{"title":"From Radiation Genetics, Mutagenesis, Gap Junctions, Epigenetics, Stem Cells and an Integration of Radiation and Chemical Carcinogenesis.","authors":"James E Trosko","doi":"10.1667/RADE-24-00009.1","DOIUrl":"10.1667/RADE-24-00009.1","url":null,"abstract":"","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preface to Platinum Issue of Radiation Research.","authors":"Carmel Mothersill, Eleanor A Blakely","doi":"10.1667/RADE-24-PLATI.1","DOIUrl":"10.1667/RADE-24-PLATI.1","url":null,"abstract":"","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1667/RADE-24-00023.1.S1
L Marignol, S J McMahon
The relative biological effectiveness is a mathematical quantity first defined in the 1950s. This has resulted in more than 4,000 scientific papers published to date. Yet defining the correct value of the RBE to use in clinical practice remains a challenge. A scientific analysis in the radiation research literature can provide an understanding of how this mathematical quantity has evolved. The purpose of this study is to investigate documents published since 1950 using bibliometric indicators and network visualization. This analysis seeks to provide an assessment of global research activities, key themes, and RBE research within the radiation-related field. It strives to highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions. The Scopus Collection was searched for articles and reviews pertaining to RBE in radiation research from 1950 through 2023. Scopus and Bibiometrix analytic tools were used to investigate the most productive countries, researchers, collaboration networks, journals, along with the citation analysis of references and keywords. A total of 4,632 documents were retrieved produced by authors originating from 71 countries. Publication trends could be separated in 20-year groupings beginning with slow accrual from 1950 to 1970, an early rise from 1970-1990, followed by a sharp increase in the years 1990s-2010s that matches the development of charged particle therapy in clinics worldwide and opened discussion on the true value of the RBE in proton beam therapy. Since the 2010s, a steady 200 papers, on average, have been published per year. The United States produced the most publications overall (N = 1,378) and Radiation Research was the most likely journal to have published articles related to the RBE (606 publications during this period). J. Debus was the most prolific author (112 contributions, with 2,900 citations). The RBE has captured the research interest of over 7,000 authors in the past decade alone. This study supports that notion that the growth of the body of evidence surrounding the RBE, which started 75 years ago, is far from reaching its end. Applications to medicine have continuously dominated the field, with physics competing with Biochemistry, Genetics and Molecular Biology for second place over the decades. Future research can be predicted to continue.
{"title":"Research Trends in the Study of the Relative Biological Effectiveness: A Bibliometric Study.","authors":"L Marignol, S J McMahon","doi":"10.1667/RADE-24-00023.1.S1","DOIUrl":"10.1667/RADE-24-00023.1.S1","url":null,"abstract":"<p><p>The relative biological effectiveness is a mathematical quantity first defined in the 1950s. This has resulted in more than 4,000 scientific papers published to date. Yet defining the correct value of the RBE to use in clinical practice remains a challenge. A scientific analysis in the radiation research literature can provide an understanding of how this mathematical quantity has evolved. The purpose of this study is to investigate documents published since 1950 using bibliometric indicators and network visualization. This analysis seeks to provide an assessment of global research activities, key themes, and RBE research within the radiation-related field. It strives to highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions. The Scopus Collection was searched for articles and reviews pertaining to RBE in radiation research from 1950 through 2023. Scopus and Bibiometrix analytic tools were used to investigate the most productive countries, researchers, collaboration networks, journals, along with the citation analysis of references and keywords. A total of 4,632 documents were retrieved produced by authors originating from 71 countries. Publication trends could be separated in 20-year groupings beginning with slow accrual from 1950 to 1970, an early rise from 1970-1990, followed by a sharp increase in the years 1990s-2010s that matches the development of charged particle therapy in clinics worldwide and opened discussion on the true value of the RBE in proton beam therapy. Since the 2010s, a steady 200 papers, on average, have been published per year. The United States produced the most publications overall (N = 1,378) and Radiation Research was the most likely journal to have published articles related to the RBE (606 publications during this period). J. Debus was the most prolific author (112 contributions, with 2,900 citations). The RBE has captured the research interest of over 7,000 authors in the past decade alone. This study supports that notion that the growth of the body of evidence surrounding the RBE, which started 75 years ago, is far from reaching its end. Applications to medicine have continuously dominated the field, with physics competing with Biochemistry, Genetics and Molecular Biology for second place over the decades. Future research can be predicted to continue.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William F Blakely, Matthias Port, Patrick Ostheim, Michael Abend
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
{"title":"Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions.","authors":"William F Blakely, Matthias Port, Patrick Ostheim, Michael Abend","doi":"10.1667/RADE-24-00121.1","DOIUrl":"10.1667/RADE-24-00121.1","url":null,"abstract":"<p><p>A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize \"dose\" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Preparation for medical responses to major radiation accidents, further driven by increases in the threat of nuclear warfare, has led to a pressing need to understand the underlying mechanisms of radiation injury (RI) alone or in combination with other trauma (combined injury, CI). The identification of these mechanisms suggests molecules and signaling pathways that can be targeted to develop radiation medical countermeasures. Thus far, the United States Food and Drug Administration (U.S. FDA) has approved seven countermeasures to mitigate hematopoietic acute radiation syndrome (H-ARS), but no drugs are available for prophylaxis and no agents have been approved to combat the other sub-syndromes of ARS, let alone delayed effects of acute radiation exposure or the effects of combined injury. From its inception, Radiation Research has significantly contributed to the understanding of the underlying mechanisms of radiation injury and combined injury, and to the development of radiation medical countermeasures for these indications through the publication of peer-reviewed research and review articles.
核战争威胁的增加进一步推动了对重大辐射事故医疗响应的准备工作,这导致人们迫切需要了解辐射损伤(RI)单独或与其他创伤(合并损伤,CI)一起发生的基本机制。对这些机制的鉴定提示了可作为开发辐射医疗对策目标的分子和信号通路。迄今为止,美国食品和药物管理局(U.S. FDA)已经批准了六种缓解造血急性辐射综合征(H-ARS)的对策,但还没有用于预防的药物,也没有批准用于抗击 ARS 的其他亚综合征的药物,更不用说急性辐照的延迟效应或合并损伤的效应了。自成立以来,《辐射研究》通过发表同行评审的研究和评论文章,为了解辐射损伤和合并损伤的基本机制以及针对这些适应症的辐射医疗对策的开发做出了重大贡献。
{"title":"An Overview of Radiation Countermeasure Development in Radiation Research from 1954 to 2024.","authors":"Juliann G Kiang, Georgetta Cannon, Vijay K Singh","doi":"10.1667/RADE-24-00036.1","DOIUrl":"10.1667/RADE-24-00036.1","url":null,"abstract":"<p><p>Preparation for medical responses to major radiation accidents, further driven by increases in the threat of nuclear warfare, has led to a pressing need to understand the underlying mechanisms of radiation injury (RI) alone or in combination with other trauma (combined injury, CI). The identification of these mechanisms suggests molecules and signaling pathways that can be targeted to develop radiation medical countermeasures. Thus far, the United States Food and Drug Administration (U.S. FDA) has approved seven countermeasures to mitigate hematopoietic acute radiation syndrome (H-ARS), but no drugs are available for prophylaxis and no agents have been approved to combat the other sub-syndromes of ARS, let alone delayed effects of acute radiation exposure or the effects of combined injury. From its inception, Radiation Research has significantly contributed to the understanding of the underlying mechanisms of radiation injury and combined injury, and to the development of radiation medical countermeasures for these indications through the publication of peer-reviewed research and review articles.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kareena Sukhnanan, Joel R Ross, Nelson J Chao, Benny J Chen
Extracellular vesicles (EVs) have been recognized as a novel way of cell-to-cell communication in the last several decades. It is believed that EVs exert their functions on nearby or distant cells through transfer of the cargo that they carry. In this review, we focus on EVs produced by endothelial cells, with emphasis on their role in hematopoiesis. We first describe how endothelial cells interact with hematopoietic stem/progenitor cells during development and in disease conditions. We then discuss EVs, ranging from their subtypes to isolation methods and analysis of EVs. With the above background information, we next review the literature related to endothelial cell derived EVs (ECEVs), including physiological functions and their clinical uses. In the last sections, we summarize the current results about the effect of ECEVs on hematopoiesis under physiological and stress conditions.
{"title":"Endothelial Cell Derived Extracellular Vesicles and Hematopoiesis.","authors":"Kareena Sukhnanan, Joel R Ross, Nelson J Chao, Benny J Chen","doi":"10.1667/RADE-24-00039.1","DOIUrl":"10.1667/RADE-24-00039.1","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) have been recognized as a novel way of cell-to-cell communication in the last several decades. It is believed that EVs exert their functions on nearby or distant cells through transfer of the cargo that they carry. In this review, we focus on EVs produced by endothelial cells, with emphasis on their role in hematopoiesis. We first describe how endothelial cells interact with hematopoietic stem/progenitor cells during development and in disease conditions. We then discuss EVs, ranging from their subtypes to isolation methods and analysis of EVs. With the above background information, we next review the literature related to endothelial cell derived EVs (ECEVs), including physiological functions and their clinical uses. In the last sections, we summarize the current results about the effect of ECEVs on hematopoiesis under physiological and stress conditions.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.
{"title":"Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation.","authors":"Fiona M Lyng, Edouard I Azzam","doi":"10.1667/RADE-24-00040.1","DOIUrl":"10.1667/RADE-24-00040.1","url":null,"abstract":"<p><p>In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carmel Mothersill, Rhea Desai, Colin B Seymour, Marc S Mendonca
The aim of this paper is to review the history surrounding the discovery of lethal mutations, later described as delayed reproductive death. Lethal mutations were suggested very early on, to be due to a generalised instability in a cell population and are considered now to be one of the first demonstrations of "radiation-induced genomic instability" which led later to the establishment of the field of "non-targeted effects." The phenomenon was first described by Seymour et al. in 1986 and was confirmed by Trott's group in Europe and by Little and colleagues in the United States before being extended by Mendonca et al. in 1989, who showed conclusively that the distinguishing feature of lethal mutation occurrence was that it happened suddenly after about 9-10 population doublings in progeny which had survived the original dose of ionizing radiation. However, many authors then suggested that in fact, lethal mutations were implicit in the original experiments by Puck and Marcus in 1956 and were described in the extensive work by Sinclair in 1964, who followed clonal progeny for up to a year after irradiation and described "small colony formation" as a persistent consequence of ionizing radiation exposure. In this paper, we examine the history from 1956 to the present using the period from 1986-1989 as an anchor point to reach into the past and to go forward through the evolution of the field of low dose radiobiology where non-targeted effects predominate.
{"title":"\"Lethal Mutations\" a Misnomer or the Start of a Scientific Revolution?","authors":"Carmel Mothersill, Rhea Desai, Colin B Seymour, Marc S Mendonca","doi":"10.1667/RADE-24-00018.1","DOIUrl":"10.1667/RADE-24-00018.1","url":null,"abstract":"<p><p>The aim of this paper is to review the history surrounding the discovery of lethal mutations, later described as delayed reproductive death. Lethal mutations were suggested very early on, to be due to a generalised instability in a cell population and are considered now to be one of the first demonstrations of \"radiation-induced genomic instability\" which led later to the establishment of the field of \"non-targeted effects.\" The phenomenon was first described by Seymour et al. in 1986 and was confirmed by Trott's group in Europe and by Little and colleagues in the United States before being extended by Mendonca et al. in 1989, who showed conclusively that the distinguishing feature of lethal mutation occurrence was that it happened suddenly after about 9-10 population doublings in progeny which had survived the original dose of ionizing radiation. However, many authors then suggested that in fact, lethal mutations were implicit in the original experiments by Puck and Marcus in 1956 and were described in the extensive work by Sinclair in 1964, who followed clonal progeny for up to a year after irradiation and described \"small colony formation\" as a persistent consequence of ionizing radiation exposure. In this paper, we examine the history from 1956 to the present using the period from 1986-1989 as an anchor point to reach into the past and to go forward through the evolution of the field of low dose radiobiology where non-targeted effects predominate.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olga A Martin, Pamela J Sykes, Martin Lavin, Elette Engels, Roger F Martin
Several scientific themes are reviewed in the context of the 75-year period relevant to this special platinum issue of Radiation Research. Two criteria have been considered in selecting the scientific themes. One is the exposure of the associated research activity in the annual meetings of the Radiation Research Society (RRS) and in the publications of the Society's Journal, thus reflecting the interest of members of RRS. The second criteria is a focus on contributions from Australian members of RRS. The first theme is the contribution of radiobiology to radiation oncology, featuring two prominent Australian radiation oncologists, the late Rod Withers and his younger colleague, Lester Peters. Two other themes are also linked to radiation oncology; preclinical research aimed at developing experimental radiotherapy modalities, namely microbeam radiotherapy (MRT) and Auger endoradiotherapy. The latter has a long history, in contrast to MRT, especially in Australia, given that the associated medical beamline at the Australian Synchrotron in Melbourne only opened in 2011. Another theme is DNA repair, which has a trajectory parallel to the 75-year period of interest, given the birth of molecular biology in the 1950s. The low-dose radiobiology theme has a similar timeline, predominantly prompted by the nuclear era, which is also connected to the radioprotector theme, although radioprotectors also have a long-established potential utility in cancer radiotherapy. Finally, two themes are associated with biodosimetry. One is the micronucleus assay, highlighting the pioneering contribution from Michael Fenech in Adelaide, South Australia, and the other is the γ-H2AX assay and its widespread clinical applications.
本期《辐射研究》白金特刊回顾了与这 75 年有关的几个科学主题。在选择科学主题时考虑了两个标准。其一是相关研究活动在辐射研究学会(RRS)年会和学会期刊出版物中的曝光率,从而反映出辐射研究学会会员的兴趣。第二个标准是注重澳大利亚辐射研究学会会员的贡献。第一个主题是放射生物学对放射肿瘤学的贡献,由已故的 Rod Withers 和他年轻的同事 Lester Peters 这两位杰出的澳大利亚放射肿瘤学家主讲。另外两个主题也与放射肿瘤学有关;旨在开发实验性放射治疗模式的临床前研究,即微光束放射治疗(MRT)和奥格射频放射治疗。与微束放射治疗相比,后者的历史悠久,尤其是在澳大利亚,因为墨尔本澳大利亚同步加速器的相关医疗光束线直到2011年才启用。另一个主题是DNA修复,鉴于分子生物学诞生于20世纪50年代,该主题的发展轨迹与75年的关注期平行。低剂量放射生物学主题也有类似的时间轴,主要是由核时代引发的,这也与放射保护剂主题有关,尽管放射保护剂在癌症放射治疗中也有长期的潜在用途。最后,有两个主题与生物模拟有关。一个是微核试验,强调了南澳大利亚阿德莱德的 Michael Fenech 的开创性贡献,另一个是 γ-H2AX 试验及其广泛的临床应用。
{"title":"What's Changed in 75 Years of RadRes? - An Australian Perspective on Selected Topics.","authors":"Olga A Martin, Pamela J Sykes, Martin Lavin, Elette Engels, Roger F Martin","doi":"10.1667/RADE-24-00037.1","DOIUrl":"10.1667/RADE-24-00037.1","url":null,"abstract":"<p><p>Several scientific themes are reviewed in the context of the 75-year period relevant to this special platinum issue of Radiation Research. Two criteria have been considered in selecting the scientific themes. One is the exposure of the associated research activity in the annual meetings of the Radiation Research Society (RRS) and in the publications of the Society's Journal, thus reflecting the interest of members of RRS. The second criteria is a focus on contributions from Australian members of RRS. The first theme is the contribution of radiobiology to radiation oncology, featuring two prominent Australian radiation oncologists, the late Rod Withers and his younger colleague, Lester Peters. Two other themes are also linked to radiation oncology; preclinical research aimed at developing experimental radiotherapy modalities, namely microbeam radiotherapy (MRT) and Auger endoradiotherapy. The latter has a long history, in contrast to MRT, especially in Australia, given that the associated medical beamline at the Australian Synchrotron in Melbourne only opened in 2011. Another theme is DNA repair, which has a trajectory parallel to the 75-year period of interest, given the birth of molecular biology in the 1950s. The low-dose radiobiology theme has a similar timeline, predominantly prompted by the nuclear era, which is also connected to the radioprotector theme, although radioprotectors also have a long-established potential utility in cancer radiotherapy. Finally, two themes are associated with biodosimetry. One is the micronucleus assay, highlighting the pioneering contribution from Michael Fenech in Adelaide, South Australia, and the other is the γ-H2AX assay and its widespread clinical applications.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
At the dawn of the 20th Century, the underlying chemistry that produced the observed effects of ionizing radiation, e.g., X rays and Radium salts, on aqueous solutions was either unknown or restricted to products found postirradiation. For example, the Curies noted that sealed aqueous solutions of Radium inexplicably decomposed over time, even when kept in the dark. By 1928 there were numerous papers describing the phenomenological effects of ionizing radiation on a wide variety of materials, including the irradiated hands of early radiologists. One scientist who became intensely interested in these radiation effects was Hugo Fricke (Fricke Dosimetry) who established a laboratory in 1928 dedicated to studies on chemical effects of radiation, the results of which he believed were necessary to understand observed radiobiological effects. In this Platinum Issue of Radiation Research (70 years of continuous publication), we present the early history of the development of radiation chemistry and its contributions to all levels of mechanistic radiobiology. We summarize its development as one of the four disciplinary pillars of the Radiation Research Society and its Journal, Radiation Research, founded during the period 1952-1954. In addition, the work of scientists who contributed substantially to the discipline of Radiation Chemistry and to the birth, life and culture of the Society and its journal is presented. In the years following 1954, the increasing knowledge about the underlying temporal and spatial properties of the species produced by various types of radiation is summarized and related to its radiobiology and to modern technologies (e.g., pulsed radiolysis, electron paramagnetic resonance) which became available as the discipline of radiation chemistry developed. A summary of important results from these studies on Radiation Chemistry/Biochemistry in the 20th and 21st Century up to the present time is presented. Finally, we look into the future to see what possible directions radiation chemistry studies might take, based upon promising current research. We find at least two possible directions that will need radiation chemistry expertise to ensure proper experimental design and interpretation of data. These are FLASH radiotherapy, and mechanisms underlying the effects of low doses of radiation delivered at low dose rates. Examples of how radiation chemists could provide beneficial input to these studies are provided.
{"title":"Radiation Chemistry and Radiation Research: A History from the Beginning to the Platinum Edition.","authors":"John D Zimbrick","doi":"10.1667/RADE-24-00053.1","DOIUrl":"10.1667/RADE-24-00053.1","url":null,"abstract":"<p><p>At the dawn of the 20th Century, the underlying chemistry that produced the observed effects of ionizing radiation, e.g., X rays and Radium salts, on aqueous solutions was either unknown or restricted to products found postirradiation. For example, the Curies noted that sealed aqueous solutions of Radium inexplicably decomposed over time, even when kept in the dark. By 1928 there were numerous papers describing the phenomenological effects of ionizing radiation on a wide variety of materials, including the irradiated hands of early radiologists. One scientist who became intensely interested in these radiation effects was Hugo Fricke (Fricke Dosimetry) who established a laboratory in 1928 dedicated to studies on chemical effects of radiation, the results of which he believed were necessary to understand observed radiobiological effects. In this Platinum Issue of Radiation Research (70 years of continuous publication), we present the early history of the development of radiation chemistry and its contributions to all levels of mechanistic radiobiology. We summarize its development as one of the four disciplinary pillars of the Radiation Research Society and its Journal, Radiation Research, founded during the period 1952-1954. In addition, the work of scientists who contributed substantially to the discipline of Radiation Chemistry and to the birth, life and culture of the Society and its journal is presented. In the years following 1954, the increasing knowledge about the underlying temporal and spatial properties of the species produced by various types of radiation is summarized and related to its radiobiology and to modern technologies (e.g., pulsed radiolysis, electron paramagnetic resonance) which became available as the discipline of radiation chemistry developed. A summary of important results from these studies on Radiation Chemistry/Biochemistry in the 20th and 21st Century up to the present time is presented. Finally, we look into the future to see what possible directions radiation chemistry studies might take, based upon promising current research. We find at least two possible directions that will need radiation chemistry expertise to ensure proper experimental design and interpretation of data. These are FLASH radiotherapy, and mechanisms underlying the effects of low doses of radiation delivered at low dose rates. Examples of how radiation chemists could provide beneficial input to these studies are provided.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}