 94.4%, respectively. Finally, for Models 6 and 7, which differentiated between TBI and separate organ-specific partial-body cohorts, the testing predictive accuracy was 83.1% and 92.3%, respectively. These models represent novel predictive panels of radiation responsive proteomic biomarkers and illustrate the feasibility of development of biodosimetry algorithms with utility for simultaneous classification of total-body, partial-body and organ-specific radiation exposures.

在未来涉及辐射伤害的大规模伤亡医疗管理情景中,将需要医疗诊断来确定受照射者和受照射程度。由于现场几乎所有的辐照都是不同的,因此确定辐照程度和哪些重要器官受到辐照对于有效的医疗管理至关重要。在目前的研究中,我们试图描述辐射照射的新型蛋白质组生物标志物,并为各种照射范例开发照射和剂量预测算法,包括均匀的全身照射,以及只照射大脑、肠道和肺部的器官特异性部分全身照射。C57BL6 雌性小鼠接受 2、4 或 8 Gy 的单次全身辐照 (TBI),肺部或肠道辐照为 2 和 8 Gy,仅脑部辐照为 2、8 或 16 Gy。然后使用 SomaScan v4.1 分析法对血浆中的 7,000 ∼ 种蛋白质分析物进行筛选。对辐照后表达发生显著变化(FDR0.2)的蛋白质生物标志物子集进行特征分析。所有蛋白质都被用于特征选择,利用不同的样本队列组合建立 7 种不同的辐照预测模型。这些模型的结构是根据现场实际情况设计的,除了识别器官特异性辐照外,还可区分辐照水平。使用独特的样本队列建立的每个模型算法都经过了样本训练集的验证,并使用单独的新样本系列进行了测试。在模型训练水平上,所有模型的总体预测准确率均为 100%。在使用保留样本进行测试时,模型 1 比较了 "暴露 "组(包括研究中的所有创伤性脑损伤和器官特异性部分身体暴露)与对照组,模型 2 区分了对照组、创伤性脑损伤和部分身体暴露(所有器官特异性部分身体暴露),结果预测准确率分别为 92.3% 和 95.4%。为了识别器官特异性暴露与对照组的比较,建立了模型 3(仅脑部)、模型 4(仅肠道)和模型 5(仅肺部),预测准确率分别为 78.3%、88.9% 和 94.4%。最后,模型 6 和模型 7 区分了创伤性脑损伤和单独的器官特异性部分身体组群,其测试预测准确率分别为 83.1%和 92.3%。这些模型代表了辐射反应蛋白组生物标志物的新型预测面板,说明了开发生物模拟算法的可行性,该算法可用于同时对全身、部分全身和器官特异性辐射照射进行分类。
{"title":"Organ-specific Biodosimetry Modeling Using Proteomic Biomarkers of Radiation Exposure.","authors":"M Sproull, Y Fan, Q Chen, D Meerzaman, K Camphausen","doi":"10.1667/RADE-24-00092.1","DOIUrl":"10.1667/RADE-24-00092.1","url":null,"abstract":"<p><p>In future mass casualty medical management scenarios involving radiation injury, medical diagnostics to both identify those who have been exposed and the level of exposure will be needed. As almost all exposures in the field are heterogeneous, determination of degree of exposure and which vital organs have been exposed will be essential for effective medical management. In the current study we sought to characterize novel proteomic biomarkers of radiation exposure and develop exposure and dose prediction algorithms for a variety of exposure paradigms to include uniform total-body exposures, and organ-specific partial-body exposures to only the brain, only the gut and only the lung. C57BL6 female mice received a single total-body irradiation (TBI) of 2, 4 or 8 Gy, 2 and 8 Gy for lung or gut exposures, and 2, 8 or 16 Gy for exposure to only the brain. Plasma was then screened using the SomaScan v4.1 assay for ∼7,000 protein analytes. A subset panel of protein biomarkers demonstrating significant (FDR<0.05 and |logFC|>0.2) changes in expression after radiation exposure was characterized. All proteins were used for feature selection to build 7 different predictive models of radiation exposure using different sample cohort combinations. These models were structured according to practical field considerations to differentiate level of exposure, in addition to identification of organ-specific exposures. Each model algorithm built using a unique sample cohort was validated with a training set of samples and tested with a separate new sample series. The overall predictive accuracy for all models was 100% at the model training level. When tested with reserved samples Model 1 which compared an \"exposure\" group inclusive of all TBI and organ-specific partial-body exposures in the study vs. control, and Model 2 which differentiated between control, TBI and partials (all organ-specific partial-body exposures) the resulting prediction accuracy was 92.3% and 95.4%, respectively. For identification of organ-specific exposures vs. control, Model 3 (only brain), Model 4 (only gut) and Model 5 (only lung) were developed with predictive accuracies of 78.3%, 88.9% and 94.4%, respectively. Finally, for Models 6 and 7, which differentiated between TBI and separate organ-specific partial-body cohorts, the testing predictive accuracy was 83.1% and 92.3%, respectively. These models represent novel predictive panels of radiation responsive proteomic biomarkers and illustrate the feasibility of development of biodosimetry algorithms with utility for simultaneous classification of total-body, partial-body and organ-specific radiation exposures.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"697-705"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571893/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long Non-Coding RNA PVT1 Facilitates Radiation-Induced Vascular Endothelial Cell Injury through Sponging MicroRNA-9-5p. 长非编码 RNA PVT1 通过疏导 MicroRNA-9-5p 促进辐射诱导的血管内皮细胞损伤
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-10-01 DOI: 10.1667/RADE-24-00089.1
Jing Wang, Yanting Zhang, Wei Lian, Min Gan

Radiotherapy is a common therapeutic strategy for various solid tumors, with vascular endothelial injury being a common side effect. The study aimed to examine the effect of long non-coding RNA PVT1 on radiation-induced vascular endothelial cell injury, and explore the possible underlying mechanism. Human umbilical vein endothelial cells (HUVECs) were exposed to different doses of X ray to mimic radiation. LncRNA and miRNA levels were detected via qRT-PCR. Interaction between lncRNA and miRNAs was determined through dual-luciferase reporter assay. Statistical processing was conducted using student's t test between two groups and one-way ANOVA among multiple groups, and P < 0.05 means a significant difference. GO and KEGG were performed for the function and pathway enrichment analysis. LncRNA PVT1 elevated along with the increase of radiation dose in HUVECs. Poorly expressed lncRNA PVT1 promotes cell viability and inhibits oxidative stress. PVT1 serves as a competitive endogenous RNA (ceRNA) of miR-9-5p. miR-9-5p inhibitor inverted the influence of PVT1 knockdown on radiation-stimulated cell apoptosis and oxidative stress in HUVECs. KEGG analysis identified significant enrichment of the MAPK signaling pathway among overlapping target genes of miR-9-5p. LncRNA PVT1 knockdown alleviated radiation-induced vascular endothelial injury via sponging miR-9-5p. The underlying mechanism might be probably MAPK signaling-related.

放疗是各种实体瘤的常见治疗策略,而血管内皮损伤是常见的副作用之一。本研究旨在检测长非编码RNA PVT1对放射诱导的血管内皮细胞损伤的影响,并探讨其可能的内在机制。研究人员将人脐静脉内皮细胞(HUVECs)暴露于不同剂量的 X 射线,以模拟辐射。通过 qRT-PCR 检测 LncRNA 和 miRNA 水平。通过双荧光素酶报告实验确定lncRNA和miRNA之间的相互作用。统计处理采用两组间的学生 t 检验和多组间的单因素方差分析,P < 0.05 表示差异显著。GO和KEGG用于功能和通路富集分析。LncRNA PVT1随辐射剂量的增加而升高。低表达的lncRNA PVT1可促进细胞活力并抑制氧化应激。PVT1是miR-9-5p的竞争性内源性RNA(ceRNA)。miR-9-5p抑制剂逆转了PVT1敲除对辐射刺激的HUVECs细胞凋亡和氧化应激的影响。KEGG分析发现,在miR-9-5p的重叠靶基因中,MAPK信号通路明显富集。LncRNA PVT1敲除可通过疏导miR-9-5p缓解辐射诱导的血管内皮损伤。其潜在机制可能与 MAPK 信号转导有关。
{"title":"Long Non-Coding RNA PVT1 Facilitates Radiation-Induced Vascular Endothelial Cell Injury through Sponging MicroRNA-9-5p.","authors":"Jing Wang, Yanting Zhang, Wei Lian, Min Gan","doi":"10.1667/RADE-24-00089.1","DOIUrl":"10.1667/RADE-24-00089.1","url":null,"abstract":"<p><p>Radiotherapy is a common therapeutic strategy for various solid tumors, with vascular endothelial injury being a common side effect. The study aimed to examine the effect of long non-coding RNA PVT1 on radiation-induced vascular endothelial cell injury, and explore the possible underlying mechanism. Human umbilical vein endothelial cells (HUVECs) were exposed to different doses of X ray to mimic radiation. LncRNA and miRNA levels were detected via qRT-PCR. Interaction between lncRNA and miRNAs was determined through dual-luciferase reporter assay. Statistical processing was conducted using student's t test between two groups and one-way ANOVA among multiple groups, and P < 0.05 means a significant difference. GO and KEGG were performed for the function and pathway enrichment analysis. LncRNA PVT1 elevated along with the increase of radiation dose in HUVECs. Poorly expressed lncRNA PVT1 promotes cell viability and inhibits oxidative stress. PVT1 serves as a competitive endogenous RNA (ceRNA) of miR-9-5p. miR-9-5p inhibitor inverted the influence of PVT1 knockdown on radiation-stimulated cell apoptosis and oxidative stress in HUVECs. KEGG analysis identified significant enrichment of the MAPK signaling pathway among overlapping target genes of miR-9-5p. LncRNA PVT1 knockdown alleviated radiation-induced vascular endothelial injury via sponging miR-9-5p. The underlying mechanism might be probably MAPK signaling-related.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"670-676"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Radiation research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1