首页 > 最新文献

Radiation research最新文献

英文 中文
Harnessing Senescence for Antitumor Immunity to Advance Cancer Treatment. 利用衰老促进抗肿瘤免疫,推动癌症治疗。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-11-01 DOI: 10.1667/RADE-24-00098.1
Pataje G S Prasanna

Considering the limitations and complexities of the cell-killing-based cancer treatment approaches, one could aim to integrate symbiotic advances in many energy delivery technologies and transformational pieces of evidence in research on senescence and immunomodulators to advance cancer treatment. Although senescent cells contribute to drug tolerance, resistance to therapy, tumorigenesis, maladapting cancer phenotypes, tumor relapse, recurrence, and metastasis, emerging pieces of evidence also demonstrate that acutely induced senescent cells in tumors can elicit a strong and lasting antitumor immune response juxtaposed to the immunologically silent apoptotic cells. This commentary is to help develop an unconventional conceptual framework to advance cancer treatment. Accordingly, it will involve transiently inducing senescent cells in tumors at optimal levels to prime the immune system with radiation, then eliminating senescent cells with senolytics (drugs that specifically eliminate senescent cells) to disrupt their positive feedback accumulation (to prevent tumor maladaptation and adverse effects in healthy cells) and unleash long-lasting antitumor immunity with immunomodulators. The approach is reasonably speculative and will require scientifically rigorous "fit-for-purpose," well-controlled preclinical research and development involving dose and schedule optimization of radiation and drugs, using representative in vitro and in vivo cancer models to obtain high-quality data to proceed to clinical studies.

考虑到基于细胞杀伤的癌症治疗方法的局限性和复杂性,我们可以将许多能量传递技术的共生进步与衰老和免疫调节剂研究中的变革性证据结合起来,推动癌症治疗。虽然衰老细胞会导致药物耐受性、抗药性、肿瘤发生、恶性肿瘤表型、肿瘤复发、复发和转移,但新出现的证据也证明,急性诱导的肿瘤衰老细胞能引起强烈而持久的抗肿瘤免疫反应,与免疫沉默的凋亡细胞形成对比。本评论旨在帮助制定一个非常规的概念框架,以推进癌症治疗。相应地,它将涉及以最佳水平短暂诱导肿瘤中的衰老细胞,用辐射为免疫系统提供能量,然后用衰老剂(专门消除衰老细胞的药物)消除衰老细胞,破坏它们的正反馈积累(防止肿瘤适应不良和对健康细胞的不利影响),并用免疫调节剂释放持久的抗肿瘤免疫力。这种方法具有合理的推测性,需要进行科学严谨的 "适合目的"、控制良好的临床前研究和开发,包括使用具有代表性的体外和体内癌症模型,优化辐射和药物的剂量和时间安排,以获得高质量的数据,进而开展临床研究。
{"title":"Harnessing Senescence for Antitumor Immunity to Advance Cancer Treatment.","authors":"Pataje G S Prasanna","doi":"10.1667/RADE-24-00098.1","DOIUrl":"10.1667/RADE-24-00098.1","url":null,"abstract":"<p><p>Considering the limitations and complexities of the cell-killing-based cancer treatment approaches, one could aim to integrate symbiotic advances in many energy delivery technologies and transformational pieces of evidence in research on senescence and immunomodulators to advance cancer treatment. Although senescent cells contribute to drug tolerance, resistance to therapy, tumorigenesis, maladapting cancer phenotypes, tumor relapse, recurrence, and metastasis, emerging pieces of evidence also demonstrate that acutely induced senescent cells in tumors can elicit a strong and lasting antitumor immune response juxtaposed to the immunologically silent apoptotic cells. This commentary is to help develop an unconventional conceptual framework to advance cancer treatment. Accordingly, it will involve transiently inducing senescent cells in tumors at optimal levels to prime the immune system with radiation, then eliminating senescent cells with senolytics (drugs that specifically eliminate senescent cells) to disrupt their positive feedback accumulation (to prevent tumor maladaptation and adverse effects in healthy cells) and unleash long-lasting antitumor immunity with immunomodulators. The approach is reasonably speculative and will require scientifically rigorous \"fit-for-purpose,\" well-controlled preclinical research and development involving dose and schedule optimization of radiation and drugs, using representative in vitro and in vivo cancer models to obtain high-quality data to proceed to clinical studies.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"727-733"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Caloric Restriction Diet Attenuates Systemic Bone Fragility after Radiotherapy. 限制热量饮食可减轻放疗后的全身骨脆性
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-11-01 DOI: 10.1667/RADE-23-00227.1
Jessica A Stering, Amy E Biggs, Tara E Carney, Megan E Oest, Brittany A Simone

Bone fragility is a well-documented long-term side effect of radiotherapy, which currently has no preventative treatments. In this study, we applied a caloric restriction (CR) diet to attenuate both local and systemic bone loss after irradiation (RTx) in an established female Balb/c mouse model (4 consecutive daily doses of 5 Gy to the right hindlimb only). CR mice were tapered down to a 30% reduced calorie diet (RTx/CR) one week before irradiation, while regular diet (RD) mice received food ad libitum (RTx/RD). Unirradiated (sham) mice received either a 30% CR diet (SH/CR) or received food ad libitum (SH/RD). Irradiated, contralateral, and unirradiated hindlimbs were evaluated at 2, 4, and 8 weeks postirradiation using micro-computed tomography (μCT) to assess bone morphology and 3-point bending to quantify femur strength. Histological analysis of irradiated and unirradiated tibiae was performed to examine general bone tissue cytology and serum biomarker analysis was performed using terminal blood draw samples. After treatment, femur strength and metaphyseal bone quantity was decreased in irradiated and contralateral femora of RTx/RD mice compared to SH/RD femurs; this finding is consistent with previous studies. RTx/CR mice had positive effects when compared to RTx/RD mice, including increased strength relative to body mass in both the irradiated and contralateral limb, increased trabecular bone mass, and decreased marrow adiposity. However, a number of adverse effects were also observed, including a significant decrease in body mass and decreased cortical bone. Overall, CR shows promise as a preventative treatment for postirradiated bone fragility, yet questions remain to be addressed in future studies. Ideal diet duration, impact to normal tissue, and mechanism of action must be explored to better understand the clinical implication of a CR diet.

骨质脆弱是放疗的一种长期副作用,目前尚无预防性治疗方法。在本研究中,我们在已建立的雌性 Balb/c 小鼠模型(每天连续 4 次,每次 5 Gy,仅照射右后肢)中采用热量限制(CR)饮食来减轻照射(RTx)后的局部和全身骨质流失。CR小鼠在辐照前一周减量至30%热量饮食(RTx/CR),而普通饮食(RD)小鼠则自由进食(RTx/RD)。未接受辐照的小鼠(假小鼠)接受 30% 的热量减少饮食(SH/CR)或自由进食(SH/RD)。在辐照后2周、4周和8周,使用微型计算机断层扫描(μCT)评估骨形态,并通过3点弯曲量化股骨强度,对辐照后肢、对侧后肢和未辐照后肢进行评估。对照射过和未照射过的胫骨进行了组织学分析,以检查一般骨组织细胞学,并使用终末抽血样本进行了血清生物标志物分析。与 SH/RD 小鼠的股骨相比,RTx/RD 小鼠在治疗后,辐照股骨和对侧股骨的股骨强度和干骺端骨量均有所下降;这一结果与之前的研究一致。与RTx/RD小鼠相比,RTx/CR小鼠具有积极影响,包括照射肢体和对侧肢体相对于体重的力量增加、骨小梁质量增加和骨髓脂肪减少。不过,也观察到了一些不利影响,包括体重显著下降和皮质骨减少。总体而言,CR有望成为辐照后骨脆性的预防性治疗方法,但仍有一些问题有待今后的研究解决。必须探索理想的饮食持续时间、对正常组织的影响和作用机制,以更好地了解 CR 饮食的临床意义。
{"title":"Caloric Restriction Diet Attenuates Systemic Bone Fragility after Radiotherapy.","authors":"Jessica A Stering, Amy E Biggs, Tara E Carney, Megan E Oest, Brittany A Simone","doi":"10.1667/RADE-23-00227.1","DOIUrl":"10.1667/RADE-23-00227.1","url":null,"abstract":"<p><p>Bone fragility is a well-documented long-term side effect of radiotherapy, which currently has no preventative treatments. In this study, we applied a caloric restriction (CR) diet to attenuate both local and systemic bone loss after irradiation (RTx) in an established female Balb/c mouse model (4 consecutive daily doses of 5 Gy to the right hindlimb only). CR mice were tapered down to a 30% reduced calorie diet (RTx/CR) one week before irradiation, while regular diet (RD) mice received food ad libitum (RTx/RD). Unirradiated (sham) mice received either a 30% CR diet (SH/CR) or received food ad libitum (SH/RD). Irradiated, contralateral, and unirradiated hindlimbs were evaluated at 2, 4, and 8 weeks postirradiation using micro-computed tomography (μCT) to assess bone morphology and 3-point bending to quantify femur strength. Histological analysis of irradiated and unirradiated tibiae was performed to examine general bone tissue cytology and serum biomarker analysis was performed using terminal blood draw samples. After treatment, femur strength and metaphyseal bone quantity was decreased in irradiated and contralateral femora of RTx/RD mice compared to SH/RD femurs; this finding is consistent with previous studies. RTx/CR mice had positive effects when compared to RTx/RD mice, including increased strength relative to body mass in both the irradiated and contralateral limb, increased trabecular bone mass, and decreased marrow adiposity. However, a number of adverse effects were also observed, including a significant decrease in body mass and decreased cortical bone. Overall, CR shows promise as a preventative treatment for postirradiated bone fragility, yet questions remain to be addressed in future studies. Ideal diet duration, impact to normal tissue, and mechanism of action must be explored to better understand the clinical implication of a CR diet.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"765-774"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sea Buckthorn Oil Promotes the PI3K-Akt-ERK Signaling Pathway and Macrophage M2 Polarization to Reduce Radiation-induced Skin Injury. 沙棘油促进 PI3K-Akt-ERK 信号通路和巨噬细胞 M2 极化,减轻辐射诱发的皮肤损伤
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-11-01 DOI: 10.1667/RADE-23-00100.1
Qiu Wang, Binyan Cao, Junwei Zhan, Xinyu Hu, Yang Yu, Xueyu Li, Ying Liu

In this work, we explored the role and mechanism of sea buckthorn oil in reducing radiation-induced skin damage. The radiation-induced rat skin injury model was established using strontium-90. Rats were treated with sea buckthorn oil twice a day postirradiation, and skin damage was observed at different times and evaluated using an injury score. Skin pathological changes were observed using hematoxylin and eosin (H&E) staining. Western blotting and immunohistochemistry were used to detect the expression of vascular growth and pathway proteins. ELISA was used to detect the secretion level of inflammatory factors. Immunohistochemistry was used to detect macrophage polarization marker proteins. We found that sea buckthorn oil can alleviate radiation-induced skin damage, accelerate skin vascular regeneration, and promote the up-regulation of vascular endothelial growth factor (VEGF) and its receptor (VEGFR). These results demonstrate the beneficial effects of sea buckthorn oil on radiation-induced skin damage. Furthermore, the levels of IL-1β and TNF-α in the sea buckthorn oil treatment group were significantly lower than those in the control group, while the levels of IL-4 and IL10 were significantly higher (P < 0.05). CD206 expression also increased in the sea buckthorn oil treatment group, while CD16 expression decreased compared to the control group (P < 0.05). Western blotting showed that PI3K, Akt and ERK expression increased in the sea buckthorn oil treatment group (P < 0.05). The beneficial effect of sea buckthorn oil in reducing the inflammatory response in irradiated rats was diminished when they were treated with PI3K inhibitor. We conclude that sea buckthorn oil may regulate macrophage M2 polarization by increasing the PI3K-Akt-ERK signaling pathway, thereby inhibiting the inflammatory response and promoting skin vascular regeneration to prevent and treat radiation-induced skin damage.

在这项研究中,我们探讨了沙棘油在减轻辐射引起的皮肤损伤方面的作用和机制。我们使用锶-90 建立了辐射诱导的大鼠皮肤损伤模型。大鼠在辐照后每天两次服用沙棘油,在不同时间观察皮肤损伤情况,并使用损伤评分进行评估。使用苏木精和伊红(H&E)染色法观察皮肤病理变化。用 Western 印迹法和免疫组化法检测血管生长和通路蛋白的表达。ELISA 用于检测炎症因子的分泌水平。免疫组化用于检测巨噬细胞极化标记蛋白。我们发现沙棘油能减轻辐射引起的皮肤损伤,加速皮肤血管再生,促进血管内皮生长因子(VEGF)及其受体(VEGFR)的上调。这些结果表明了沙棘油对辐射引起的皮肤损伤的有益作用。此外,沙棘油治疗组的 IL-1β 和 TNF-α 水平明显低于对照组,而 IL-4 和 IL10 水平则明显高于对照组(P < 0.05)。与对照组相比,沙棘油治疗组 CD206 的表达也有所增加,而 CD16 的表达则有所下降(P < 0.05)。Western 印迹显示,沙棘油治疗组的 PI3K、Akt 和 ERK 表达增加(P < 0.05)。用 PI3K 抑制剂治疗后,沙棘油对减轻辐照大鼠炎症反应的有益作用减弱。我们的结论是,沙棘油可能通过增加 PI3K-Akt-ERK 信号通路来调节巨噬细胞 M2 极化,从而抑制炎症反应,促进皮肤血管再生,以预防和治疗辐射引起的皮肤损伤。
{"title":"Sea Buckthorn Oil Promotes the PI3K-Akt-ERK Signaling Pathway and Macrophage M2 Polarization to Reduce Radiation-induced Skin Injury.","authors":"Qiu Wang, Binyan Cao, Junwei Zhan, Xinyu Hu, Yang Yu, Xueyu Li, Ying Liu","doi":"10.1667/RADE-23-00100.1","DOIUrl":"10.1667/RADE-23-00100.1","url":null,"abstract":"<p><p>In this work, we explored the role and mechanism of sea buckthorn oil in reducing radiation-induced skin damage. The radiation-induced rat skin injury model was established using strontium-90. Rats were treated with sea buckthorn oil twice a day postirradiation, and skin damage was observed at different times and evaluated using an injury score. Skin pathological changes were observed using hematoxylin and eosin (H&E) staining. Western blotting and immunohistochemistry were used to detect the expression of vascular growth and pathway proteins. ELISA was used to detect the secretion level of inflammatory factors. Immunohistochemistry was used to detect macrophage polarization marker proteins. We found that sea buckthorn oil can alleviate radiation-induced skin damage, accelerate skin vascular regeneration, and promote the up-regulation of vascular endothelial growth factor (VEGF) and its receptor (VEGFR). These results demonstrate the beneficial effects of sea buckthorn oil on radiation-induced skin damage. Furthermore, the levels of IL-1β and TNF-α in the sea buckthorn oil treatment group were significantly lower than those in the control group, while the levels of IL-4 and IL10 were significantly higher (P < 0.05). CD206 expression also increased in the sea buckthorn oil treatment group, while CD16 expression decreased compared to the control group (P < 0.05). Western blotting showed that PI3K, Akt and ERK expression increased in the sea buckthorn oil treatment group (P < 0.05). The beneficial effect of sea buckthorn oil in reducing the inflammatory response in irradiated rats was diminished when they were treated with PI3K inhibitor. We conclude that sea buckthorn oil may regulate macrophage M2 polarization by increasing the PI3K-Akt-ERK signaling pathway, thereby inhibiting the inflammatory response and promoting skin vascular regeneration to prevent and treat radiation-induced skin damage.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"785-794"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disulfiram Upgrades the Radiosensitivity of Osteosarcoma by Enhancing Apoptosis and P53-Induced Cell Cycle Arrest. 双硫仑通过增强细胞凋亡和P53诱导的细胞周期停滞提高骨肉瘤的放射敏感性
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-11-01 DOI: 10.1667/RADE-24-00046.1
Qiujian Lian, Fengmei Chen, Zhilin Sha, Haonan Zhao, Jingyan Li, Tongjiang Chen, Chang Liu, Bingxuan Wang, Zhiwei Wang, Suchi Qiao

The prognosis of osteosarcoma has not been improved for decades. As radioresistance is one of the major reasons, effective radiotherapy sensitization drugs need to be discovered. HOS and K7M2 osteosarcoma cell lines were treated with disulfiram (DSF) and radiation to assess cell viability, proliferation, migration ability, apoptosis level, ROS and Ca2+ level, and cell cycle in vitro. A HOS-derived subcutaneous tumor mouse model was constructed to evaluate tumor growth after DSF combined with radiation, and the Tunel assay and immunohistochemistry of Ki67 were conducted. Western blot was used to evaluate the protein expression level. The IC50 and working concentration of DSF in osteosarcoma cell lines were ascertained. When combined with radiation, DSF effectively suppressed cell viability, proliferation, and migration, while enhancing apoptosis in osteosarcoma cells. The cell cycle postirradiation exhibited a downward shift in the G1 phase, but the addition of DSF counteracted this trend. The combination of DSF and radiation exhibited inhibitory effects on tumor growth in vivo, which was corroborated by Ki67 staining and Tunel assay. Western blot analysis revealed that DSF upregulated the expression of P53, P21, CDKN2C, BAX, and cleaved Caspase-3 while downregulating BCL2, CDK4/6, and CyclinD1 after irradiation. Our results document that DSF exerts its radiosensitization effects in vivo and in vitro, and is a valuable radiosensitizing drug option for osteosarcoma. The radiosensitization effect is mainly achieved by activating the apoptotic pathway and promoting cell cycle arrest induced by P53/P21 and CDKN2C after irradiation.

几十年来,骨肉瘤的预后一直没有改善。放射抗性是主要原因之一,因此需要发现有效的放疗增敏药物。研究人员用双硫仑(DSF)和放射线处理了HOS和K7M2骨肉瘤细胞系,以评估体外细胞活力、增殖、迁移能力、凋亡水平、ROS和Ca2+水平以及细胞周期。构建了HOS衍生皮下肿瘤小鼠模型,以评估DSF与辐射结合后的肿瘤生长情况,并进行了Tunel测定和Ki67免疫组化。采用 Western 印迹法评估蛋白表达水平。确定了DSF在骨肉瘤细胞系中的IC50和工作浓度。当与辐射联合使用时,DSF 能有效抑制骨肉瘤细胞的活力、增殖和迁移,同时增强其凋亡。辐射后的细胞周期在 G1 期出现下移,但 DSF 的加入抵消了这一趋势。DSF 与辐射的结合对体内肿瘤的生长有抑制作用,Ki67 染色和 Tunel 检测证实了这一点。Western印迹分析显示,DSF能上调P53、P21、CDKN2C、BAX和裂解Caspase-3的表达,同时下调BCL2、CDK4/6和CyclinD1的表达。我们的研究结果表明,DSF在体内和体外都能发挥其放射增敏作用,是治疗骨肉瘤的一种有价值的放射增敏药物选择。其放射增敏作用主要是通过激活凋亡通路和促进照射后 P53/P21 和 CDKN2C 诱导的细胞周期停滞来实现的。
{"title":"Disulfiram Upgrades the Radiosensitivity of Osteosarcoma by Enhancing Apoptosis and P53-Induced Cell Cycle Arrest.","authors":"Qiujian Lian, Fengmei Chen, Zhilin Sha, Haonan Zhao, Jingyan Li, Tongjiang Chen, Chang Liu, Bingxuan Wang, Zhiwei Wang, Suchi Qiao","doi":"10.1667/RADE-24-00046.1","DOIUrl":"10.1667/RADE-24-00046.1","url":null,"abstract":"<p><p>The prognosis of osteosarcoma has not been improved for decades. As radioresistance is one of the major reasons, effective radiotherapy sensitization drugs need to be discovered. HOS and K7M2 osteosarcoma cell lines were treated with disulfiram (DSF) and radiation to assess cell viability, proliferation, migration ability, apoptosis level, ROS and Ca2+ level, and cell cycle in vitro. A HOS-derived subcutaneous tumor mouse model was constructed to evaluate tumor growth after DSF combined with radiation, and the Tunel assay and immunohistochemistry of Ki67 were conducted. Western blot was used to evaluate the protein expression level. The IC50 and working concentration of DSF in osteosarcoma cell lines were ascertained. When combined with radiation, DSF effectively suppressed cell viability, proliferation, and migration, while enhancing apoptosis in osteosarcoma cells. The cell cycle postirradiation exhibited a downward shift in the G1 phase, but the addition of DSF counteracted this trend. The combination of DSF and radiation exhibited inhibitory effects on tumor growth in vivo, which was corroborated by Ki67 staining and Tunel assay. Western blot analysis revealed that DSF upregulated the expression of P53, P21, CDKN2C, BAX, and cleaved Caspase-3 while downregulating BCL2, CDK4/6, and CyclinD1 after irradiation. Our results document that DSF exerts its radiosensitization effects in vivo and in vitro, and is a valuable radiosensitizing drug option for osteosarcoma. The radiosensitization effect is mainly achieved by activating the apoptotic pathway and promoting cell cycle arrest induced by P53/P21 and CDKN2C after irradiation.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"752-764"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparative Study on Radiosensitivity of Canine Osteosarcoma Cell Lines Subjected to Spatially Fractionated Radiotherapy. 犬骨肉瘤细胞株接受空间分次放疗的放射敏感性比较研究
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-11-01 DOI: 10.1667/RADE-24-00168.1
Alizeh Z Khan, Cheyanne M Scholl, Joshua G Henry, Parminder S Basran

Canine appendicular osteosarcoma (OSCA) is a highly aggressive cancer, constituting 85% of all bone tumors in dogs, predominantly affecting larger breeds and exhibiting a high metastatic rate. This disease also shares many genomic similarities with human osteosarcomas, making it an ideal comparative model for treatment discovery. In this study, we characterized the radiobiological properties of several OSCA cell lines when subjected to spatially fractionated radiation therapy (SFRT) and chemotherapy. Specifically, we focused on lower (peak) doses from SFRT ranging from 1 to 10 Gy. These canine OSCA cell lines serve as useful models for osteosarcoma research that can be utilized to find translational treatments for both canine and human patients. This study reaffirms established clinical wisdom regarding the notoriously radioresistant profile of osteosarcomas but additionally offers compelling evidence supporting SFRT as a promising treatment option that could be used in conjunction with other cytotoxic agents.

犬附着性骨肉瘤(OSCA)是一种侵袭性很强的癌症,占犬类所有骨肿瘤的 85%,主要影响较大的犬种,并表现出很高的转移率。这种疾病与人类骨肉瘤在基因组方面也有许多相似之处,因此是发现治疗方法的理想比较模型。在这项研究中,我们研究了几种 OSCA 细胞系在接受空间分割放射治疗(SFRT)和化疗时的放射生物学特性。具体来说,我们重点研究了空间分次放射治疗(SFRT)的较低(峰值)剂量,从1到10 Gy不等。这些犬类 OSCA 细胞系是骨肉瘤研究的有用模型,可用于寻找犬类和人类患者的转化治疗方法。这项研究再次证实了关于骨肉瘤众所周知的抗放射特性的既有临床智慧,而且还提供了令人信服的证据,支持将 SFRT 作为一种有前途的治疗选择,可与其他细胞毒药物联合使用。
{"title":"A Comparative Study on Radiosensitivity of Canine Osteosarcoma Cell Lines Subjected to Spatially Fractionated Radiotherapy.","authors":"Alizeh Z Khan, Cheyanne M Scholl, Joshua G Henry, Parminder S Basran","doi":"10.1667/RADE-24-00168.1","DOIUrl":"10.1667/RADE-24-00168.1","url":null,"abstract":"<p><p>Canine appendicular osteosarcoma (OSCA) is a highly aggressive cancer, constituting 85% of all bone tumors in dogs, predominantly affecting larger breeds and exhibiting a high metastatic rate. This disease also shares many genomic similarities with human osteosarcomas, making it an ideal comparative model for treatment discovery. In this study, we characterized the radiobiological properties of several OSCA cell lines when subjected to spatially fractionated radiation therapy (SFRT) and chemotherapy. Specifically, we focused on lower (peak) doses from SFRT ranging from 1 to 10 Gy. These canine OSCA cell lines serve as useful models for osteosarcoma research that can be utilized to find translational treatments for both canine and human patients. This study reaffirms established clinical wisdom regarding the notoriously radioresistant profile of osteosarcomas but additionally offers compelling evidence supporting SFRT as a promising treatment option that could be used in conjunction with other cytotoxic agents.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"745-751"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct and Indirect Effects for Radiosensitization of Gold Nanoparticles in Proton Therapy. 质子疗法中金纳米粒子放射增敏的直接和间接效应
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-11-01 DOI: 10.1667/RADE-23-00199.1
Sobia Zareen, Sajid Bashir, Aamir Shahzad, Muhammad Kashif, Guogang Ren

The radiosensitization characteristics of gold nanoparticles (GNPs) have been investigated in a single cell irradiated with monoenergetic beams of protons of various energies using TOPAS-nBio, an advanced toolkit of TOPAS. Both direct and indirect effects against single-strand breaks (SSBs) are investigated and their double-strand breaks (DSBs) have been calculated. A single spherical cell interaction with a detailed DNA structure has been modeled and simulated under different conditions such as particle sizes and concentrations of GNPs, their biodistributions and associated proton energies. The physical interaction among protons, suspension water and GNPs has been simulated using a dual physics approach, while the interaction between water radiolysis and OH radicals was considered in the chemical process to save computational time. The present simulations involve irradiating the cell geometry with a dose of 1 Gy. The range of DSBs (Gy-1 Gbp-1) obtained was 2.1 ± 0.09 to 21.74 ± 0.4 for all GNPs of sizes 6-50 nm the proton energies in the range of 5-50 MeV. Regardless of proton energy and GNP size, the calculations showed that the contribution of indirect and hybrid DSBs remains higher in all simulation types than that of direct DSBs. New simulation outcomes of the indirect DSBs illustrate a percentage increase, while we cannot get an increase in the direct and hybrid DSBs in most cases when compared with no GNPs cases. The indirect DSBs provide the highest enhancement factor of 1.89 at 30 nm GNPs in size for 30 MeV protons energy, and the direct and hybrid DSBs indicate a slight increase in enhancement. The work indicates that the use of GNPs increased indirect DNA DSBs, while hybrid DSBs show only a slight increase in enhancement, and no enhancement is shown in direct DNA DSBs. It is significant to consider other mechanisms such as DNA damage repair when investigating DNA damage.

利用 TOPAS 的高级工具包 TOPAS-nBio,研究了金纳米粒子(GNPs)在单细胞中接受各种能量的单能质子束照射时的辐射增敏特性。研究了对单链断裂(SSB)的直接和间接影响,并计算了其双链断裂(DSB)。在不同条件下,如 GNPs 的粒度和浓度、生物分布和相关质子能量,对单个球形细胞与详细 DNA 结构的相互作用进行了建模和模拟。质子、悬浮水和 GNPs 之间的物理相互作用采用双重物理方法进行模拟,而水的辐射分解和 OH 自由基之间的相互作用则在化学过程中考虑,以节省计算时间。本模拟涉及用 1 Gy 的剂量照射细胞几何结构。对于所有尺寸为 6-50 nm、质子能量在 5-50 MeV 范围内的 GNP,获得的 DSBs(Gy-1 Gbp-1)范围为 2.1 ± 0.09 至 21.74 ± 0.4。无论质子能量和 GNP 大小如何,计算结果都表明,在所有模拟类型中,间接和混合 DSB 的贡献率仍然高于直接 DSB。与没有 GNPs 的情况相比,间接 DSB 的新模拟结果显示了百分比的增加,而在大多数情况下,我们无法获得直接和混合 DSB 的增加。在质子能量为 30 MeV、尺寸为 30 nm GNPs 的情况下,间接 DSB 的增强因子最高,为 1.89,而直接和混合 DSB 的增强因子略有增加。研究结果表明,GNPs 的使用增加了间接 DNA DSB,而混合 DSB 的增强仅略有增加,直接 DNA DSB 没有增强。在研究 DNA 损伤时,考虑 DNA 损伤修复等其他机制具有重要意义。
{"title":"Direct and Indirect Effects for Radiosensitization of Gold Nanoparticles in Proton Therapy.","authors":"Sobia Zareen, Sajid Bashir, Aamir Shahzad, Muhammad Kashif, Guogang Ren","doi":"10.1667/RADE-23-00199.1","DOIUrl":"10.1667/RADE-23-00199.1","url":null,"abstract":"<p><p>The radiosensitization characteristics of gold nanoparticles (GNPs) have been investigated in a single cell irradiated with monoenergetic beams of protons of various energies using TOPAS-nBio, an advanced toolkit of TOPAS. Both direct and indirect effects against single-strand breaks (SSBs) are investigated and their double-strand breaks (DSBs) have been calculated. A single spherical cell interaction with a detailed DNA structure has been modeled and simulated under different conditions such as particle sizes and concentrations of GNPs, their biodistributions and associated proton energies. The physical interaction among protons, suspension water and GNPs has been simulated using a dual physics approach, while the interaction between water radiolysis and OH radicals was considered in the chemical process to save computational time. The present simulations involve irradiating the cell geometry with a dose of 1 Gy. The range of DSBs (Gy-1 Gbp-1) obtained was 2.1 ± 0.09 to 21.74 ± 0.4 for all GNPs of sizes 6-50 nm the proton energies in the range of 5-50 MeV. Regardless of proton energy and GNP size, the calculations showed that the contribution of indirect and hybrid DSBs remains higher in all simulation types than that of direct DSBs. New simulation outcomes of the indirect DSBs illustrate a percentage increase, while we cannot get an increase in the direct and hybrid DSBs in most cases when compared with no GNPs cases. The indirect DSBs provide the highest enhancement factor of 1.89 at 30 nm GNPs in size for 30 MeV protons energy, and the direct and hybrid DSBs indicate a slight increase in enhancement. The work indicates that the use of GNPs increased indirect DNA DSBs, while hybrid DSBs show only a slight increase in enhancement, and no enhancement is shown in direct DNA DSBs. It is significant to consider other mechanisms such as DNA damage repair when investigating DNA damage.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"795-806"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
56Fe-ion Exposure Increases the Incidence of Lung and Brain Tumors at a Similar Rate in Male and Female Mice. 雌雄小鼠暴露于 56Fe 离子会以相似的速度增加肺癌和脑瘤的发病率。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-11-01 DOI: 10.1667/RADE-24-00004.1
Sophie R Finkelstein, Rutulkumar Patel, Katherine Deland, Joshua Mercer, Bryce Starr, Daniel Zhu, Hooney Min, Michael Reinsvold, Lorraine Da Silva Campos, Nerissa T Williams, Lixia Luo, Yan Ma, Jadee Neff, Mark J Hoenerhoff, Everett J Moding, David G Kirsch

The main deterrent to long-term space travel is the risk of Radiation Exposure Induced Death (REID). The National Aeronautics and Space Administration (NASA) has adopted Permissible Exposure Levels (PELs) to limit the probability of REID to 3% for the risk of death due to radiation-induced carcinogenesis. The most significant contributor to current REID estimates for astronauts is the risk of lung cancer. Recently updated lung cancer estimates from Japan's atomic bomb survivors showed that the excess relative risk of lung cancer by age 70 is roughly fourfold higher in females compared to males. However, whether sex differences may impact the risk of lung cancer due to exposure to high charge and energy (HZE) radiation is not well studied. Thus, to evaluate the impact of sex differences on the risk of solid cancer development after HZE radiation exposure, we irradiated Rbfl/fl, Trp53fl/+ male and female mice infected with Adeno-Cre with various doses of 320 kVp X rays or 600 MeV/n 56Fe ions and monitored them for any radiation-induced malignancies. We conducted complete necropsy and histopathology of major organs on 183 male and 157 female mice after following them for 350 days postirradiation. We observed that lung adenomas/carcinomas and esthesioneuroblastomas (ENBs) were the most common primary malignancies in mice exposed to X rays and 56Fe ions, respectively. In addition, 1 Gy 56Fe-ion exposure compared to X-ray exposure led to a significantly increased incidence of lung adenomas/carcinomas (P = 0.02) and ENBs (P < 0.0001) in mice. However, we did not find a significantly higher incidence of any solid malignancies in female mice as compared to male mice, regardless of radiation quality. Furthermore, gene expression analysis of ENBs suggested a distinct gene expression pattern with similar hallmark pathways altered, such as MYC targets and MTORC1 signaling, in ENBs induced by X rays and 56Fe ions. Thus, our data revealed that 56Fe-ion exposure significantly accelerated the development of lung adenomas/carcinomas and ENBs compared to X rays, but the rate of solid malignancies was similar between male and female mice, regardless of radiation quality.

长期太空旅行的主要障碍是辐射诱发死亡(REID)的风险。美国国家航空航天局(NASA)通过了允许暴露水平(PEL),将辐射诱发致癌死亡风险的概率限制在 3%。对宇航员目前的 REID 估计值影响最大的是肺癌风险。最近更新的日本原子弹爆炸幸存者肺癌估计值显示,女性到 70 岁时罹患肺癌的超额相对风险比男性高出约四倍。然而,性别差异是否会影响因暴露于高电荷和高能量(HZE)辐射而罹患肺癌的风险,目前还没有很好的研究。因此,为了评估性别差异对受到高电荷高能量(HZE)辐射后罹患实体癌风险的影响,我们用不同剂量的 320 kVp X 射线或 600 MeV/n 56Fe 离子照射感染了 Adeno-Cre 的 Rbfl/fl、Trp53fl/+ 雄性和雌性小鼠,并监测它们是否出现任何辐射诱发的恶性肿瘤。我们对辐照后 350 天的 183 只雄性小鼠和 157 只雌性小鼠的主要器官进行了全面解剖和组织病理学检查。我们观察到,肺腺瘤/癌和雌血管神经母细胞瘤(ENBs)分别是受到 X 射线和 56Fe 离子照射的小鼠最常见的原发性恶性肿瘤。此外,与 X 射线暴露相比,1 Gy 的 56Fe 离子暴露导致小鼠肺腺瘤/癌(P = 0.02)和 ENBs(P < 0.0001)的发病率明显提前。然而,无论辐射质量如何,我们都没有发现雌性小鼠的实体恶性肿瘤发病率明显高于雄性小鼠。此外,ENB 的基因表达分析表明,在 X 射线和 56Fe 离子诱导的 ENB 中,基因表达模式与 MYC 靶点和 MTORC1 信号转导等标志性通路发生了类似的改变。因此,我们的数据显示,与 X 射线相比,56Fe 离子照射明显加速了肺腺瘤/癌和 ENB 的发展,但无论辐射质量如何,雌雄小鼠的实体恶性肿瘤发生率相似。
{"title":"56Fe-ion Exposure Increases the Incidence of Lung and Brain Tumors at a Similar Rate in Male and Female Mice.","authors":"Sophie R Finkelstein, Rutulkumar Patel, Katherine Deland, Joshua Mercer, Bryce Starr, Daniel Zhu, Hooney Min, Michael Reinsvold, Lorraine Da Silva Campos, Nerissa T Williams, Lixia Luo, Yan Ma, Jadee Neff, Mark J Hoenerhoff, Everett J Moding, David G Kirsch","doi":"10.1667/RADE-24-00004.1","DOIUrl":"10.1667/RADE-24-00004.1","url":null,"abstract":"<p><p>The main deterrent to long-term space travel is the risk of Radiation Exposure Induced Death (REID). The National Aeronautics and Space Administration (NASA) has adopted Permissible Exposure Levels (PELs) to limit the probability of REID to 3% for the risk of death due to radiation-induced carcinogenesis. The most significant contributor to current REID estimates for astronauts is the risk of lung cancer. Recently updated lung cancer estimates from Japan's atomic bomb survivors showed that the excess relative risk of lung cancer by age 70 is roughly fourfold higher in females compared to males. However, whether sex differences may impact the risk of lung cancer due to exposure to high charge and energy (HZE) radiation is not well studied. Thus, to evaluate the impact of sex differences on the risk of solid cancer development after HZE radiation exposure, we irradiated Rbfl/fl, Trp53fl/+ male and female mice infected with Adeno-Cre with various doses of 320 kVp X rays or 600 MeV/n 56Fe ions and monitored them for any radiation-induced malignancies. We conducted complete necropsy and histopathology of major organs on 183 male and 157 female mice after following them for 350 days postirradiation. We observed that lung adenomas/carcinomas and esthesioneuroblastomas (ENBs) were the most common primary malignancies in mice exposed to X rays and 56Fe ions, respectively. In addition, 1 Gy 56Fe-ion exposure compared to X-ray exposure led to a significantly increased incidence of lung adenomas/carcinomas (P = 0.02) and ENBs (P < 0.0001) in mice. However, we did not find a significantly higher incidence of any solid malignancies in female mice as compared to male mice, regardless of radiation quality. Furthermore, gene expression analysis of ENBs suggested a distinct gene expression pattern with similar hallmark pathways altered, such as MYC targets and MTORC1 signaling, in ENBs induced by X rays and 56Fe ions. Thus, our data revealed that 56Fe-ion exposure significantly accelerated the development of lung adenomas/carcinomas and ENBs compared to X rays, but the rate of solid malignancies was similar between male and female mice, regardless of radiation quality.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"734-744"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RPS15 Coordinates with CtIP to Facilitate Homologous Recombination and Confer Therapeutic Resistance in Breast Cancer. RPS15 与 CtIP 相互配合,促进同源重组并增强乳腺癌的治疗抵抗力
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-11-01 DOI: 10.1667/RADE-24-00134.1
Baohang Lin, Guan Huang, Zishan Yuan, Xun Peng, Chunliang Yu, Jialu Zheng, Zequn Li, Juanyun Li, Jinan Liang, Bo Xu

The repair of DNA double-strand breaks (DSBs) through homologous recombination (HR) is vital for maintaining the stability and integrity of the genome. RNA binding proteins (RBPs) intricately regulate the DNA damage repair process, yet the precise molecular mechanisms underlying their function remain incompletely understood. In this study, we highlight the pivotal role of RPS15, a representative RBP, in homologous recombination repair. Specifically, we demonstrate that RPS15 promotes DNA end resection, a crucial step in homologous recombination. Notably, we identify an interaction between RPS15 and CtIP, a key factor in homologous recombination repair. This interaction is essential for CtIP recruitment to DSB sites, subsequent RPA coating, and RAD51 replacement, all critical steps in efficient homologous recombination repair and conferring resistance to genotoxic treatments. Functionally, suppressing RPS15 expression sensitizes cancer cells to X-ray radiation and enhances the therapeutic synergistic effect of PARP1 inhibitors in breast cancer cells. In summary, our findings reveal that RPS15 promotes DNA end resection to ensure effective homologous recombination repair, suggesting its potential as a therapeutic target in cancer treatment.

通过同源重组(HR)修复 DNA 双链断裂(DSB)对于维持基因组的稳定性和完整性至关重要。RNA 结合蛋白(RBPs)错综复杂地调控着 DNA 损伤修复过程,但人们对其功能的确切分子机制仍然知之甚少。在本研究中,我们强调了具有代表性的 RBP RPS15 在同源重组修复中的关键作用。具体来说,我们证明了 RPS15 能促进 DNA 末端切除,这是同源重组中的一个关键步骤。值得注意的是,我们发现了 RPS15 与同源重组修复的关键因素 CtIP 之间的相互作用。这种相互作用对 CtIP 招募到 DSB 位点、随后的 RPA 包被和 RAD51 替换至关重要,这些都是高效同源重组修复和赋予抗基因毒性治疗的关键步骤。从功能上讲,抑制 RPS15 的表达可使癌细胞对 X 射线辐射敏感,并增强 PARP1 抑制剂对乳腺癌细胞的治疗协同效应。总之,我们的研究结果表明,RPS15能促进DNA末端切除,确保有效的同源重组修复,这表明它有可能成为癌症治疗的靶点。
{"title":"RPS15 Coordinates with CtIP to Facilitate Homologous Recombination and Confer Therapeutic Resistance in Breast Cancer.","authors":"Baohang Lin, Guan Huang, Zishan Yuan, Xun Peng, Chunliang Yu, Jialu Zheng, Zequn Li, Juanyun Li, Jinan Liang, Bo Xu","doi":"10.1667/RADE-24-00134.1","DOIUrl":"10.1667/RADE-24-00134.1","url":null,"abstract":"<p><p>The repair of DNA double-strand breaks (DSBs) through homologous recombination (HR) is vital for maintaining the stability and integrity of the genome. RNA binding proteins (RBPs) intricately regulate the DNA damage repair process, yet the precise molecular mechanisms underlying their function remain incompletely understood. In this study, we highlight the pivotal role of RPS15, a representative RBP, in homologous recombination repair. Specifically, we demonstrate that RPS15 promotes DNA end resection, a crucial step in homologous recombination. Notably, we identify an interaction between RPS15 and CtIP, a key factor in homologous recombination repair. This interaction is essential for CtIP recruitment to DSB sites, subsequent RPA coating, and RAD51 replacement, all critical steps in efficient homologous recombination repair and conferring resistance to genotoxic treatments. Functionally, suppressing RPS15 expression sensitizes cancer cells to X-ray radiation and enhances the therapeutic synergistic effect of PARP1 inhibitors in breast cancer cells. In summary, our findings reveal that RPS15 promotes DNA end resection to ensure effective homologous recombination repair, suggesting its potential as a therapeutic target in cancer treatment.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"775-784"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiosensitivity-related Variation in MicroRNA-34a-5p Levels and Subsequent Neuronal Loss in the Hilus of the Dentate Gyrus after Irradiation at Postnatal Days 10 and 21 in Mice. 小鼠出生后第 10 天和第 21 天受到辐照后齿状回脊髓中与辐射敏感性相关的 MicroRNA-34a-5p 水平变化及随后的神经元丢失。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-10-01 DOI: 10.1667/RADE-23-00248.1
Lian Liu, Hong Wang, Zhao Wu Ma, Feng Ru Tang

The radiosensitivity of mice differs between postnatal days 10 (P10) and 21(P21); these days mark different stages of brain development. In the present study, Ki67 and doublecotin (DCX) immunostaining and hematoxylin staining was performed, which showed that acute radiation exposure at postnatal day 10 induced higher cell apoptosis and loss in the hilus of the dentate gyrus at day 1 postirradiation than postnatal day 21. MicroRNA (miRNA) sequencing and real-time quantitative reverse transcription PCR (qRT-PCR) analysis indicated the upregulation of miRNA-34a-5p at days 1 and 7 after irradiation at postnatal day 10, but not at postnatal day 21. Down-regulation of T-cell intracytoplasmic antigen-1 pathway (Tia1) was indicated by qRT-PCR at day 1 day but not day 7 after irradiation at postnatal day 10. Neurobehavioral testing in mature mice irradiated at postnatal day 10 demonstrated the impairment of short-term memory in novel object recognition and spatial memory, compared to those irradiated at postnatal day 21. Combined with our previous luciferase assay showing the direct interaction of miRNA34a-5p and Tia1, these findings suggest that radiation-induced abnormal miR-34a-5p/Tial interaction at day 1 after irradiation at postnatal day 10 may be involved in apoptosis of the dentate gyrus hilar, impairment of neurogenesis and subsequent short-term memory loss as observed in the novel object recognition and Barnes maze tests.

小鼠对辐射的敏感性在出生后第 10 天(P10)和第 21 天(P21)有所不同,这两天标志着大脑发育的不同阶段。本研究对小鼠进行了Ki67和双胞素(DCX)免疫染色和苏木精染色,结果表明,出生后第10天的急性辐射照射在辐射后第1天诱导的齿状回脊髓细胞凋亡和丢失高于出生后第21天。微RNA(miRNA)测序和实时定量反转录PCR(qRT-PCR)分析表明,miRNA-34a-5p在出生后第10天照射后第1天和第7天上调,而在出生后第21天则没有上调。qRT-PCR显示,T细胞胞浆内抗原-1通路(Tia1)在出生后第10天照射后第1天出现下调,但在第7天没有出现下调。对出生后第 10 天接受辐照的成熟小鼠进行的神经行为测试表明,与出生后第 21 天接受辐照的小鼠相比,出生后第 10 天接受辐照的小鼠在新物体识别和空间记忆方面的短期记忆受到了损害。结合我们之前进行的荧光素酶测定显示的 miRNA34a-5p 和 Tia1 的直接相互作用,这些研究结果表明,在出生后第 10 天接受辐照后的第 1 天,辐射诱导的 miR34a-5p/Tial 异常相互作用可能参与了在新物体识别和巴恩斯迷宫测试中观察到的齿状回细丝凋亡、神经发生障碍和随后的短期记忆丧失。
{"title":"Radiosensitivity-related Variation in MicroRNA-34a-5p Levels and Subsequent Neuronal Loss in the Hilus of the Dentate Gyrus after Irradiation at Postnatal Days 10 and 21 in Mice.","authors":"Lian Liu, Hong Wang, Zhao Wu Ma, Feng Ru Tang","doi":"10.1667/RADE-23-00248.1","DOIUrl":"10.1667/RADE-23-00248.1","url":null,"abstract":"<p><p>The radiosensitivity of mice differs between postnatal days 10 (P10) and 21(P21); these days mark different stages of brain development. In the present study, Ki67 and doublecotin (DCX) immunostaining and hematoxylin staining was performed, which showed that acute radiation exposure at postnatal day 10 induced higher cell apoptosis and loss in the hilus of the dentate gyrus at day 1 postirradiation than postnatal day 21. MicroRNA (miRNA) sequencing and real-time quantitative reverse transcription PCR (qRT-PCR) analysis indicated the upregulation of miRNA-34a-5p at days 1 and 7 after irradiation at postnatal day 10, but not at postnatal day 21. Down-regulation of T-cell intracytoplasmic antigen-1 pathway (Tia1) was indicated by qRT-PCR at day 1 day but not day 7 after irradiation at postnatal day 10. Neurobehavioral testing in mature mice irradiated at postnatal day 10 demonstrated the impairment of short-term memory in novel object recognition and spatial memory, compared to those irradiated at postnatal day 21. Combined with our previous luciferase assay showing the direct interaction of miRNA34a-5p and Tia1, these findings suggest that radiation-induced abnormal miR-34a-5p/Tial interaction at day 1 after irradiation at postnatal day 10 may be involved in apoptosis of the dentate gyrus hilar, impairment of neurogenesis and subsequent short-term memory loss as observed in the novel object recognition and Barnes maze tests.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"677-684"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dose Reconstruction for Epidemiological Studies among Ukrainian Chernobyl Cleanup Workers. 乌克兰切尔诺贝利清理工人流行病学研究的剂量重建。
IF 2.5 3区 医学 Q2 BIOLOGY Pub Date : 2024-10-01 DOI: 10.1667/RADE-23-00117.1
Vladimir Drozdovitch, Victor Kryuchkov, Elena Bakhanova, Petro Bondarenko, Konstantin Chizhov, Ivan Golovanov, Vadim Chumak
<p><p>The present paper provides an overview of the methods and summarizes the results of estimating radiation doses and their uncertainties for Ukrainian-American epidemiological studies among the Chernobyl (Chornobyl) cleanup workers. After the Chernobyl accident occurred on April 26, 1986, more than 300,000 Ukrainian cleanup workers took part between 1986 and 1990 in decontamination and recovery activities at the site of the Chernobyl Nuclear Power Plant. The U.S. National Cancer Institute in collaboration with the Ukrainian National Research Center for Radiation Medicine conducted several epidemiological studies in this population. An important part of these studies was the reconstruction of the study participants' radiation doses and the assessment of uncertainties in doses. A method called realistic analytical dose reconstruction with uncertainty estimation (RADRUE) was used to calculate the doses from external irradiation during cleanup missions, which was the main exposure pathway for most study participants. At the initial phase of the accident during the atmospheric releases of radioactivity from the destroyed reactor, the cleanup workers also received doses from inhalation of radionuclides. In addition, study participants received doses at their places of residence, especially those who lived in highly contaminated areas. The radiation doses estimated for 2,048 male cleanup workers included in the Ukrainian-American epidemiological studies varied widely: (i) bone-marrow doses from external irradiation in the case-control study of leukemia of 1,000 cleanup workers ranged from 3.7 × 10-5 mGy to 3.3 Gy (mean = 92 mGy); (ii) thyroid doses in the case-control study of thyroid cancer in 607 persons from all exposure pathways combined were from 0.15 mGy to 9.0 Gy (mean = 199 mGy); (iii) gonadal doses in 183 cleanup workers from all exposure pathways combined in the study of germline mutations in the offspring after parental irradiation (trio study) ranged from 0.58 mGy to 4.1 Gy (mean = 392 mGy); (iv) thyroid doses in the human factor uncertainties study among 47 persons were from 20 mGy to 2.1 Gy (mean = 295 mGy); and (v) lung doses in the study of germline genetic variants associated with host susceptibility to COVID-19 estimated for 211 cleanup workers were from 0.024 mGy to 2.5 Gy (mean = 249 mGy). Doses of female cleanup workers were much lower than those of male cleanup workers: the mean doses for female cleanup workers were 27 mGy for 34 women included in the trio study and 56 mGy for 48 women participated in the study of germline genetic variants associated with host susceptibility to COVID-19. Uncertainties in dose estimates included two components: (i) inherent uncertainties arising from the stochastic random variability of the parameters used in exposure assessment and from a lack of knowledge about the true values of the parameters; and (ii) human factor uncertainties due to poor memory recall resulting in incomplete, inaccurate,
本文概述了切尔诺贝利(切尔诺贝利)清理工人中乌克兰裔美国人流行病学研究的辐射剂量及其不确定性的估算方法和结果。1986 年 4 月 26 日切尔诺贝利事故发生后,1986 年至 1990 年间,30 多万乌克兰清理工人参与了切尔诺贝利核电站现场的去污和恢复活动。美国国家癌症研究所与乌克兰国家辐射医学研究中心合作,对这一人群进行了多项流行病学研究。这些研究的一个重要部分是重建研究参与者的辐射剂量和评估剂量的不确定性。使用了一种名为 "带不确定性估计的现实分析剂量重建"(RADRUE)的方法来计算清理任务期间的外部辐照剂量,这是大多数研究参与者的主要辐照途径。在事故初期,被摧毁的反应堆向大气释放放射性时,清理人员也会因吸入放射性核素而受到辐射剂量。此外,研究参与者在其居住地也受到了辐射,特别是那些居住在高污染地区的人。乌克兰-美国流行病学研究中包括的 2,048 名男性清理工人估计的辐射剂量差别很大:(i) 在对 1,000 名清理工人进行的白血病病例对照研究中,外照射造成的骨髓剂量从 3.7 × 10-5 mGy 到 3.3 Gy 不等(平均值 = 92 mGy);(ii) 在对 607 人进行的甲状腺癌病例对照研究中,所有照射途径合计造成的甲状腺剂量从 0.15 mGy 到 9.0 Gy (平均值 = 199 mGy);(iii) 在父母辐照后子代生殖突变的研究(三重研究)中,183 名来自所有辐照途径的清理工人的性腺剂量介于 0.58 mGy 至 4.1 Gy(平均值 = 392 mGy);(iv) 47 人在人体因素不确定性研究中的甲状腺剂量为 20 mGy 至 2.1 Gy(平均值 = 295 mGy);(v) 在与宿主对 COVID-19 易感性相关的种系遗传变异研究中,估计 211 名清理工人的肺部剂量为 0.024 mGy 至 2.5 Gy(平均值 = 249 mGy)。女性清洁工人的剂量远低于男性清洁工人:34 名女性清洁工人参加了三人研究,其平均剂量为 27 mGy;48 名女性清洁工人参加了与宿主对 COVID-19 易感性相关的种系遗传变异研究,其平均剂量为 56 mGy。剂量估算的不确定性包括两部分:(i) 暴露评估中使用的参数的随机变异性和对参数真实值的不了解所产生的固有不确定性;以及 (ii) 暴露后很长时间对清理工人进行个人访谈时,由于记忆力差导致回答不完整、不准确或缺失而产生的人为因素不确定性。本文还讨论了评估清理工人辐射剂量和相关不确定性的方法的可能发展和改进。
{"title":"Dose Reconstruction for Epidemiological Studies among Ukrainian Chernobyl Cleanup Workers.","authors":"Vladimir Drozdovitch, Victor Kryuchkov, Elena Bakhanova, Petro Bondarenko, Konstantin Chizhov, Ivan Golovanov, Vadim Chumak","doi":"10.1667/RADE-23-00117.1","DOIUrl":"10.1667/RADE-23-00117.1","url":null,"abstract":"&lt;p&gt;&lt;p&gt;The present paper provides an overview of the methods and summarizes the results of estimating radiation doses and their uncertainties for Ukrainian-American epidemiological studies among the Chernobyl (Chornobyl) cleanup workers. After the Chernobyl accident occurred on April 26, 1986, more than 300,000 Ukrainian cleanup workers took part between 1986 and 1990 in decontamination and recovery activities at the site of the Chernobyl Nuclear Power Plant. The U.S. National Cancer Institute in collaboration with the Ukrainian National Research Center for Radiation Medicine conducted several epidemiological studies in this population. An important part of these studies was the reconstruction of the study participants' radiation doses and the assessment of uncertainties in doses. A method called realistic analytical dose reconstruction with uncertainty estimation (RADRUE) was used to calculate the doses from external irradiation during cleanup missions, which was the main exposure pathway for most study participants. At the initial phase of the accident during the atmospheric releases of radioactivity from the destroyed reactor, the cleanup workers also received doses from inhalation of radionuclides. In addition, study participants received doses at their places of residence, especially those who lived in highly contaminated areas. The radiation doses estimated for 2,048 male cleanup workers included in the Ukrainian-American epidemiological studies varied widely: (i) bone-marrow doses from external irradiation in the case-control study of leukemia of 1,000 cleanup workers ranged from 3.7 × 10-5 mGy to 3.3 Gy (mean = 92 mGy); (ii) thyroid doses in the case-control study of thyroid cancer in 607 persons from all exposure pathways combined were from 0.15 mGy to 9.0 Gy (mean = 199 mGy); (iii) gonadal doses in 183 cleanup workers from all exposure pathways combined in the study of germline mutations in the offspring after parental irradiation (trio study) ranged from 0.58 mGy to 4.1 Gy (mean = 392 mGy); (iv) thyroid doses in the human factor uncertainties study among 47 persons were from 20 mGy to 2.1 Gy (mean = 295 mGy); and (v) lung doses in the study of germline genetic variants associated with host susceptibility to COVID-19 estimated for 211 cleanup workers were from 0.024 mGy to 2.5 Gy (mean = 249 mGy). Doses of female cleanup workers were much lower than those of male cleanup workers: the mean doses for female cleanup workers were 27 mGy for 34 women included in the trio study and 56 mGy for 48 women participated in the study of germline genetic variants associated with host susceptibility to COVID-19. Uncertainties in dose estimates included two components: (i) inherent uncertainties arising from the stochastic random variability of the parameters used in exposure assessment and from a lack of knowledge about the true values of the parameters; and (ii) human factor uncertainties due to poor memory recall resulting in incomplete, inaccurate, ","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"626-638"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Radiation research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1