Although multiple purinergic receptors mediate the analgesic effects of acupuncture, it remains unclear whether there is mutual interaction between purinergic receptors to jointly mediate the electroacupuncture inhibition of peripheral sensitization in visceral pain. Visceral hypersensitivity was induced by intracolonic 2,4,6-trinitrobenzene sulfonic acid (TNBS) in rat. The antinociception effect of electroacupuncture on visceral pain was evaluated by morphology, behaviors, neuroelectrophysiology and molecular biology techniques. After labeling the colon-related primary sensory neurons with neural retrograde tracer and employing neuropharmacology, neuroelectrophysiology, and molecular biotechnology, the mechanisms of P2X7R, P2Y1R, and P2X3R in colon-related dorsal root ganglion (DRG) neurons alleviating visceral hypersensitivity of irritable bowel syndrome (IBS) by electroacupuncture at Zusanli and Sanyinjiao acupoints.were elucidated from the perspective of peripheral sensitization. Electroacupuncture significantly inhibited TNBS-induced colonic hypersensitivity in rats with IBS, and Satellite Glial Cells (SGCs) in DRG were found to be involved in electroacupuncture-mediated regulation of the electrophysiological properties of neurons. P2X7R was found to play a pain-inducing role in IBS visceral hypersensitivity by affecting P2X3R, and electroacupuncture exerted an analgesic effect by inhibiting P2X7R activation. P2Y1R was found to play an analgesic role in the process of visceral pain, mediating electroacupuncture to relieve visceral hypersensitivity. P2Y1R relieved visceral pain by inhibiting P2X3R in neurons associated with nociception, with P2X7R identified as upstream of P2Y1R up-regulation by electroacupuncture. Our study suggests that the P2X7R → P2Y1R → P2X3R inhibitory pathway in DRG mediates the inhibition of peripheral sensitization by electroacupuncture in rats with IBS visceral hypersensitivity.
{"title":"P2X7 and P2Y<sub>1</sub> receptors in DRG mediate electroacupuncture to inhibit peripheral sensitization in rats with IBS visceral pain.","authors":"Tingting Lv, Guona Li, Chen Zhao, Jindan Ma, Fang Zhang, Min Zhao, Huirong Liu, Huangan Wu, Kunshan Li, Zhijun Weng","doi":"10.1007/s11302-024-10028-9","DOIUrl":"https://doi.org/10.1007/s11302-024-10028-9","url":null,"abstract":"<p><p>Although multiple purinergic receptors mediate the analgesic effects of acupuncture, it remains unclear whether there is mutual interaction between purinergic receptors to jointly mediate the electroacupuncture inhibition of peripheral sensitization in visceral pain. Visceral hypersensitivity was induced by intracolonic 2,4,6-trinitrobenzene sulfonic acid (TNBS) in rat. The antinociception effect of electroacupuncture on visceral pain was evaluated by morphology, behaviors, neuroelectrophysiology and molecular biology techniques. After labeling the colon-related primary sensory neurons with neural retrograde tracer and employing neuropharmacology, neuroelectrophysiology, and molecular biotechnology, the mechanisms of P2X7R, P2Y<sub>1</sub>R, and P2X3R in colon-related dorsal root ganglion (DRG) neurons alleviating visceral hypersensitivity of irritable bowel syndrome (IBS) by electroacupuncture at Zusanli and Sanyinjiao acupoints.were elucidated from the perspective of peripheral sensitization. Electroacupuncture significantly inhibited TNBS-induced colonic hypersensitivity in rats with IBS, and Satellite Glial Cells (SGCs) in DRG were found to be involved in electroacupuncture-mediated regulation of the electrophysiological properties of neurons. P2X7R was found to play a pain-inducing role in IBS visceral hypersensitivity by affecting P2X3R, and electroacupuncture exerted an analgesic effect by inhibiting P2X7R activation. P2Y<sub>1</sub>R was found to play an analgesic role in the process of visceral pain, mediating electroacupuncture to relieve visceral hypersensitivity. P2Y<sub>1</sub>R relieved visceral pain by inhibiting P2X3R in neurons associated with nociception, with P2X7R identified as upstream of P2Y<sub>1</sub>R up-regulation by electroacupuncture. Our study suggests that the P2X7R → P2Y<sub>1</sub>R → P2X3R inhibitory pathway in DRG mediates the inhibition of peripheral sensitization by electroacupuncture in rats with IBS visceral hypersensitivity.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1007/s11302-024-10029-8
Shu-Ya Mei, Ning Zhang, Meng-Jing Wang, Pei-Ran Lv, Qi Liu
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of β-amyloid (Aβ) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y2, P2Y6, P2Y12, and P2Y13. The adenosine P1 receptors expressed in microglia include A1R, A2AR, and A2BR. Among them, the activation of P2X4, P2X7, and adenosine A1, A2A receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y2, P2Y6, P2Y12, and P2Y13 receptors expressed by microglia can induce neuroprotective effects. However, A1R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aβ production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.
{"title":"Microglial purinergic signaling in Alzheimer's disease.","authors":"Shu-Ya Mei, Ning Zhang, Meng-Jing Wang, Pei-Ran Lv, Qi Liu","doi":"10.1007/s11302-024-10029-8","DOIUrl":"https://doi.org/10.1007/s11302-024-10029-8","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of β-amyloid (Aβ) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y<sub>2</sub>, P2Y<sub>6</sub>, P2Y<sub>12</sub>, and P2Y<sub>13</sub>. The adenosine P1 receptors expressed in microglia include A<sub>1</sub>R, A<sub>2A</sub>R, and A<sub>2B</sub>R. Among them, the activation of P2X4, P2X7, and adenosine A<sub>1</sub>, A<sub>2A</sub> receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y<sub>2</sub>, P2Y<sub>6</sub>, P2Y<sub>12</sub>, and P2Y<sub>13</sub> receptors expressed by microglia can induce neuroprotective effects. However, A<sub>1</sub>R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aβ production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15DOI: 10.1007/s11302-024-10026-x
Majlen A Dilweg, Marina Gorostiola González, Martijn D de Ruiter, Nadine J Meijboom, Jacobus P D van Veldhoven, Rongfang Liu, Willem Jespers, Gerard J P van Westen, Laura H Heitman, Adriaan P IJzerman, Daan van der Es
The human equilibrative nucleoside transporter 1 (SLC29A1, hENT1) is a solute carrier that modulates the passive transport of nucleosides and nucleobases, such as adenosine. This nucleoside regulates various physiological processes, such as vasodilation and -constriction, neurotransmission and immune defense. Marketed drugs such as dilazep and dipyridamole have proven useful in cardiovascular afflictions, but the application of hENT1 inhibitors can be beneficial in a number of other diseases. In this study, 39 derivatives of dilazep's close analogue ST7092 were designed, synthesized and subsequently assessed using [3H]NBTI displacement assays and molecular docking. Different substitution patterns of the trimethoxy benzoates of ST7092 reduced interactions within the binding pocket, resulting in diminished hENT1 affinity. Conversely, [3H]NBTI displacement by potentially covalent compounds 14b, 14c, and 14d resulted in high affinities (Ki values between 1.1 and 17.5 nM) for the transporter, primarily by the ability of accommodating the inhibitors in various ways in the binding pocket. However, any indication of covalent binding with amino acid residue C439 remained absent, conceivably as a result of decreased nucleophilic residue reactivity. In conclusion, this research introduces novel dilazep derivatives that are active as hENT1 inhibitors, along with the first high affinity dilazep derivatives equipped with an electrophilic warhead. These findings will aid the rational and structure-based development of novel hENT1 inhibitors and pharmacological tools to study hENT1's function, binding mechanisms, and its relevance in (patho)physiological conditions.
{"title":"Exploring novel dilazep derivatives as hENT1 inhibitors and potentially covalent molecular tools.","authors":"Majlen A Dilweg, Marina Gorostiola González, Martijn D de Ruiter, Nadine J Meijboom, Jacobus P D van Veldhoven, Rongfang Liu, Willem Jespers, Gerard J P van Westen, Laura H Heitman, Adriaan P IJzerman, Daan van der Es","doi":"10.1007/s11302-024-10026-x","DOIUrl":"https://doi.org/10.1007/s11302-024-10026-x","url":null,"abstract":"<p><p>The human equilibrative nucleoside transporter 1 (SLC29A1, hENT1) is a solute carrier that modulates the passive transport of nucleosides and nucleobases, such as adenosine. This nucleoside regulates various physiological processes, such as vasodilation and -constriction, neurotransmission and immune defense. Marketed drugs such as dilazep and dipyridamole have proven useful in cardiovascular afflictions, but the application of hENT1 inhibitors can be beneficial in a number of other diseases. In this study, 39 derivatives of dilazep's close analogue ST7092 were designed, synthesized and subsequently assessed using [<sup>3</sup>H]NBTI displacement assays and molecular docking. Different substitution patterns of the trimethoxy benzoates of ST7092 reduced interactions within the binding pocket, resulting in diminished hENT1 affinity. Conversely, [<sup>3</sup>H]NBTI displacement by potentially covalent compounds 14b, 14c, and 14d resulted in high affinities (K<sub>i</sub> values between 1.1 and 17.5 nM) for the transporter, primarily by the ability of accommodating the inhibitors in various ways in the binding pocket. However, any indication of covalent binding with amino acid residue C439 remained absent, conceivably as a result of decreased nucleophilic residue reactivity. In conclusion, this research introduces novel dilazep derivatives that are active as hENT1 inhibitors, along with the first high affinity dilazep derivatives equipped with an electrophilic warhead. These findings will aid the rational and structure-based development of novel hENT1 inhibitors and pharmacological tools to study hENT1's function, binding mechanisms, and its relevance in (patho)physiological conditions.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.
{"title":"Role and recent progress of P2Y12 receptor in cancer development.","authors":"Yanni Xi, Zhenya Min, Mianxue Liu, Xueqin Lin, Zhao-Hua Yuan","doi":"10.1007/s11302-024-10027-w","DOIUrl":"10.1007/s11302-024-10027-w","url":null,"abstract":"<p><p>P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141318112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1007/s11302-024-10025-y
Zhan-Guo Gao, Mansour Haddad, Kenneth A Jacobson
The A2B adenosine receptor (A2BR) is one of the four adenosine-activated G protein-coupled receptors. In addition to adenosine, protein kinase C (PKC) was recently found to activate the A2BR. The A2BR is coupled to both Gs and Gi, as well as Gq proteins in some cell types. Many primary cells and cell lines, such as bladder and breast cancer, bronchial smooth muscle, skeletal muscle, and fat cells, express the A2BR endogenously at high levels, suggesting its potentially important role in asthma, cancer, diabetes, and other conditions. The A2BR has been characterized as both pro- and anti-inflammatory, inducing cell type-dependent secretion of IL-6, IL-8, and IL-10. Theophylline and enprofylline have long been used for asthma treatment, although it is still not entirely clear if their A2BR antagonism contributes to their therapeutic effects or side effects. The A2BR is required in ischemic cardiac preconditioning by adenosine. Both A2BR and protein kinase C (PKC) contribute to cardioprotection, and both modes of A2BR signaling can be blocked by A2BR antagonists. Inhibitors of PKC and A2BR are in clinical cancer trials. Sulforaphane and other isothiocyanates from cruciferous vegetables such as broccoli and cauliflower have been reported to inhibit A2BR signaling via reaction with an intracellular A2BR cysteine residue (C210). A full, A2BR-selective agonist, critical to elucidate many controversial roles of the A2BR, is still not available, although agonist-bound A2BR structures have recently been reported.
{"title":"A<sub>2B</sub> adenosine receptor signaling and regulation.","authors":"Zhan-Guo Gao, Mansour Haddad, Kenneth A Jacobson","doi":"10.1007/s11302-024-10025-y","DOIUrl":"https://doi.org/10.1007/s11302-024-10025-y","url":null,"abstract":"<p><p>The A<sub>2B</sub> adenosine receptor (A<sub>2B</sub>R) is one of the four adenosine-activated G protein-coupled receptors. In addition to adenosine, protein kinase C (PKC) was recently found to activate the A<sub>2B</sub>R. The A<sub>2B</sub>R is coupled to both G<sub>s</sub> and G<sub>i</sub>, as well as G<sub>q</sub> proteins in some cell types. Many primary cells and cell lines, such as bladder and breast cancer, bronchial smooth muscle, skeletal muscle, and fat cells, express the A<sub>2B</sub>R endogenously at high levels, suggesting its potentially important role in asthma, cancer, diabetes, and other conditions. The A<sub>2B</sub>R has been characterized as both pro- and anti-inflammatory, inducing cell type-dependent secretion of IL-6, IL-8, and IL-10. Theophylline and enprofylline have long been used for asthma treatment, although it is still not entirely clear if their A<sub>2B</sub>R antagonism contributes to their therapeutic effects or side effects. The A<sub>2B</sub>R is required in ischemic cardiac preconditioning by adenosine. Both A<sub>2B</sub>R and protein kinase C (PKC) contribute to cardioprotection, and both modes of A<sub>2B</sub>R signaling can be blocked by A<sub>2B</sub>R antagonists. Inhibitors of PKC and A<sub>2B</sub>R are in clinical cancer trials. Sulforaphane and other isothiocyanates from cruciferous vegetables such as broccoli and cauliflower have been reported to inhibit A<sub>2B</sub>R signaling via reaction with an intracellular A<sub>2B</sub>R cysteine residue (C210). A full, A<sub>2B</sub>R-selective agonist, critical to elucidate many controversial roles of the A<sub>2B</sub>R, is still not available, although agonist-bound A<sub>2B</sub>R structures have recently been reported.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-01-27DOI: 10.1007/s11302-022-09916-9
Alejandro Lillo, Joan Serrano-Marín, Jaume Lillo, Iu Raïch, Gemma Navarro, Rafael Franco
Most neurodegenerative disorders, including the two most common, Alzheimer's disease (AD) and Parkinson's disease (AD), course with activation of microglia, the resident innate immune cells of the central nervous system. A3 adenosine receptor (A3R) agonists have been proposed to be neuroprotective by regulating the phenotype of activated microglia. RNAseq was performed using samples isolated from lipopolysaccharide/interferon-γ activated microglia treated with 2-Cl-IB-MECA, a selective A3R agonist. The results showed that the number of negatively regulated genes in the presence of 2-Cl-IB-MECA was greater than the number of positively regulated genes. Gene ontology enrichment analysis showed regulation of genes participating in several cell processes, including those involved in immune-related events. Analysis of known and predicted protein-protein interactions showed that Smad3 and Sp1 are transcription factors whose genes are regulated by A3R activation. Under the conditions of cell activation and agonist treatment regimen, 2-Cl-IB-MECA did not lead to any tendency to favor the expression of genes related to neuroprotective microglia (M2).
{"title":"Gene regulation in activated microglia by adenosine A<sub>3</sub> receptor agonists: a transcriptomics study.","authors":"Alejandro Lillo, Joan Serrano-Marín, Jaume Lillo, Iu Raïch, Gemma Navarro, Rafael Franco","doi":"10.1007/s11302-022-09916-9","DOIUrl":"10.1007/s11302-022-09916-9","url":null,"abstract":"<p><p>Most neurodegenerative disorders, including the two most common, Alzheimer's disease (AD) and Parkinson's disease (AD), course with activation of microglia, the resident innate immune cells of the central nervous system. A<sub>3</sub> adenosine receptor (A<sub>3</sub>R) agonists have been proposed to be neuroprotective by regulating the phenotype of activated microglia. RNAseq was performed using samples isolated from lipopolysaccharide/interferon-γ activated microglia treated with 2-Cl-IB-MECA, a selective A<sub>3</sub>R agonist. The results showed that the number of negatively regulated genes in the presence of 2-Cl-IB-MECA was greater than the number of positively regulated genes. Gene ontology enrichment analysis showed regulation of genes participating in several cell processes, including those involved in immune-related events. Analysis of known and predicted protein-protein interactions showed that Smad3 and Sp1 are transcription factors whose genes are regulated by A<sub>3</sub>R activation. Under the conditions of cell activation and agonist treatment regimen, 2-Cl-IB-MECA did not lead to any tendency to favor the expression of genes related to neuroprotective microglia (M2).</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"237-245"},"PeriodicalIF":3.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10678114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-09-15DOI: 10.1007/s11302-023-09965-8
Nathalia Vitureira, Alberto Rafael, Verónica Abudara
Over the last decades, since the discovery of ATP as a transmitter, accumulating evidence has been reported about the role of this nucleotide and purinergic receptors, in particular P2X7 receptors, in the modulation of synaptic strength and plasticity. Purinergic signaling has emerged as a crucial player in orchestrating the molecular interaction between the components of the tripartite synapse, and much progress has been made in how this neuron-glia interaction impacts neuronal physiology under basal and pathological conditions. On the other hand, pannexin1 hemichannels, which are functionally linked to P2X7 receptors, have appeared more recently as important modulators of excitatory synaptic function and plasticity under diverse contexts. In this review, we will discuss the contribution of ATP, P2X7 receptors, and pannexin hemichannels to the modulation of presynaptic strength and its impact on motor function, sensory processing, synaptic plasticity, and neuroglial communication, with special focus on the P2X7 receptor/pannexin hemichannel interplay. We also address major hypotheses about the role of this interaction in physiological and pathological circumstances.
{"title":"P2X7 receptors and pannexin1 hemichannels shape presynaptic transmission.","authors":"Nathalia Vitureira, Alberto Rafael, Verónica Abudara","doi":"10.1007/s11302-023-09965-8","DOIUrl":"10.1007/s11302-023-09965-8","url":null,"abstract":"<p><p>Over the last decades, since the discovery of ATP as a transmitter, accumulating evidence has been reported about the role of this nucleotide and purinergic receptors, in particular P2X7 receptors, in the modulation of synaptic strength and plasticity. Purinergic signaling has emerged as a crucial player in orchestrating the molecular interaction between the components of the tripartite synapse, and much progress has been made in how this neuron-glia interaction impacts neuronal physiology under basal and pathological conditions. On the other hand, pannexin1 hemichannels, which are functionally linked to P2X7 receptors, have appeared more recently as important modulators of excitatory synaptic function and plasticity under diverse contexts. In this review, we will discuss the contribution of ATP, P2X7 receptors, and pannexin hemichannels to the modulation of presynaptic strength and its impact on motor function, sensory processing, synaptic plasticity, and neuroglial communication, with special focus on the P2X7 receptor/pannexin hemichannel interplay. We also address major hypotheses about the role of this interaction in physiological and pathological circumstances.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"223-236"},"PeriodicalIF":3.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10242813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-06-27DOI: 10.1007/s11302-023-09950-1
Débora Tavares de Resende E Silva, Matheus Ribeiro Bizuti, Natan Rodrigues de Oliveira, Lucas Zannini Medeiros Lima, Victória Galletti Dos Santos Arraes, Ana Carolina Gonçalves Zietz, Carolina Zin, Guilherme Vinício de Sousa Silva, Josiano Guilherme Puhle, Fabiana Brum Haag
The word sarcopenia derives from the Greek terms "sarx" for meat and "penia" for loss, thus being used to define reductions in muscle mass, muscle strength, and lower physical performance that compromise, mainly, the elderly population. Its high negative impact on patients' quality of life encourages the production and publication of new studies that seek to find methods to prevent and reverse cases of loss of muscle mass and strength. Furthermore, the high prevalence of sarcopenia in patients with chronic kidney disease (CKD) is closely related to its pathophysiology, which consists of a state of increased protein catabolism and decreased muscle tissue synthesis. Also considering the inflammatory nature of CKD and sarcopenia, the purinergic system has been an important target of studies, which seek to relate it to the two previous conditions. This system achieves anti-inflammatory action by inhibiting, through adenosine, pro-inflammatory factors such as interleukin-12 (IL-12), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO), as well as by releasing anti-inflammatory substances such as interleukin-10 (IL-10). Simultaneously, the purinergic system presents pro-inflammatory activity, signaled by adenosine triphosphate (ATP), which occurs through the activation of T cells and the release of pro-inflammatory factors such as those mentioned above. Therefore, the ability of this system to act on inflammatory processes can promote positive and negative changes in the clinical aspect of patients with CKD and/or sarcopenia. Furthermore, it appears that there is a correlation between the practice of repeated physical exercise with the clinical improvement and in the quality of life of these patients, presenting a decrease in the levels of C-reactive protein (CRP), NTPDase, and the pro-inflammatory cytokine IL-6, such as increases in IL-10 resulting from modulation of the purinergic system. In this way, the present article seeks to evaluate the effect of physical exercise as a modulator of the purinergic system in the control of sarcopenia in patients with CKD on hemodialysis, in order to trace a relationship that can bring benefits both for biological markers and for quality of life of these patients.
肌肉疏松症(sarcopenia)一词来源于希腊语中的 "sarx"(肉)和 "penia"(损失),因此被用来定义肌肉质量、肌肉力量和体能下降,这主要影响到老年人群。肌肉萎缩症对患者生活质量的负面影响很大,这促使人们开展并发表新的研究,试图找到预防和扭转肌肉质量和力量下降的方法。此外,慢性肾脏病(CKD)患者肌肉疏松症的高发病率与其病理生理学密切相关,即蛋白质分解代谢增加,肌肉组织合成减少。此外,考虑到慢性肾脏病和肌肉疏松症的炎症性质,嘌呤能系统一直是研究的重要目标,这些研究试图将其与前两种病症联系起来。该系统通过腺苷抑制白细胞介素-12(IL-12)、肿瘤坏死因子α(TNF-α)和一氧化氮(NO)等促炎因子,并释放白细胞介素-10(IL-10)等抗炎物质,从而达到抗炎作用。与此同时,嘌呤能系统在三磷酸腺苷(ATP)的作用下,通过激活 T 细胞和释放上述促炎因子,产生促炎活性。因此,该系统作用于炎症过程的能力可促进慢性肾脏病和/或肌肉疏松症患者的临床方面发生积极或消极的变化。此外,反复进行体育锻炼似乎与这些患者的临床改善和生活质量之间存在关联,表现为 C 反应蛋白 (CRP)、NTPDase 和促炎细胞因子 IL-6 水平的下降,如嘌呤能系统调节导致的 IL-10 水平的上升。因此,本文试图评估体育锻炼作为嘌呤能系统的调节剂,在控制血液透析的慢性肾脏病患者肌肉疏松症方面的作用,以追踪可为这些患者的生物指标和生活质量带来益处的关系。
{"title":"Physical exercise as a modulator of the purinergic system in the control of sarcopenia in individuals with chronic kidney disease on hemodialysis.","authors":"Débora Tavares de Resende E Silva, Matheus Ribeiro Bizuti, Natan Rodrigues de Oliveira, Lucas Zannini Medeiros Lima, Victória Galletti Dos Santos Arraes, Ana Carolina Gonçalves Zietz, Carolina Zin, Guilherme Vinício de Sousa Silva, Josiano Guilherme Puhle, Fabiana Brum Haag","doi":"10.1007/s11302-023-09950-1","DOIUrl":"10.1007/s11302-023-09950-1","url":null,"abstract":"<p><p>The word sarcopenia derives from the Greek terms \"sarx\" for meat and \"penia\" for loss, thus being used to define reductions in muscle mass, muscle strength, and lower physical performance that compromise, mainly, the elderly population. Its high negative impact on patients' quality of life encourages the production and publication of new studies that seek to find methods to prevent and reverse cases of loss of muscle mass and strength. Furthermore, the high prevalence of sarcopenia in patients with chronic kidney disease (CKD) is closely related to its pathophysiology, which consists of a state of increased protein catabolism and decreased muscle tissue synthesis. Also considering the inflammatory nature of CKD and sarcopenia, the purinergic system has been an important target of studies, which seek to relate it to the two previous conditions. This system achieves anti-inflammatory action by inhibiting, through adenosine, pro-inflammatory factors such as interleukin-12 (IL-12), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO), as well as by releasing anti-inflammatory substances such as interleukin-10 (IL-10). Simultaneously, the purinergic system presents pro-inflammatory activity, signaled by adenosine triphosphate (ATP), which occurs through the activation of T cells and the release of pro-inflammatory factors such as those mentioned above. Therefore, the ability of this system to act on inflammatory processes can promote positive and negative changes in the clinical aspect of patients with CKD and/or sarcopenia. Furthermore, it appears that there is a correlation between the practice of repeated physical exercise with the clinical improvement and in the quality of life of these patients, presenting a decrease in the levels of C-reactive protein (CRP), NTPDase, and the pro-inflammatory cytokine IL-6, such as increases in IL-10 resulting from modulation of the purinergic system. In this way, the present article seeks to evaluate the effect of physical exercise as a modulator of the purinergic system in the control of sarcopenia in patients with CKD on hemodialysis, in order to trace a relationship that can bring benefits both for biological markers and for quality of life of these patients.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"213-222"},"PeriodicalIF":3.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10045921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-05-11DOI: 10.1007/s11302-023-09942-1
Anna N McGuinness, Aman Tahir, Nadia R Sutton, Andrew D Marquis
CD39 (NTPDase1-nucleoside triphosphate diphosphohydrolase 1) is a membrane-tethered ectonucleotidase that hydrolyzes extracellular ATP to ADP and ADP to AMP. This enzyme is expressed in a variety of cell types and tissues and has broadly been recognized within vascular tissue to have a protective role in converting "danger" ligands (ATP) into neutral ligands (AMP). In this study, we investigate the enzyme kinetics of CD39 using a Michaelis-Menten modeling framework. We show how the unique situation of having a reaction product also serving as a substrate (ADP) complicates the determination of the governing kinetic parameters. Model simulations using values for the kinetic parameters reported in the literature do not align with corresponding time-series data. This dissonance is explained by CD39 kinetic parameters previously being determined by graphical/linearization methods, which have been shown to distort the underlying error structure and lead to inaccurate parameter estimates. Modern methods of estimating these kinetic parameters using nonlinear least squares are still challenging due to unidentifiable parameter interactions. We propose a workflow to accurately determine these parameters by isolating the ADPase and ATPase reactions and estimating the respective ADPase parameters and ATPase parameters with independent data sets. Theoretically, this ensures all kinetic parameters are identifiable and reliable for future prospective model simulations involving CD39. These kinds of mathematical models can be used to understand how circulating purinergic nucleotides affect disease etiology and potentially inform the development of corresponding therapies.
{"title":"Identifiability of enzyme kinetic parameters in substrate competition: a case study of CD39/NTPDase1.","authors":"Anna N McGuinness, Aman Tahir, Nadia R Sutton, Andrew D Marquis","doi":"10.1007/s11302-023-09942-1","DOIUrl":"10.1007/s11302-023-09942-1","url":null,"abstract":"<p><p>CD39 (NTPDase1-nucleoside triphosphate diphosphohydrolase 1) is a membrane-tethered ectonucleotidase that hydrolyzes extracellular ATP to ADP and ADP to AMP. This enzyme is expressed in a variety of cell types and tissues and has broadly been recognized within vascular tissue to have a protective role in converting \"danger\" ligands (ATP) into neutral ligands (AMP). In this study, we investigate the enzyme kinetics of CD39 using a Michaelis-Menten modeling framework. We show how the unique situation of having a reaction product also serving as a substrate (ADP) complicates the determination of the governing kinetic parameters. Model simulations using values for the kinetic parameters reported in the literature do not align with corresponding time-series data. This dissonance is explained by CD39 kinetic parameters previously being determined by graphical/linearization methods, which have been shown to distort the underlying error structure and lead to inaccurate parameter estimates. Modern methods of estimating these kinetic parameters using nonlinear least squares are still challenging due to unidentifiable parameter interactions. We propose a workflow to accurately determine these parameters by isolating the ADPase and ATPase reactions and estimating the respective ADPase parameters and ATPase parameters with independent data sets. Theoretically, this ensures all kinetic parameters are identifiable and reliable for future prospective model simulations involving CD39. These kinds of mathematical models can be used to understand how circulating purinergic nucleotides affect disease etiology and potentially inform the development of corresponding therapies.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"257-271"},"PeriodicalIF":3.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10062947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-05-31DOI: 10.1007/s11302-023-09946-x
Ya-Fei Zhao, Peter Illes
{"title":"Adenosine A2A receptor-bearing GABAergic neurons in the lateral septum of the brain: novel mediators of depressive-like behavior.","authors":"Ya-Fei Zhao, Peter Illes","doi":"10.1007/s11302-023-09946-x","DOIUrl":"10.1007/s11302-023-09946-x","url":null,"abstract":"","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"209-211"},"PeriodicalIF":3.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9600657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}