首页 > 最新文献

Purinergic Signalling最新文献

英文 中文
Assessment of ATP metabolism to adenosine by ecto-nucleotidases carried by tumor-derived small extracellular vesicles 评估肿瘤源性细胞外小泡携带的外核苷酸酶将 ATP 代谢为腺苷的情况
IF 3.5 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-27 DOI: 10.1007/s11302-024-10038-7
Chang-Sook Hong, Elizabeth V. Menshikova, Theresa L. Whiteside, Edwin K. Jackson

Immunosuppression is a hallmark of cancer progression. Tumor-derived small extracellular vesicles (sEV), also known as TEX, produce adenosine (ADO) and can mediate tumor-induced immunosuppression.

Here, the ATP pathway of ADO production (ATP(rightarrow) ADP(rightarrow) AMP(rightarrow) ADO) by ecto-nucleotidases carried on the sEV surface was evaluated by a method using N6-etheno-ATP (eATP) and N6-etheno-AMP (eAMP) as substrates for enzymatic activity. The “downstream” N6-etheno-purines (ePurines) were measured by high performance liquid chromatography with fluorescence detection (HPLC-FL).

Human melanoma cell-derived TEX (MTEX) metabolized eATP to N6-etheno-ADP (eADP), eAMP and N6-etheno-Adenosine (eADO) more robustly than control keratinocyte cell-derived sEV (CEX); due to accelerated conversion of eATP to eADP and eADP to eAMP. MTEX and CEX similarly metabolized eAMP to eADO. Blocking of the ATP pathway with the selective CD39 inhibitor ARL67156 or pan ecto-nucleotidase inhibitor POM-1 normalized the ATP pathway but neither inhibitor completely abolished it. In contrast, inhibition of CD73 by PSB12379 or AMPCP abolished eADO formation by both MTEX and CEX, suggesting that targeting CD73 is the preferred approach to eliminating ADO produced by ecto-nucleotidases located on the sEV surface.

The noninvasive, sensitive, and specific assay assessing ePurine metabolism ± ecto-nucleotidase inhibitors in TEX enables the personalized identification of ecto-nucleotidase activity primarily involved in ADO production in patients with cancer. The assay could guide precision medicine by determining which purine is the preferred target for inhibitory therapeutic interventions.

免疫抑制是癌症进展的一个标志。肿瘤衍生的小细胞外囊泡(sEV),也称为TEX,能产生腺苷(ADO),并能介导肿瘤诱导的免疫抑制。在这里,通过使用N6-乙烯-ATP(eATP)和N6-乙烯-AMP(eAMP)作为酶活性底物的方法,评估了sEV表面携带的外核苷酸酶产生ADO的ATP途径(ATP(rightarrow)ADP(rightarrow)AMP(rightarrow)ADO)。下游 "N6-乙烯嘌呤(ePurines)通过高效液相色谱荧光检测法(HPLC-FL)进行测定。人黑色素瘤细胞衍生的 TEX(MTEX)将 eATP 代谢为 N6-乙烯基-ADP(eADP)、eAMP 和 N6-乙烯基-腺苷(eADO)的过程比对照组角朊细胞衍生的 sEV(CEX)更强;这是因为 eATP 加速转化为 eADP,eADP 加速转化为 eAMP。MTEX 和 CEX 同样将 eAMP 代谢为 eADO。用选择性 CD39 抑制剂 ARL67156 或泛外核苷酸酶抑制剂 POM-1 阻断 ATP 通路可使 ATP 通路正常化,但这两种抑制剂都不能完全消除 ATP 通路。与此相反,PSB12379或AMPCP抑制CD73可消除MTEX和CEX形成的eADO,这表明靶向CD73是消除位于sEV表面的外切核苷酸酶产生的ADO的首选方法。该测定可确定哪种嘌呤是抑制性治疗干预的首选靶点,从而为精准医疗提供指导。
{"title":"Assessment of ATP metabolism to adenosine by ecto-nucleotidases carried by tumor-derived small extracellular vesicles","authors":"Chang-Sook Hong, Elizabeth V. Menshikova, Theresa L. Whiteside, Edwin K. Jackson","doi":"10.1007/s11302-024-10038-7","DOIUrl":"https://doi.org/10.1007/s11302-024-10038-7","url":null,"abstract":"<p>Immunosuppression is a hallmark of cancer progression. Tumor-derived small extracellular vesicles (sEV), also known as TEX, produce adenosine (ADO) and can mediate tumor-induced immunosuppression.</p><p>Here, the ATP pathway of ADO production (ATP<span>(rightarrow)</span> ADP<span>(rightarrow)</span> AMP<span>(rightarrow)</span> ADO) by ecto-nucleotidases carried on the sEV surface was evaluated by a method using N<sup>6</sup>-etheno-ATP (eATP) and N<sup>6</sup>-etheno-AMP (eAMP) as substrates for enzymatic activity. The “downstream” N<sup>6</sup>-etheno-purines (ePurines) were measured by high performance liquid chromatography with fluorescence detection (HPLC-FL).</p><p>Human melanoma cell-derived TEX (MTEX) metabolized eATP to N<sup>6</sup>-etheno-ADP (eADP), eAMP and N<sup>6</sup>-etheno-Adenosine (eADO) more robustly than control keratinocyte cell-derived sEV (CEX); due to accelerated conversion of eATP to eADP and eADP to eAMP. MTEX and CEX similarly metabolized eAMP to eADO. Blocking of the ATP pathway with the selective CD39 inhibitor ARL67156 or pan ecto-nucleotidase inhibitor POM-1 normalized the ATP pathway but neither inhibitor completely abolished it. In contrast, inhibition of CD73 by PSB12379 or AMPCP abolished eADO formation by both MTEX and CEX, suggesting that targeting CD73 is the preferred approach to eliminating ADO produced by ecto-nucleotidases located on the sEV surface.</p><p>The noninvasive, sensitive, and specific assay assessing ePurine metabolism ± ecto-nucleotidase inhibitors in TEX enables the personalized identification of ecto-nucleotidase activity primarily involved in ADO production in patients with cancer. The assay could guide precision medicine by determining which purine is the preferred target for inhibitory therapeutic interventions.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":"24 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. 嘌呤能受体在大脑生理和疾病中对 GABA 能神经传递的调控。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-24 DOI: 10.1007/s11302-024-10034-x
Guilherme Juvenal, Guilherme Shigueto Vilar Higa, Lucas Bonfim Marques, Thais Tessari Zampieri, Felipe José Costa Viana, Luiz R Britto, Yong Tang, Peter Illes, Francesco di Virgilio, Henning Ulrich, Roberto de Pasquale

Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.

嘌呤能受体调节海马和大脑皮层这些与认知功能有关的结构中神经信息的处理。当神经元持续活动时,星形胶质细胞和神经元群以自分泌和旁分泌的方式释放三磷酸腺苷(ATP)时,这些受体就会被激活。人们最近才开始研究这些受体对 GABA 能传导的调节作用。星形胶质细胞和 GABA 能中间神经元通过它们的分支到达大群兴奋性锥体神经元。它们的抑制作用建立了不同的同步模式,决定了伽马频率节律,而伽马频率节律是与认知过程有关的神经活动的特征。在生命早期,GABA 能介导的兴奋信号同步引导着经验驱动的认知发展成熟,而这一过程的功能障碍与神经和神经精神疾病有关。嘌呤能受体能及时调节 GABA 能对持续神经活动的控制,并深刻影响海马和新皮层回路的神经处理过程。刺激 A2 受体会增加突触前终端的 GABA 释放,从而显著降低锥体神经元的神经元发射。A1 受体抑制 GABA 能活动,但只在 GABA 产生兴奋信号的出生后早期发挥作用。在锥体神经元中表达的 P2X 和 P2Y 受体通过阻断 GABAA 受体来降低抑制音调。最后,P2Y 受体激活会引起 GABA 能神经元去极化,增加 GABA 的释放,从而有利于伽马振荡的出现。本综述全面介绍了嘌呤能对 GABA 能传导的影响及其对神经处理的后果,并将讨论扩展到受体亚型及其与癫痫和阿尔茨海默病等脑部疾病的发病关系。
{"title":"Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease.","authors":"Guilherme Juvenal, Guilherme Shigueto Vilar Higa, Lucas Bonfim Marques, Thais Tessari Zampieri, Felipe José Costa Viana, Luiz R Britto, Yong Tang, Peter Illes, Francesco di Virgilio, Henning Ulrich, Roberto de Pasquale","doi":"10.1007/s11302-024-10034-x","DOIUrl":"https://doi.org/10.1007/s11302-024-10034-x","url":null,"abstract":"<p><p>Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A<sub>2</sub> receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A<sub>1</sub> receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABA<sub>A</sub> receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of the P2X7 receptor in breast cancer progression. P2X7 受体在乳腺癌进展中的作用。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-23 DOI: 10.1007/s11302-024-10039-6
Yanan Du, Yahui Cao, Wei Song, Xin Wang, Qingqing Yu, Xiaoxiang Peng, Ronglan Zhao

Breast cancer is a common malignant tumor, whose incidence is increasing year by year, and it has become the malignant tumor with the highest incidence rate in women. Purine ligand-gated ion channel 7 receptor (P2X7R) is a cation channel receptor with Adenosine triphosphate ( ATP) as a ligand, which is widely distributed in cells and tissues, and is closely related to tumorigenesis and progression. P2X7R plays an important role in cancer by interacting with ATP. Studies have shown that P2X7R is up-regulated in breast cancer and can promote tumor invasion and metastasis by activating the protein kinase B (AKT) signaling pathway, promoting epithelial-mesenchymal transition (EMT), controlling the generation of extracellular vesicle (EV), and regulating the expression of the inflammatory protein cyclooxygenase 2 (COX-2). Furthermore, P2X7R was proven to play an essential role in the proliferation and apoptosis of breast cancer cells. Recently, inhibitors targeting P2X7R have been found to inhibit the progression of breast cancer. Natural P2X7R antagonists, such as rhodopsin, and the isoquinoline alkaloid berberine, have also been shown to be effective in inhibiting breast cancer progression. In this article, we review the research progress of P2X7R and breast cancer intending to provide new targets and directions for breast cancer treatment.

乳腺癌是一种常见的恶性肿瘤,发病率逐年上升,已成为女性发病率最高的恶性肿瘤。嘌呤配体门控离子通道7受体(P2X7R)是一种以三磷酸腺苷(ATP)为配体的阳离子通道受体,广泛分布于细胞和组织中,与肿瘤的发生和发展密切相关。P2X7R 通过与 ATP 相互作用,在癌症中发挥着重要作用。研究表明,P2X7R 在乳腺癌中上调,可通过激活蛋白激酶 B(AKT)信号通路、促进上皮-间质转化(EMT)、控制细胞外囊泡(EV)的生成以及调节炎症蛋白环氧化酶 2(COX-2)的表达,促进肿瘤的侵袭和转移。此外,P2X7R 被证明在乳腺癌细胞的增殖和凋亡过程中发挥着重要作用。最近,针对 P2X7R 的抑制剂被发现可以抑制乳腺癌的发展。天然的 P2X7R 拮抗剂,如荷叶碱和异喹啉生物碱小檗碱,也被证明能有效抑制乳腺癌的进展。本文回顾了 P2X7R 与乳腺癌的研究进展,旨在为乳腺癌治疗提供新的靶点和方向。
{"title":"Role of the P2X7 receptor in breast cancer progression.","authors":"Yanan Du, Yahui Cao, Wei Song, Xin Wang, Qingqing Yu, Xiaoxiang Peng, Ronglan Zhao","doi":"10.1007/s11302-024-10039-6","DOIUrl":"https://doi.org/10.1007/s11302-024-10039-6","url":null,"abstract":"<p><p>Breast cancer is a common malignant tumor, whose incidence is increasing year by year, and it has become the malignant tumor with the highest incidence rate in women. Purine ligand-gated ion channel 7 receptor (P2X7R) is a cation channel receptor with Adenosine triphosphate ( ATP) as a ligand, which is widely distributed in cells and tissues, and is closely related to tumorigenesis and progression. P2X7R plays an important role in cancer by interacting with ATP. Studies have shown that P2X7R is up-regulated in breast cancer and can promote tumor invasion and metastasis by activating the protein kinase B (AKT) signaling pathway, promoting epithelial-mesenchymal transition (EMT), controlling the generation of extracellular vesicle (EV), and regulating the expression of the inflammatory protein cyclooxygenase 2 (COX-2). Furthermore, P2X7R was proven to play an essential role in the proliferation and apoptosis of breast cancer cells. Recently, inhibitors targeting P2X7R have been found to inhibit the progression of breast cancer. Natural P2X7R antagonists, such as rhodopsin, and the isoquinoline alkaloid berberine, have also been shown to be effective in inhibiting breast cancer progression. In this article, we review the research progress of P2X7R and breast cancer intending to provide new targets and directions for breast cancer treatment.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosmarinic acid modulates purinergic signaling and induces apoptosis in melanoma cells. 迷迭香酸可调节嘌呤能信号转导并诱导黑色素瘤细胞凋亡。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-20 DOI: 10.1007/s11302-024-10040-z
Gilnei B da Silva, Daiane Manica, Paula Dallagnol, Rafael A Narzetti, Filomena Marafon, Alana P da Silva, Letícia de S Matias, Joana V Cassol, Marcelo Moreno, Aniela P Kempka, Margarete D Bagatini

Cancer cases have increased worldwide. Cutaneous melanoma (CM), a highly metastatic skin cancer, largely contributes to global statistical cancer death data. Research has shown that rosmarinic acid (RA) is a promising phenolic compound with antineoplastic properties. Thus, we investigated the effects of RA on apoptosis-inducing in melanoma cells, purinergic signaling modulation, and cytokine levels. We treated SK-MEL-28 cells for 24 h with different concentrations of RA and assessed the apoptosis, CD39, CD73, and A2A expression, and cytokine levels. We found RA-induced apoptosis in melanoma cells. Regarding the purinergic system, we verified that RA downregulated the expression of CD73 and A2A, specially at high concentrations of treatment. Additionally, RA increased IL-6, IL-4, IL-10, IFN-γ, and TNF-α levels. Our in vitro results confirm RA's potential to be used to induce melanoma cell apoptosis, having CD73 and A2A as targets when reversion of immune suppression is desired. Further studies in animal models and clinical trials focusing on RA's modulation of purinergic signaling in melanoma are required.

全球癌症病例不断增加。皮肤黑色素瘤(CM)是一种高度转移性皮肤癌,在全球癌症死亡统计数据中占很大比例。研究表明,迷迭香酸(RA)是一种具有抗肿瘤特性的酚类化合物。因此,我们研究了迷迭香酸对黑色素瘤细胞凋亡诱导、嘌呤能信号调节和细胞因子水平的影响。我们用不同浓度的 RA 处理 SK-MEL-28 细胞 24 小时,并评估细胞凋亡、CD39、CD73 和 A2A 表达以及细胞因子水平。我们发现 RA 可诱导黑色素瘤细胞凋亡。在嘌呤能系统方面,我们证实 RA 下调了 CD73 和 A2A 的表达,尤其是在高浓度处理时。此外,RA 还能提高 IL-6、IL-4、IL-10、IFN-γ 和 TNF-α 的水平。我们的体外研究结果证实了 RA 具有诱导黑色素瘤细胞凋亡的潜力,当需要逆转免疫抑制时,可将 CD73 和 A2A 作为靶点。我们需要在动物模型和临床试验中进一步研究 RA 对黑色素瘤嘌呤能信号转导的调节作用。
{"title":"Rosmarinic acid modulates purinergic signaling and induces apoptosis in melanoma cells.","authors":"Gilnei B da Silva, Daiane Manica, Paula Dallagnol, Rafael A Narzetti, Filomena Marafon, Alana P da Silva, Letícia de S Matias, Joana V Cassol, Marcelo Moreno, Aniela P Kempka, Margarete D Bagatini","doi":"10.1007/s11302-024-10040-z","DOIUrl":"https://doi.org/10.1007/s11302-024-10040-z","url":null,"abstract":"<p><p>Cancer cases have increased worldwide. Cutaneous melanoma (CM), a highly metastatic skin cancer, largely contributes to global statistical cancer death data. Research has shown that rosmarinic acid (RA) is a promising phenolic compound with antineoplastic properties. Thus, we investigated the effects of RA on apoptosis-inducing in melanoma cells, purinergic signaling modulation, and cytokine levels. We treated SK-MEL-28 cells for 24 h with different concentrations of RA and assessed the apoptosis, CD39, CD73, and A2A expression, and cytokine levels. We found RA-induced apoptosis in melanoma cells. Regarding the purinergic system, we verified that RA downregulated the expression of CD73 and A2A, specially at high concentrations of treatment. Additionally, RA increased IL-6, IL-4, IL-10, IFN-γ, and TNF-α levels. Our in vitro results confirm RA's potential to be used to induce melanoma cell apoptosis, having CD73 and A2A as targets when reversion of immune suppression is desired. Further studies in animal models and clinical trials focusing on RA's modulation of purinergic signaling in melanoma are required.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partners in health and disease: pineal gland and purinergic signalling. 健康与疾病的伙伴:松果体与嘌呤能信号。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-20 DOI: 10.1007/s11302-024-10037-8
Regina P Markus, Kassiano S Sousa, Henning Ulrich, Zulma S Ferreira

In mammal's pineal glands, ATP interacts with the high-affinity P2Y1 and the low-affinity P2X7 receptors. ATP released from sympathetic nerve terminals potentiates noradrenaline-induced serotonin N-acetyltransferase (Snat) transcription, N-acetylserotonin (NAS), and melatonin (MLT) synthesis. Circulating melatonin impairs the expression of adhesion molecules in endothelial cells, blocking the migration of leukocytes. Acute defence response induced by pathogen- and danger/damage-associated molecular patterns (PAMPs and DAMPs) triggers the NF-κB pathway in pinealocytes and blocks the transcription of Snat. Therefore, the darkness hormone is not released, and neutrophils and monocytes migrate to the lesion sites. ATP released in high amounts from apoptotic and death cells was considered a DAMP, and the blockage of P2X7 receptors was tested as a new class of drugs for treating brain damage. However, this is not a simple equation. High ATP injected in a lateral ventricle blocked MLT, but not NAS, synthesis as it impairs the transcription of acetyl serotonin N-methyltransferase. NAS is released in the plasma and the cerebral spinal fluid. NAS also blocks the rolling and adhesion of leukocytes to endothelial cells. Otherwise, it is metabolised specifically in each brain area to provide the requested concentration of MLT as a neuroprotector. As observed in physiological conditions, high extracellular ATP, different from the other DAMPs, reports the environmental light/dark cycle rhythm because NAS substitutes MLT as the nocturnal chemical indicator, the darkness hormone. Thus, blocking the P2X7R should not be considered a universal therapy for improving acute strokes, as MLT and ATP are partners in health and disease.

在哺乳动物的松果体中,ATP 与高亲和力的 P2Y1 和低亲和力的 P2X7 受体相互作用。交感神经终端释放的 ATP 能促进去甲肾上腺素诱导的血清素 N-乙酰转移酶(Snat)转录、N-乙酰羟色胺(NAS)和褪黑激素(MLT)的合成。循环中的褪黑激素会影响内皮细胞中粘附分子的表达,从而阻碍白细胞的迁移。病原体和危险/损伤相关分子模式(PAMPs 和 DAMPs)诱发的急性防御反应会触发松果体细胞中的 NF-κB 通路,阻止 Snat 的转录。因此,黑暗激素无法释放,中性粒细胞和单核细胞迁移到病变部位。凋亡细胞和死亡细胞释放的大量 ATP 被认为是一种 DAMP,阻断 P2X7 受体作为治疗脑损伤的一类新药进行了试验。然而,这并不是一个简单的等式。向侧脑室注入高浓度的 ATP 会阻断 MLT 的合成,但不会阻断 NAS 的合成,因为它会影响乙酰羟色胺 N-甲基转移酶的转录。NAS 在血浆和脑脊液中释放。NAS 还能阻止白细胞在血管内皮细胞上滚动和粘附。此外,它还会在每个脑区进行特定代谢,以提供所需的 MLT 浓度,作为神经保护剂。正如在生理条件下观察到的那样,与其他 DAMPs 不同,高细胞外 ATP 会报告环境的光/暗周期节律,因为 NAS 取代了 MLT 作为夜间化学指示剂,即黑暗激素。因此,阻断 P2X7R 不应被视为改善急性中风的通用疗法,因为 MLT 和 ATP 是健康和疾病的伙伴。
{"title":"Partners in health and disease: pineal gland and purinergic signalling.","authors":"Regina P Markus, Kassiano S Sousa, Henning Ulrich, Zulma S Ferreira","doi":"10.1007/s11302-024-10037-8","DOIUrl":"https://doi.org/10.1007/s11302-024-10037-8","url":null,"abstract":"<p><p>In mammal's pineal glands, ATP interacts with the high-affinity P2Y<sub>1</sub> and the low-affinity P2X7 receptors. ATP released from sympathetic nerve terminals potentiates noradrenaline-induced serotonin N-acetyltransferase (Snat) transcription, N-acetylserotonin (NAS), and melatonin (MLT) synthesis. Circulating melatonin impairs the expression of adhesion molecules in endothelial cells, blocking the migration of leukocytes. Acute defence response induced by pathogen- and danger/damage-associated molecular patterns (PAMPs and DAMPs) triggers the NF-κB pathway in pinealocytes and blocks the transcription of Snat. Therefore, the darkness hormone is not released, and neutrophils and monocytes migrate to the lesion sites. ATP released in high amounts from apoptotic and death cells was considered a DAMP, and the blockage of P2X7 receptors was tested as a new class of drugs for treating brain damage. However, this is not a simple equation. High ATP injected in a lateral ventricle blocked MLT, but not NAS, synthesis as it impairs the transcription of acetyl serotonin N-methyltransferase. NAS is released in the plasma and the cerebral spinal fluid. NAS also blocks the rolling and adhesion of leukocytes to endothelial cells. Otherwise, it is metabolised specifically in each brain area to provide the requested concentration of MLT as a neuroprotector. As observed in physiological conditions, high extracellular ATP, different from the other DAMPs, reports the environmental light/dark cycle rhythm because NAS substitutes MLT as the nocturnal chemical indicator, the darkness hormone. Thus, blocking the P2X7R should not be considered a universal therapy for improving acute strokes, as MLT and ATP are partners in health and disease.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lessons from the physiological role of guanosine in neurodegeneration and cancer: Toward a multimodal mechanism of action? 鸟苷在神经变性和癌症中的生理作用的启示:建立多模式作用机制?
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-15 DOI: 10.1007/s11302-024-10033-y
Carla Inês Tasca, Mariachiara Zuccarini, Patrizia Di Iorio, Francisco Ciruela

Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for guanosine impedes the development of structure-activity research programs to develop guanosine derivatives for therapeutic purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involving adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A1R and A2AR), including the A1R-A2AR heteromer. In addition, we consider the impact of guanosine on extracellular adenosine levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.

神经退行性疾病和脑肿瘤是重要的健康挑战,因为其严重的性质和衰弱的后果需要大量的医疗护理。有趣的是,这些疾病具有共同的生理特征,即谷氨酸和腺苷传递增加,这通常与细胞失调和损伤有关。鸟苷是一种内源性核苷,在兴奋性毒性的临床前模型中具有安全和保护神经的作用,并对肿瘤细胞具有细胞毒性作用。然而,鸟苷缺乏明确的作用机制,妨碍了对其生理效应的全面了解。事实上,缺乏鸟苷的特异性受体阻碍了结构-活性研究计划的发展,从而无法开发出用于治疗目的的鸟苷衍生物。另外,鉴于鸟苷与腺苷能系统的明显相互作用,鸟苷有可能通过涉及腺苷受体、转运体和嘌呤能代谢的未公开机制来调节腺苷传递,从而发挥其神经保护和抗肿瘤作用。这里将讨论鸟苷保护作用背后的几种潜在分子机制。首先,我们将探讨鸟苷与腺苷受体(A1R 和 A2AR)(包括 A1R-A2AR 异构体)的潜在相互作用。此外,我们还将探讨鸟苷对细胞外腺苷水平的影响以及鸟苷嘌呤转化酶的作用。总之,鸟苷作为神经保护剂和抗增殖剂的多种细胞功能表明,鸟苷具有多模式和互补的作用机制。
{"title":"Lessons from the physiological role of guanosine in neurodegeneration and cancer: Toward a multimodal mechanism of action?","authors":"Carla Inês Tasca, Mariachiara Zuccarini, Patrizia Di Iorio, Francisco Ciruela","doi":"10.1007/s11302-024-10033-y","DOIUrl":"https://doi.org/10.1007/s11302-024-10033-y","url":null,"abstract":"<p><p>Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for guanosine impedes the development of structure-activity research programs to develop guanosine derivatives for therapeutic purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involving adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A<sub>1</sub>R and A<sub>2A</sub>R), including the A<sub>1</sub>R-A<sub>2A</sub>R heteromer. In addition, we consider the impact of guanosine on extracellular adenosine levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ENTPD1 (CD39) and NT5E (CD73) expression in human medulloblastoma: an in silico analysis. ENTPD1(CD39)和NT5E(CD73)在人髓母细胞瘤中的表达:硅分析。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-08 DOI: 10.1007/s11302-024-10035-w
Marco Antônio Stefani, Elizandra Braganhol, Guilherme Tomasi Santos, Samuel Masao Suwa, Daiane Dias Cabeleira, Guilherme Pamplona Bueno de Andrade

Medulloblastoma is the most common malignant tumor in the pediatric population. Its classification has incorporated key molecular variations alongside histological characterization. CD39 (also known as ENTPD1) and CD73 (also known as NT5E), enzymes of the purinergic signaling pathway, act in synergy to generate extracellular adenosine, creating an immunosuppressive tumor microenvironment. Our study examined the expression of mRNA of these genes in previously described transcriptome data sets of medulloblastoma patient samples from the Cavalli Cohort (n = 763). Survival distribution was estimated according to the Kaplan-Meier method using a median cut-off and log-rank statistics (p ≤ 0.05). In non-WNT and non-SHH medulloblastoma Group 4 (n = 264), the high expression of ENTPD1 and NT5E was significantly related to a lower overall survival (p = 2.7e-04; p = 2.6e-03). In the SHH-activated group (n = 172), the high expression of ENTPD1 was significantly related to lower overall survival (p = 7.8e-03), while the high expression of NT5E was significantly related to greater overall survival (p = 0.017). In the WNT group (n = 63), the expressions of ENTPD1 and NT5E were not significantly correlated with overall survival (p = 0.212; p = 0.101). In non-WNT and non-SHH medulloblastoma Group 3 (n = 113), the high expression of ENTPD1 was significantly related to greater survival (p = 0.034), while expression of NT5E was not significantly related to survival of patients (p = 0.124). This in silico analysis indicates that ENTPD1 (CD39) and NT5E (CD73) can be seen as potential prognostic markers and therapeutic targets for primary medulloblastomas in non-WNT and non-SHH Group 4.

髓母细胞瘤是儿科最常见的恶性肿瘤。在对其进行分类时,除了组织学特征外,还纳入了关键的分子变异。CD39(又称ENTPD1)和CD73(又称NT5E)是嘌呤能信号通路的酶,它们协同作用产生细胞外腺苷,形成免疫抑制性肿瘤微环境。我们的研究检测了先前描述的卡瓦利队列(Cavalli Cohort)髓母细胞瘤患者样本(n = 763)转录组数据集中这些基因的 mRNA 表达。根据 Kaplan-Meier 方法,使用中位数截断和对数秩统计(P ≤ 0.05)估算了生存率分布。在非WNT和非SHH髓母细胞瘤第4组(n = 264)中,ENTPD1和NT5E的高表达与较低的总生存率显著相关(p = 2.7e-04;p = 2.6e-03)。在SHH激活组(n = 172)中,ENTPD1的高表达与较低的总生存率显著相关(p = 7.8e-03),而NT5E的高表达与较高的总生存率显著相关(p = 0.017)。在WNT组(n = 63)中,ENTPD1和NT5E的表达与总生存率无明显相关性(p = 0.212; p = 0.101)。在非WNT和非SHH髓母细胞瘤第3组(n = 113)中,ENTPD1的高表达与患者的生存率明显相关(p = 0.034),而NT5E的表达与患者的生存率无明显关系(p = 0.124)。这项硅分析表明,ENTPD1(CD39)和NT5E(CD73)可被视为非WNT和非SHH第4组原发性髓母细胞瘤的潜在预后标志物和治疗靶点。
{"title":"ENTPD1 (CD39) and NT5E (CD73) expression in human medulloblastoma: an in silico analysis.","authors":"Marco Antônio Stefani, Elizandra Braganhol, Guilherme Tomasi Santos, Samuel Masao Suwa, Daiane Dias Cabeleira, Guilherme Pamplona Bueno de Andrade","doi":"10.1007/s11302-024-10035-w","DOIUrl":"https://doi.org/10.1007/s11302-024-10035-w","url":null,"abstract":"<p><p>Medulloblastoma is the most common malignant tumor in the pediatric population. Its classification has incorporated key molecular variations alongside histological characterization. CD39 (also known as ENTPD1) and CD73 (also known as NT5E), enzymes of the purinergic signaling pathway, act in synergy to generate extracellular adenosine, creating an immunosuppressive tumor microenvironment. Our study examined the expression of mRNA of these genes in previously described transcriptome data sets of medulloblastoma patient samples from the Cavalli Cohort (n = 763). Survival distribution was estimated according to the Kaplan-Meier method using a median cut-off and log-rank statistics (p ≤ 0.05). In non-WNT and non-SHH medulloblastoma Group 4 (n = 264), the high expression of ENTPD1 and NT5E was significantly related to a lower overall survival (p = 2.7e-04; p = 2.6e-03). In the SHH-activated group (n = 172), the high expression of ENTPD1 was significantly related to lower overall survival (p = 7.8e-03), while the high expression of NT5E was significantly related to greater overall survival (p = 0.017). In the WNT group (n = 63), the expressions of ENTPD1 and NT5E were not significantly correlated with overall survival (p = 0.212; p = 0.101). In non-WNT and non-SHH medulloblastoma Group 3 (n = 113), the high expression of ENTPD1 was significantly related to greater survival (p = 0.034), while expression of NT5E was not significantly related to survival of patients (p = 0.124). This in silico analysis indicates that ENTPD1 (CD39) and NT5E (CD73) can be seen as potential prognostic markers and therapeutic targets for primary medulloblastomas in non-WNT and non-SHH Group 4.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P2Y11 receptor is a critical regulator of extracellular ATP-mediated premature senescence in lung fibroblasts: Implications of ER-Ca+2 release/mitochondrial ROS production signaling pathway. P2Y11 受体是细胞外 ATP 介导的肺成纤维细胞早衰的关键调节因子:ER-Ca+2释放/软核ROS产生信号通路的影响
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-08 DOI: 10.1007/s11302-024-10036-9
Abdel-Aziz S Shatat
{"title":"P2Y<sub>11</sub> receptor is a critical regulator of extracellular ATP-mediated premature senescence in lung fibroblasts: Implications of ER-Ca<sup>+2</sup> release/mitochondrial ROS production signaling pathway.","authors":"Abdel-Aziz S Shatat","doi":"10.1007/s11302-024-10036-9","DOIUrl":"https://doi.org/10.1007/s11302-024-10036-9","url":null,"abstract":"","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of purinergic system components in the venom of Bothrops mattogrossensis and the inhibitory effect of specioside extracted from Tabebuia aurea. Bothrops mattogrossensis 毒液中嘌呤能系统成分的鉴定以及从 Tabebuia aurea 中提取的specioside 的抑制作用。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-03 DOI: 10.1007/s11302-024-10032-z
Dhébora Albuquerque Dias, Kamylla Fernanda Souza de Souza, Iluska Senna Bonfá Moslaves, Marcus Vinicius Buri, Denise Caroline Luiz Soares Basilio, Isabelly Teixeira Espinoça, Eduardo Benedetti Parisotto, Saulo Euclides Silva-Filho, Ludovico Migliolo, Jeandre Augusto Otsubo Jaques, Daniel Guerra Franco, Ana Marisa Chudzinski-Tavassi, Paula Helena Santa Rita, Denise Brentan da Silva, Carlos Alexandre Carollo, Mônica Cristina Toffoli-Kadri, Edgar Julian Paredes-Gamero

Snake bites are a severe problem in the countryside of Brazil and are usually attributed to snakes of the genera Bothrops, Crotalus, and Lachesis. Snake venom can release ectoenzymes and nucleotidases that modulate the purinergic system. In addition to serum therapy against snake poisoning, medicinal plants with anti-inflammatory activities, such as Tabebuia aurea, is empirically applied in accidents that occur in difficult-to-access areas. This study aimed was to verify the presence and activity of nucleotidases in the crude venom of Bothrops mattogrossensis (BmtV) in vitro and characterize the modulation of purinergic components, myeloid differentiation, and inflammatory/oxidative stress markers by BmtV in vivo and in vitro. Moreover, our study assessed the inhibitory activities of specioside, an iridoid isolated from Tabebuia aurea, against the effects of BmtV. Proteomic analysis of venom content and nucleotidase activity confirm the presence of ectonucleotidase-like enzymes in BmtV. In in vivo experiments, BmtV altered purinergic component expression (P2X7 receptor, CD39 and CD73), increased neutrophil numbers in peripheral blood, and elevated oxidative stress/inflammatory parameters such as lipid peroxidation and myeloperoxidase activity. BmtV also decreased viability and increased spreading index and phagocytic activity on macrophages. Specioside inhibited nucleotidase activity, restored neutrophil numbers, and mediate the oxidative/inflammatory effects produced by BmtV. We highlight the effects produced by BmtV in purinergic system components, myeloid differentiation, and inflammatory/oxidative stress parameters, while specioside reduced the main BmtV-dependent effects.

蛇咬伤是巴西农村地区的一个严重问题,通常由 Bothrops、Crotalus 和 Lachesis 属的蛇造成。蛇毒可释放调节嘌呤能系统的外切酶和核苷酸酶。除了针对蛇毒的血清疗法外,具有消炎活性的药用植物(如 Tabebuia aurea)也被经验性地应用于发生在难以进入地区的事故中。本研究旨在体外验证 BmtV(Bothrops mattogrossensis)粗毒中核苷酸酶的存在和活性,并描述 BmtV 在体内和体外对嘌呤能成分、骨髓分化和炎症/氧化应激标记物的调节作用。此外,我们的研究还评估了从 Tabebuia aurea 中分离出的鸢尾甙对 BmtV 的抑制活性。毒液含量和核苷酸酶活性的蛋白质组分析证实了 BmtV 中存在类似外切核苷酸酶的酶。在体内实验中,BmtV 改变了嘌呤能成分的表达(P2X7 受体、CD39 和 CD73),增加了外周血中的中性粒细胞数量,并提高了氧化应激/炎症参数,如脂质过氧化和骨髓过氧化物酶活性。BmtV 还能降低巨噬细胞的存活率,提高扩散指数和吞噬活性。麝香草甙能抑制核苷酸酶活性,恢复中性粒细胞数量,并介导 BmtV 产生的氧化/炎症效应。我们强调了 BmtV 对嘌呤能系统成分、髓细胞分化和炎症/氧化应激参数的影响,而斯皮西甙则减少了 BmtV 依赖性的主要影响。
{"title":"Identification of purinergic system components in the venom of Bothrops mattogrossensis and the inhibitory effect of specioside extracted from Tabebuia aurea.","authors":"Dhébora Albuquerque Dias, Kamylla Fernanda Souza de Souza, Iluska Senna Bonfá Moslaves, Marcus Vinicius Buri, Denise Caroline Luiz Soares Basilio, Isabelly Teixeira Espinoça, Eduardo Benedetti Parisotto, Saulo Euclides Silva-Filho, Ludovico Migliolo, Jeandre Augusto Otsubo Jaques, Daniel Guerra Franco, Ana Marisa Chudzinski-Tavassi, Paula Helena Santa Rita, Denise Brentan da Silva, Carlos Alexandre Carollo, Mônica Cristina Toffoli-Kadri, Edgar Julian Paredes-Gamero","doi":"10.1007/s11302-024-10032-z","DOIUrl":"https://doi.org/10.1007/s11302-024-10032-z","url":null,"abstract":"<p><p>Snake bites are a severe problem in the countryside of Brazil and are usually attributed to snakes of the genera Bothrops, Crotalus, and Lachesis. Snake venom can release ectoenzymes and nucleotidases that modulate the purinergic system. In addition to serum therapy against snake poisoning, medicinal plants with anti-inflammatory activities, such as Tabebuia aurea, is empirically applied in accidents that occur in difficult-to-access areas. This study aimed was to verify the presence and activity of nucleotidases in the crude venom of Bothrops mattogrossensis (BmtV) in vitro and characterize the modulation of purinergic components, myeloid differentiation, and inflammatory/oxidative stress markers by BmtV in vivo and in vitro. Moreover, our study assessed the inhibitory activities of specioside, an iridoid isolated from Tabebuia aurea, against the effects of BmtV. Proteomic analysis of venom content and nucleotidase activity confirm the presence of ectonucleotidase-like enzymes in BmtV. In in vivo experiments, BmtV altered purinergic component expression (P2X7 receptor, CD39 and CD73), increased neutrophil numbers in peripheral blood, and elevated oxidative stress/inflammatory parameters such as lipid peroxidation and myeloperoxidase activity. BmtV also decreased viability and increased spreading index and phagocytic activity on macrophages. Specioside inhibited nucleotidase activity, restored neutrophil numbers, and mediate the oxidative/inflammatory effects produced by BmtV. We highlight the effects produced by BmtV in purinergic system components, myeloid differentiation, and inflammatory/oxidative stress parameters, while specioside reduced the main BmtV-dependent effects.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review. 外显子核苷酸酶抑制剂:靶向信号通路促进治疗--深度综述。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-03 DOI: 10.1007/s11302-024-10031-0
R Huzaifa Sharafat, Aamer Saeed

Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.

外显子核苷酸酶抑制剂是一系列药理药物,通过选择性地靶向外显子核苷酸酶,对改变嘌呤能信号通路至关重要。细胞外核苷酸和核苷的水解是由这些酶完成的,其中包括外切核苷三磷酸二磷酸水解酶(NTPDases)和外切-5'-核苷酸酶(CD73)。外切核苷酸酶抑制剂可通过阻断这些酶阻止 ATP 和 ADP 转化为腺苷,并减少细胞外腺苷。这些分子对于嘌呤能信号转导至关重要,而嘌呤能信号转导与各种生理和病理过程有关。通过改变细胞外核苷酸代谢和改善嘌呤能信号调节,外切核苷酸焦磷酸酶/磷酸二酯酶(ENPP)抑制剂有望改善癌症治疗、炎症控制和免疫反应调节。嘌呤能信号传导会受到 CD73 抑制剂的影响,因为它们会阻止 AMP 转化为腺苷。这些抑制剂在癌症治疗和免疫疗法中非常有用,因为它们可以提高化疗效果并改变免疫反应。嘌呤能信号传导受 NTPDase 抑制剂控制,这些抑制剂专门针对参与细胞外核苷酸分解的酶。这些抑制剂有望减少免疫反应、血栓形成和炎症,或许有助于治疗心血管疾病和自身免疫性疾病。碱性磷酸酶(ALP)抑制剂可改变参与去磷酸化反应的酶的功能,从而对多种生物过程产生影响。通过改变体内的磷酸盐水平,这些抑制剂可用于治疗包括高磷血症和某些骨骼问题在内的疾病。本文通过阐明外切核苷酸酶抑制剂的过程、优势和难点,为希望在各种疾病中利用外切核苷酸酶抑制剂的补救能力的研究人员和临床医生提供了指南。
{"title":"Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review.","authors":"R Huzaifa Sharafat, Aamer Saeed","doi":"10.1007/s11302-024-10031-0","DOIUrl":"https://doi.org/10.1007/s11302-024-10031-0","url":null,"abstract":"<p><p>Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Purinergic Signalling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1