首页 > 最新文献

Purinergic Signalling最新文献

英文 中文
Purines and purinergic receptors in primary tumors of the central nervous system. 中枢神经系统原发性肿瘤中的嘌呤和嘌呤能受体。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2025-06-01 Epub Date: 2024-10-01 DOI: 10.1007/s11302-024-10053-8
Adinei Abadio Soares, Helamã Moraes Dos Santos, Keyllor Nunes Domann, Natália Pratis Rocha Alves, Bernardo Ribeiro Böhm, Carolina Maliska Haack, Kailane Paula Pretto, Emily Sanini Guimarães, Guilherme Francisquini Rocha, Igor Rodrigues de Paula, Lucas Efraim de Alcântara Guimarães, Harlan Cleyton de Ávila Pessoa, Robison David Rodrigues, Angela Makeli Kososki Dalagnol, Marcelo Lemos Vieira da Cunha, Débora Tavares de Resende E Silva

Purine nucleotides and nucleosides play critical roles in various pathological conditions, including tumor cell growth. Adenosine triphosphate (ATP) activates pro-tumor receptors, while adenosine (ADO) is a potent immunosuppressant and modulator of cell growth. This study aims to analyze the purinergic actions of ATP and its metabolites, associated enzymes, and P1 or P2 class receptors in primary central nervous system tumors. Additionally, we sought to correlate the levels of nucleosides and the density of P1, P2X, and P2Y receptors in cells with tumor progression. The results indicate that purinergic signaling depends on the receptor concentration and signaling molecules specific to each cell type, tissue, and tumor histology. The purinergic system may function as either a tumor-promoting agent or an antitumor factor, depending on the microenvironmental conditions and the concentrations of receptors and their respective activators. Notably, ATP emerges as the most significant extracellular signal, capable of being converted into other cellular stimulators pertinent to neoplasms, such as adenosine diphosphate, adenosine monophosphate, adenosine, and inosine. Consequently, a cascade of responses to these stimuli promotes tumor development, cell division, and metastasis. Purine nucleotides in central nervous system tumors are pivotal in cellular responses in glioblastoma multiforme, vestibular schwannoma, medulloblastoma, adenomas, gliomas, meningiomas, and pineal tumors. These findings hold the potential for developing novel therapeutic strategies and aiding in therapeutic management.

嘌呤核苷酸和核苷酸在包括肿瘤细胞生长在内的各种病理情况中发挥着关键作用。三磷酸腺苷(ATP)可激活促肿瘤受体,而腺苷(ADO)则是一种强效的免疫抑制剂和细胞生长调节剂。本研究旨在分析原发性中枢神经系统肿瘤中 ATP 及其代谢产物、相关酶、P1 或 P2 类受体的嘌呤能作用。此外,我们还试图将核苷的水平以及细胞中 P1、P2X 和 P2Y 受体的密度与肿瘤的进展联系起来。研究结果表明,嘌呤能信号传导取决于受体浓度以及每种细胞类型、组织和肿瘤组织学所特有的信号分子。嘌呤能系统可作为肿瘤促进剂或抗肿瘤因子发挥作用,这取决于微环境条件和受体及其各自激活剂的浓度。值得注意的是,ATP 是最重要的细胞外信号,可转化为与肿瘤有关的其他细胞刺激物,如二磷酸腺苷、单磷酸腺苷、腺苷和肌苷。因此,对这些刺激的一连串反应促进了肿瘤的发展、细胞分裂和转移。中枢神经系统肿瘤中的嘌呤核苷酸在多形性胶质母细胞瘤、前庭分裂瘤、髓母细胞瘤、腺瘤、胶质瘤、脑膜瘤和松果体瘤的细胞反应中起着关键作用。这些发现为开发新型治疗策略和辅助治疗管理提供了可能。
{"title":"Purines and purinergic receptors in primary tumors of the central nervous system.","authors":"Adinei Abadio Soares, Helamã Moraes Dos Santos, Keyllor Nunes Domann, Natália Pratis Rocha Alves, Bernardo Ribeiro Böhm, Carolina Maliska Haack, Kailane Paula Pretto, Emily Sanini Guimarães, Guilherme Francisquini Rocha, Igor Rodrigues de Paula, Lucas Efraim de Alcântara Guimarães, Harlan Cleyton de Ávila Pessoa, Robison David Rodrigues, Angela Makeli Kososki Dalagnol, Marcelo Lemos Vieira da Cunha, Débora Tavares de Resende E Silva","doi":"10.1007/s11302-024-10053-8","DOIUrl":"10.1007/s11302-024-10053-8","url":null,"abstract":"<p><p>Purine nucleotides and nucleosides play critical roles in various pathological conditions, including tumor cell growth. Adenosine triphosphate (ATP) activates pro-tumor receptors, while adenosine (ADO) is a potent immunosuppressant and modulator of cell growth. This study aims to analyze the purinergic actions of ATP and its metabolites, associated enzymes, and P1 or P2 class receptors in primary central nervous system tumors. Additionally, we sought to correlate the levels of nucleosides and the density of P1, P2X, and P2Y receptors in cells with tumor progression. The results indicate that purinergic signaling depends on the receptor concentration and signaling molecules specific to each cell type, tissue, and tumor histology. The purinergic system may function as either a tumor-promoting agent or an antitumor factor, depending on the microenvironmental conditions and the concentrations of receptors and their respective activators. Notably, ATP emerges as the most significant extracellular signal, capable of being converted into other cellular stimulators pertinent to neoplasms, such as adenosine diphosphate, adenosine monophosphate, adenosine, and inosine. Consequently, a cascade of responses to these stimuli promotes tumor development, cell division, and metastasis. Purine nucleotides in central nervous system tumors are pivotal in cellular responses in glioblastoma multiforme, vestibular schwannoma, medulloblastoma, adenomas, gliomas, meningiomas, and pineal tumors. These findings hold the potential for developing novel therapeutic strategies and aiding in therapeutic management.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"429-446"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222610/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A2B adenosine receptor-triggered intracellular calcium mobilization: Cell type-dependent involvement of Gi, Gq, Gs proteins and protein kinase C. A2B腺苷受体触发的细胞内钙动员:Gi, Gq, Gs蛋白和蛋白激酶C的细胞类型依赖性参与
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2025-06-01 Epub Date: 2025-02-11 DOI: 10.1007/s11302-025-10070-1
Zhan-Guo Gao, Ray R Gao, Clayton K Meyer, Kenneth A Jacobson

Activation of PLCβ enzymes by Giβγ and Gαq/11 proteins is a common mechanism to trigger cytosolic Ca2+ increase. We and others reported that Gαq/11 inhibitor FR900359 (FR) can inhibit both Gαq- and, surprisingly, Giβγ-mediated intracellular Ca2+ mobilization. Thus, the Gαi-Gβγ-PLCβ-Ca2+ signaling axis depends entirely on the presence of active Gαq, which reasonably explained FR-inhibited Giβγ-induced Ca2+ release. However, the conclusion that Giβγ signaling is controlled by Gαq derives mostly from HEK293 cells. Here we show that indeed in HEK293 cells both Gαq/11 siRNA and Gαq/11 inhibitors diminished Ca2+ increase triggered by native Gq-coupled P2Y1 receptors, or by transfected Gi-coupled A1- or Gs-coupled A2B adenosine receptors (ARs). However, in T24 bladder cancer cells, Gi inhibitor PTX, but not Gαq/11 inhibitors, FR, YM254890 (YM) or Gq/11 siRNA, inhibited Ca2+ increase triggered by native A2BAR activation. Simultaneous inactivation of Gi and Gs further suppressed A2BAR-triggered Ca2+ increase in T24 cells. The Gαq/11 inhibitor YM fully and partially inhibited endogenous P2Y1- and β2-adrenergic receptor-induced Ca2+ increase in T24 cells, respectively. PKC activator PMA partially diminished A2BAR-triggered but completely diminished β2-adrenergic receptor-triggered Ca2+ increase in T24 cells. Neither β-arrestin1 nor β-arrestin2 siRNA affected A2BAR-mediated Ca2+ increase. Unlike in T24 cells, YM inhibited native A2BAR-triggered calcium mobilization in MDA-MB-231 breast cancer cells. Thus, Gαq/11 is vital for Ca2+ increase in some cell types, but Giβγ-mediated Ca2+ signaling can be Gαq/11-dependent or independent based on cell type and receptor activated. Besides G proteins, PKC also modulates cytosolic Ca2+ increase depending on cell type and receptor.

Giβγ和Gαq/11蛋白激活PLCβ酶是触发胞质Ca2+增加的常见机制。我们和其他人报道了Gαq/11抑制剂FR900359 (FR)可以抑制Gαq-和令人惊讶的gi βγ介导的细胞内Ca2+动员。因此,Gαi-Gβγ-PLCβ-Ca2+信号轴完全依赖于活性Gαq的存在,这合理地解释了fr抑制gi βγ诱导的Ca2+释放。然而,Gαq调控Giβγ信号通路的结论主要来自HEK293细胞。我们发现,在HEK293细胞中,Gαq/11 siRNA和Gαq/11抑制剂都能减少由天然gq偶联P2Y1受体或转染的gi偶联A1或gs偶联A2B腺苷受体(ARs)引发的Ca2+增加。然而,在T24膀胱癌细胞中,Gi抑制剂PTX,而不是Gαq/11抑制剂FR, YM254890 (YM)或Gq/11 siRNA,可以抑制天然A2BAR激活引发的Ca2+增加。Gi和Gs的同时失活进一步抑制了a2bar触发的T24细胞中Ca2+的增加。Gαq/11抑制剂YM分别完全和部分抑制内源性P2Y1-和β2-肾上腺素能受体诱导的T24细胞Ca2+升高。PKC激活剂PMA部分减少了a2bar触发的T24细胞,但完全减少了β2-肾上腺素能受体触发的Ca2+增加。β-arrestin1和β-arrestin2 siRNA均不影响a2bar介导的Ca2+升高。与T24细胞不同,YM抑制MDA-MB-231乳腺癌细胞中a2bar触发的钙动员。因此,Gαq/11对某些细胞类型的Ca2+增加至关重要,但基于细胞类型和受体激活,gi βγ介导的Ca2+信号可以依赖或独立于Gαq/11。除了G蛋白外,PKC还根据细胞类型和受体调节胞浆内Ca2+的增加。
{"title":"A<sub>2B</sub> adenosine receptor-triggered intracellular calcium mobilization: Cell type-dependent involvement of G<sub>i</sub>, G<sub>q</sub>, G<sub>s</sub> proteins and protein kinase C.","authors":"Zhan-Guo Gao, Ray R Gao, Clayton K Meyer, Kenneth A Jacobson","doi":"10.1007/s11302-025-10070-1","DOIUrl":"10.1007/s11302-025-10070-1","url":null,"abstract":"<p><p>Activation of PLCβ enzymes by G<sub>iβγ</sub> and G<sub>αq/11</sub> proteins is a common mechanism to trigger cytosolic Ca<sup>2+</sup> increase. We and others reported that G<sub>αq/11</sub> inhibitor FR900359 (FR) can inhibit both G<sub>αq</sub>- and, surprisingly, G<sub>iβγ</sub>-mediated intracellular Ca<sup>2+</sup> mobilization. Thus, the G<sub>αi</sub>-G<sub>βγ</sub>-PLCβ-Ca<sup>2+</sup> signaling axis depends entirely on the presence of active G<sub>αq</sub>, which reasonably explained FR-inhibited G<sub>iβγ</sub>-induced Ca<sup>2+</sup> release. However, the conclusion that G<sub>iβγ</sub> signaling is controlled by G<sub>αq</sub> derives mostly from HEK293 cells. Here we show that indeed in HEK293 cells both G<sub>αq/11</sub> siRNA and G<sub>αq/11</sub> inhibitors diminished Ca<sup>2+</sup> increase triggered by native G<sub>q</sub>-coupled P2Y<sub>1</sub> receptors, or by transfected G<sub>i</sub>-coupled A<sub>1</sub>- or G<sub>s</sub>-coupled A<sub>2B</sub> adenosine receptors (ARs). However, in T24 bladder cancer cells, G<sub>i</sub> inhibitor PTX, but not G<sub>αq/11</sub> inhibitors, FR, YM254890 (YM) or G<sub>q/11</sub> siRNA, inhibited Ca<sup>2+</sup> increase triggered by native A<sub>2B</sub>AR activation. Simultaneous inactivation of G<sub>i</sub> and G<sub>s</sub> further suppressed A<sub>2B</sub>AR-triggered Ca<sup>2+</sup> increase in T24 cells. The G<sub>αq/11</sub> inhibitor YM fully and partially inhibited endogenous P2Y<sub>1</sub>- and β<sub>2</sub>-adrenergic receptor-induced Ca<sup>2+</sup> increase in T24 cells, respectively. PKC activator PMA partially diminished A<sub>2B</sub>AR-triggered but completely diminished β<sub>2</sub>-adrenergic receptor-triggered Ca<sup>2+</sup> increase in T24 cells. Neither β-arrestin1 nor β-arrestin2 siRNA affected A<sub>2B</sub>AR-mediated Ca<sup>2+</sup> increase. Unlike in T24 cells, YM inhibited native A<sub>2B</sub>AR-triggered calcium mobilization in MDA-MB-231 breast cancer cells. Thus, G<sub>αq/11</sub> is vital for Ca<sup>2+</sup> increase in some cell types, but G<sub>iβγ</sub>-mediated Ca<sup>2+</sup> signaling can be Gα<sub>q/11</sub>-dependent or independent based on cell type and receptor activated. Besides G proteins, PKC also modulates cytosolic Ca<sup>2+</sup> increase depending on cell type and receptor.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"499-513"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The P2X7R is a crucial target for Angiotensin II-induced myocardial ferroptosis and remodeling. P2X7R 是血管紧张素 II 诱导心肌铁质沉积和重塑的关键靶点。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2025-06-01 Epub Date: 2024-09-21 DOI: 10.1007/s11302-024-10048-5
Abdel-Aziz S Shatat

Ongoing cardiac remodeling can lead to negative outcomes, such as cardiac failure and diminished myocardial function, although the remodeling process initially protects the heart as a compensatory mechanism[1] . Importantly, ferroptosis appears to be a critical process in the development of cardiac disease. In a recent publication in Redox Biology, (Zhong et al. [2] showed that reactive oxygen species (ROS) generation and cardiac ferroptosis may be the mechanisms underlying angiotensin II (Ang II)-induced cardiac remodeling, as well as that ferroptosis is required for heart impairment and cardiac dysfunction induced by Ang II. Moreover, this study provides evidence that Ang II increases the expression of P2X7 receptors (P2X7R) in cardiac tissues and that both silencing and pharmacological inhibition of P2X7R significantly inhibited Ang II-induced ferroptosis and hypertrophy. Also, this work confirmed that P2X7R deficiency mitigated the Ang II-induced deterioration of cardiac injury in mice fed an iron-rich diet. Most interestingly, this study revealed that Ang II directly interacts with the P2X7R to activate and induce nucleocytoplasmic shuttling of human antigen R (HuR), which in turn controls the stability of the mRNA of heme oxygenase 1 (HO-1) and GPX4 and subsequent ROS production, which translated to induction of myocardial ferroptosis and remodeling.

持续的心脏重塑可导致不良后果,如心力衰竭和心肌功能减退,尽管重塑过程最初是作为一种代偿机制保护心脏[1] 。重要的是,铁蛋白沉积似乎是心脏疾病发生发展的一个关键过程。最近发表在《氧化还原生物学》(Redox Biology)杂志上的一项研究(Zhong 等人[2])表明,活性氧(ROS)生成和心脏铁卟啉沉积可能是血管紧张素 II(Ang II)诱导心脏重塑的基础机制,并且铁卟啉沉积是 Ang II 诱导的心脏损伤和心功能不全所必需的。此外,本研究还提供了证据,证明 Ang II 可增加心脏组织中 P2X7 受体(P2X7R)的表达,而沉默和药物抑制 P2X7R 均可显著抑制 Ang II 诱导的铁蛋白沉积和肥厚。此外,这项研究还证实,缺乏 P2X7R 可减轻 Ang II 诱导的富铁饮食小鼠心脏损伤的恶化。最有趣的是,这项研究揭示了 Ang II 直接与 P2X7R 相互作用,激活并诱导人抗原 R(HuR)的核胞浆穿梭,进而控制血红素加氧酶 1(HO-1)和 GPX4 的 mRNA 的稳定性以及随后的 ROS 生成,从而诱导心肌铁变态和重塑。
{"title":"The P2X<sub>7</sub>R is a crucial target for Angiotensin II-induced myocardial ferroptosis and remodeling.","authors":"Abdel-Aziz S Shatat","doi":"10.1007/s11302-024-10048-5","DOIUrl":"10.1007/s11302-024-10048-5","url":null,"abstract":"<p><p>Ongoing cardiac remodeling can lead to negative outcomes, such as cardiac failure and diminished myocardial function, although the remodeling process initially protects the heart as a compensatory mechanism[1] . Importantly, ferroptosis appears to be a critical process in the development of cardiac disease. In a recent publication in Redox Biology, (Zhong et al. [2] showed that reactive oxygen species (ROS) generation and cardiac ferroptosis may be the mechanisms underlying angiotensin II (Ang II)-induced cardiac remodeling, as well as that ferroptosis is required for heart impairment and cardiac dysfunction induced by Ang II. Moreover, this study provides evidence that Ang II increases the expression of P2X7 receptors (P2X7R) in cardiac tissues and that both silencing and pharmacological inhibition of P2X7R significantly inhibited Ang II-induced ferroptosis and hypertrophy. Also, this work confirmed that P2X7R deficiency mitigated the Ang II-induced deterioration of cardiac injury in mice fed an iron-rich diet. Most interestingly, this study revealed that Ang II directly interacts with the P2X7R to activate and induce nucleocytoplasmic shuttling of human antigen R (HuR), which in turn controls the stability of the mRNA of heme oxygenase 1 (HO-1) and GPX4 and subsequent ROS production, which translated to induction of myocardial ferroptosis and remodeling.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"385-388"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocytic adenosine A1 receptors: a new potential target for treating sepsis-associated encephalopathy. 星形胶质细胞腺苷 A1 受体:治疗败血症相关脑病的潜在新靶点
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2025-06-01 Epub Date: 2024-09-06 DOI: 10.1007/s11302-024-10049-4
Si-Le Liu, Yong Tang
{"title":"Astrocytic adenosine A<sub>1</sub> receptors: a new potential target for treating sepsis-associated encephalopathy.","authors":"Si-Le Liu, Yong Tang","doi":"10.1007/s11302-024-10049-4","DOIUrl":"10.1007/s11302-024-10049-4","url":null,"abstract":"","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"381-383"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P2Y12 receptor-mediated cyclooxygenase 2 (COX-2) expression enhances tumor cell progression in a mouse model of lymphoma. 在小鼠淋巴瘤模型中,P2Y12 受体介导的环氧化酶 2 (COX-2) 表达可促进肿瘤细胞的发展。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2025-06-01 Epub Date: 2024-10-29 DOI: 10.1007/s11302-024-10057-4
Shilpa Sharma, Khagendra Ghimeray, Md Mostafizur Rahman, Aparna Upadrasta, Ravi Shankar Akundi

The pro-inflammatory enzyme cyclooxygenase 2 (COX-2) has been known to impart metastatic property to cancer cells. However, blocking of COX-2 with nonsteroidal anti-inflammatory drugs or COX-2-specific inhibitors has failed in clinical trials due to adverse effects associated with their prolonged use. We have previously shown that extracellular ATP (eATP), a major component of the tumor microenvironment, enhances COX-2 expression several-fold, both in macrophages and in various cancer cells, by acting on purinergic (P2) receptors. In this study, we show that blocking of P2 receptors significantly reduced tumor growth in a mouse model of lymphoma. Tumors were induced in mice through subcutaneous injection of syngeneic EL4 lymphoma cells. Various P2 receptor antagonists were injected within the tumors after they were palpable. The broad-spectrum P2 receptor antagonist, suramin, P2X7 receptor-specific antagonist, oATP, P2Y6 receptor-specific antagonist, MRS 2578, and P2Y12 receptor-specific antagonist, AR-C 69931, all showed significant arrest in tumor growth. Both suramin and AR-C 69931-treated tumors showed strong reduction in COX-2 expression and modulation of various metastatic markers. Disaggregated cells from AR-C 69931-treated tumors, when injected intravenously in naïve mice, did not exhibit metastasis in various tissues which was observed in mice injected with cells from saline-treated tumors. Our results show that blocking of P2 receptors is a therapeutic alternative to inhibit COX-2 expression, and thereby, arrest tumor progression and metastasis.

众所周知,促炎酶环氧化酶 2(COX-2)可赋予癌细胞转移特性。然而,用非甾体抗炎药或 COX-2 特异性抑制剂阻断 COX-2,在临床试验中却以失败告终,原因是长期使用会产生不良反应。我们以前的研究表明,细胞外 ATP(eATP)是肿瘤微环境的主要成分,它通过作用于嘌呤能(P2)受体,使巨噬细胞和各种癌细胞中 COX-2 的表达增强数倍。本研究表明,在小鼠淋巴瘤模型中,阻断 P2 受体可显著减少肿瘤生长。小鼠通过皮下注射合成 EL4 淋巴瘤细胞诱发肿瘤。在摸到肿瘤后,在肿瘤内注射各种 P2 受体拮抗剂。广谱 P2 受体拮抗剂舒拉明、P2X7 受体特异性拮抗剂 oATP、P2Y6 受体特异性拮抗剂 MRS 2578 和 P2Y12 受体特异性拮抗剂 AR-C 69931 都能显著抑制肿瘤生长。苏拉明和 AR-C 69931 处理过的肿瘤都显示 COX-2 的表达明显减少,各种转移标记物的表达也有所改变。将 AR-C 69931 处理过的肿瘤分解细胞静脉注射给天真小鼠后,小鼠在各种组织中均未出现转移,而注射生理盐水处理过的肿瘤细胞的小鼠则出现了这种情况。我们的研究结果表明,阻断 P2 受体是抑制 COX-2 表达从而阻止肿瘤进展和转移的一种治疗方法。
{"title":"P2Y12 receptor-mediated cyclooxygenase 2 (COX-2) expression enhances tumor cell progression in a mouse model of lymphoma.","authors":"Shilpa Sharma, Khagendra Ghimeray, Md Mostafizur Rahman, Aparna Upadrasta, Ravi Shankar Akundi","doi":"10.1007/s11302-024-10057-4","DOIUrl":"10.1007/s11302-024-10057-4","url":null,"abstract":"<p><p>The pro-inflammatory enzyme cyclooxygenase 2 (COX-2) has been known to impart metastatic property to cancer cells. However, blocking of COX-2 with nonsteroidal anti-inflammatory drugs or COX-2-specific inhibitors has failed in clinical trials due to adverse effects associated with their prolonged use. We have previously shown that extracellular ATP (eATP), a major component of the tumor microenvironment, enhances COX-2 expression several-fold, both in macrophages and in various cancer cells, by acting on purinergic (P2) receptors. In this study, we show that blocking of P2 receptors significantly reduced tumor growth in a mouse model of lymphoma. Tumors were induced in mice through subcutaneous injection of syngeneic EL4 lymphoma cells. Various P2 receptor antagonists were injected within the tumors after they were palpable. The broad-spectrum P2 receptor antagonist, suramin, P2X7 receptor-specific antagonist, oATP, P2Y6 receptor-specific antagonist, MRS 2578, and P2Y12 receptor-specific antagonist, AR-C 69931, all showed significant arrest in tumor growth. Both suramin and AR-C 69931-treated tumors showed strong reduction in COX-2 expression and modulation of various metastatic markers. Disaggregated cells from AR-C 69931-treated tumors, when injected intravenously in naïve mice, did not exhibit metastasis in various tissues which was observed in mice injected with cells from saline-treated tumors. Our results show that blocking of P2 receptors is a therapeutic alternative to inhibit COX-2 expression, and thereby, arrest tumor progression and metastasis.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"447-464"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanosensitive release of ATP in the urinary bladder mucosa. 膀胱粘膜对 ATP 的机械敏感性释放。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2025-06-01 Epub Date: 2024-11-14 DOI: 10.1007/s11302-024-10063-6
Violeta N Mutafova-Yambolieva

The urinary bladder mucosa (urothelium and suburothelium/lamina propria) functions as a barrier between the content of the urine and the underlying bladder tissue. The bladder mucosa is also a mechanosensitive tissue that releases signaling molecules that affect functions of cells in the bladder wall interconnecting the mucosa with the detrusor muscle and the CNS. Adenosine 5'-triphosphate (ATP) is a primary mechanotransduction signal that is released from cells in the bladder mucosa in response to bladder wall distention and activates cell membrane-localized P2X and P2Y purine receptors on urothelial cells, sensory and efferent neurons, interstitial cells, and detrusor smooth muscle cells. The amounts of ATP at active receptor sites depend significantly on the amounts of extracellularly released ATP. Spontaneous and distention-induced release of ATP appear to be under differential control. This review is focused on mechanisms underlying urothelial release of ATP in response to mechanical stimulation. First, we present a brief overview of studies that report mechanosensitive ATP release in bladder cells or tissues. Then, we discuss experimental evidence for mechanosensitive release of urothelial ATP by vesicular and non-vesicular mechanisms and roles of the stretch-activated channels PIEZO channels, transient receptor potential vanilloid type 4, and pannexin 1. This is followed by brief discussion of possible involvement of calcium homeostasis modulator 1, acid-sensing channels, and connexins in the release of urothelial ATP. We conclude with brief discussion of limitations of current research and of needs for further studies to increase our understanding of mechanotransduction in the bladder wall and of purinergic regulation of bladder function.

膀胱粘膜(尿道膜和尿道下膜/固有膜)是尿液和膀胱底层组织之间的屏障。膀胱粘膜还是一种机械敏感组织,会释放信号分子,影响膀胱粘膜与逼尿肌和中枢神经系统之间相互连接的膀胱壁细胞的功能。腺苷-5'-三磷酸(ATP)是一种主要的机械传导信号,在膀胱壁膨胀时从膀胱粘膜细胞释放,并激活尿路上皮细胞、感觉和传出神经元、间质细胞和逼尿肌平滑肌细胞上的细胞膜定位 P2X 和 P2Y 嘌呤受体。活性受体部位的 ATP 量在很大程度上取决于细胞外释放的 ATP 量。自发和胀气诱导的 ATP 释放似乎受到不同的控制。本综述主要探讨尿道在机械刺激下释放 ATP 的机制。首先,我们简要概述了在膀胱细胞或组织中报告机械敏感性 ATP 释放的研究。然后,我们讨论了尿道 ATP 机械敏感性释放的囊泡和非囊泡机制的实验证据,以及拉伸激活通道 PIEZO 通道、瞬时受体电位香草素 4 型和 Pannexin 1 的作用。 随后,我们简要讨论了钙平衡调节器 1、酸感应通道和连接蛋白可能参与尿道 ATP 释放的情况。最后,我们简要讨论了当前研究的局限性和进一步研究的需求,以加深我们对膀胱壁机械传导和嘌呤能调节膀胱功能的了解。
{"title":"Mechanosensitive release of ATP in the urinary bladder mucosa.","authors":"Violeta N Mutafova-Yambolieva","doi":"10.1007/s11302-024-10063-6","DOIUrl":"10.1007/s11302-024-10063-6","url":null,"abstract":"<p><p>The urinary bladder mucosa (urothelium and suburothelium/lamina propria) functions as a barrier between the content of the urine and the underlying bladder tissue. The bladder mucosa is also a mechanosensitive tissue that releases signaling molecules that affect functions of cells in the bladder wall interconnecting the mucosa with the detrusor muscle and the CNS. Adenosine 5'-triphosphate (ATP) is a primary mechanotransduction signal that is released from cells in the bladder mucosa in response to bladder wall distention and activates cell membrane-localized P2X and P2Y purine receptors on urothelial cells, sensory and efferent neurons, interstitial cells, and detrusor smooth muscle cells. The amounts of ATP at active receptor sites depend significantly on the amounts of extracellularly released ATP. Spontaneous and distention-induced release of ATP appear to be under differential control. This review is focused on mechanisms underlying urothelial release of ATP in response to mechanical stimulation. First, we present a brief overview of studies that report mechanosensitive ATP release in bladder cells or tissues. Then, we discuss experimental evidence for mechanosensitive release of urothelial ATP by vesicular and non-vesicular mechanisms and roles of the stretch-activated channels PIEZO channels, transient receptor potential vanilloid type 4, and pannexin 1. This is followed by brief discussion of possible involvement of calcium homeostasis modulator 1, acid-sensing channels, and connexins in the release of urothelial ATP. We conclude with brief discussion of limitations of current research and of needs for further studies to increase our understanding of mechanotransduction in the bladder wall and of purinergic regulation of bladder function.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"413-428"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142627103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of the P2X7 receptor in inactivated SARS-CoV-2-induced lung injury. P2X7 受体在灭活 SARS-CoV-2 诱导的肺损伤中的作用
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2025-06-01 Epub Date: 2024-11-28 DOI: 10.1007/s11302-024-10062-7
N C Carvalho-Barbosa, Fabiana Cristina-Rodrigues, Jairo R Temerozo, Thiago M L Souza, Andre L Gouvêa, Claudio A Canetti, Eleonora Kurtenbach, Dumith Chequer Bou-Habib, Claudia F Benjamim, Christina M Takiya, Luiz E B Savio, Robson Coutinho-Silva

Purinergic signaling plays a role in the pathophysiology of different viral infections. Recently, we showed that COVID-19 increases extracellular ATP levels, which may amplify the pro-inflammatory signals in the disease. The P2X7 receptor can be a protagonist in the pro-inflammatory responses. Herein, we investigated the role of the P2X7 receptor in the lung immune response triggered by inoculation of inactivated SARS-CoV-2 (iSARS-CoV-2) in K18-Human ACE2 transgenic mice. Pharmacological inhibition of the P2X7 receptor was performed with intraperitoneal administration of 50 mg/kg of Brilliant Blue G (BBG) one day before viral inoculation. Animals were divided into four groups: a control group (MOCK), a group inoculated with the inactivated virus iSARS-CoV-2, a BBG-treated control group (MOCK + BBG), and a BBG-treated inoculated group (iSARS-CoV-2 + BBG). Virus inoculation was intratracheal with 50 µl of mock or 2 × 106 Plaque Forming Units (PFU) of iSARS-CoV-2. After three days, blood and lungs were collected. We found a significant increase in ATP and LDH in serum and mRNA levels of P2X7 and P2Y12 receptors, CD39, IL-1β, and TNF-α in the lung of the iSARS-CoV-2 group when compared with the control group. BBG treatment attenuated these increases. Lung histological analyses showed severe lung damage in the iSARS-CoV-2 group, which was reduced by the BBG treatment. Immunohistochemical staining confirmed the increased presence of P2X7, P2Y12, and CD39 proteins in the iSARS-CoV-2 vs. the MOCK group. Thus, P2X7 receptor inhibition decreases iSARS-CoV-2-induced lung inflammation, indicating that this receptor might contribute to SARS-CoV-2 pathology.

嘌呤能信号在不同病毒感染的病理生理学中发挥着作用。最近,我们发现 COVID-19 会增加细胞外 ATP 水平,这可能会放大疾病中的促炎信号。P2X7 受体可能是促炎反应的主角。在此,我们研究了 P2X7 受体在 K18-Human ACE2 转基因小鼠接种灭活 SARS-CoV-2 (iSARS-CoV-2)引发的肺部免疫反应中的作用。在病毒接种前一天,腹腔注射 50 mg/kg 亮蓝 G(BBG),对 P2X7 受体进行药理抑制。动物被分为四组:对照组(MOCK)、接种灭活病毒 iSARS-CoV-2 组、BBG 处理对照组(MOCK + BBG)和 BBG 处理接种组(iSARS-CoV-2 + BBG)。病毒接种是用 50 µl 的模拟或 2 × 106 个斑块形成单位 (PFU) 的 iSARS-CoV-2 进行气管内接种。三天后,收集血液和肺。我们发现,与对照组相比,iSARS-CoV-2 组血清中的 ATP 和 LDH 以及肺中的 P2X7 和 P2Y12 受体、CD39、IL-1β 和 TNF-α 的 mRNA 水平均明显升高。BBG 治疗可减轻这些增加。肺组织学分析表明,iSARS-CoV-2 组的肺损伤严重,而 BBG 治疗则减轻了这种损伤。免疫组化染色证实,iSARS-CoV-2 组与 MOCK 组相比,P2X7、P2Y12 和 CD39 蛋白的存在增加。因此,抑制 P2X7 受体可减轻 iSARS-CoV-2 诱导的肺部炎症,这表明该受体可能是 SARS-CoV-2 的病理因素之一。
{"title":"The role of the P2X7 receptor in inactivated SARS-CoV-2-induced lung injury.","authors":"N C Carvalho-Barbosa, Fabiana Cristina-Rodrigues, Jairo R Temerozo, Thiago M L Souza, Andre L Gouvêa, Claudio A Canetti, Eleonora Kurtenbach, Dumith Chequer Bou-Habib, Claudia F Benjamim, Christina M Takiya, Luiz E B Savio, Robson Coutinho-Silva","doi":"10.1007/s11302-024-10062-7","DOIUrl":"10.1007/s11302-024-10062-7","url":null,"abstract":"<p><p>Purinergic signaling plays a role in the pathophysiology of different viral infections. Recently, we showed that COVID-19 increases extracellular ATP levels, which may amplify the pro-inflammatory signals in the disease. The P2X7 receptor can be a protagonist in the pro-inflammatory responses. Herein, we investigated the role of the P2X7 receptor in the lung immune response triggered by inoculation of inactivated SARS-CoV-2 (iSARS-CoV-2) in K18-Human ACE2 transgenic mice. Pharmacological inhibition of the P2X7 receptor was performed with intraperitoneal administration of 50 mg/kg of Brilliant Blue G (BBG) one day before viral inoculation. Animals were divided into four groups: a control group (MOCK), a group inoculated with the inactivated virus iSARS-CoV-2, a BBG-treated control group (MOCK + BBG), and a BBG-treated inoculated group (iSARS-CoV-2 + BBG). Virus inoculation was intratracheal with 50 µl of mock or 2 × 10<sup>6</sup> Plaque Forming Units (PFU) of iSARS-CoV-2. After three days, blood and lungs were collected. We found a significant increase in ATP and LDH in serum and mRNA levels of P2X7 and P2Y<sub>12</sub> receptors, CD39, IL-1β, and TNF-α in the lung of the iSARS-CoV-2 group when compared with the control group. BBG treatment attenuated these increases. Lung histological analyses showed severe lung damage in the iSARS-CoV-2 group, which was reduced by the BBG treatment. Immunohistochemical staining confirmed the increased presence of P2X7, P2Y<sub>12</sub>, and CD39 proteins in the iSARS-CoV-2 vs. the MOCK group. Thus, P2X7 receptor inhibition decreases iSARS-CoV-2-induced lung inflammation, indicating that this receptor might contribute to SARS-CoV-2 pathology.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"465-483"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular ATP regulates phagocytic activity, mitochondrial respiration, and cytokine secretion of human astrocytic cells. 细胞外ATP调节人类星形细胞的吞噬活性、线粒体呼吸和细胞因子分泌。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2025-06-01 Epub Date: 2025-01-21 DOI: 10.1007/s11302-025-10066-x
Sijie Shirley Yang, Noah A H Brooks, Dylan E Da Silva, Julien Gibon, Hashim Islam, Andis Klegeris

The two main glial cell types of the central nervous system (CNS), astrocytes and microglia, are responsible for neuroimmune homeostasis. Recent evidence indicates astrocytes can participate in removal of pathological structures by becoming phagocytic under conditions of neurodegenerative disease when microglia, the professional phagocytes, are impaired. We hypothesized that adenosine triphosphate (ATP), which acts as damage-associated molecular pattern (DAMP), when released at high concentrations into extracellular space, upregulates phagocytic activity of human astrocytes. This study is the first to measure changes in phagocytic activity and mitochondrial respiration of human astrocytic cells in response to extracellular ATP. We demonstrate that ATP-induced phagocytic activity of U118 MG astrocytic cells is accompanied by upregulated mitochondrial oxidative phosphorylation, which likely supports this energy-dependent process. Application of a selective antagonist A438079 provides evidence identifying astrocytic purinergic P2X7 receptor (P2X7R) as the potential regulator of their phagocytic function. We also report a rapid ATP-induced increase in intracellular calcium ([Ca2+]i), which could serve as regulator of both the phagocytic activity and mitochondrial metabolism, but this hypothesis will need to be tested in future studies. Since ATP upregulates interleukin (IL)-8 secretion by astrocytes but has no effect on their cytotoxicity towards neuronal cells, we conclude that extracellular ATP affects only specific functions of astrocytes. The selectivity of P2X7R-dependent regulation of astrocyte functions by extracellular ATP could allow targeting this receptor-ligand interaction to upregulate their phagocytic function. This could have beneficial outcomes in neurodegenerative disorders, such as Alzheimer's disease, that are characterized by reactive astrocytes and defective phagocytic processes.

中枢神经系统(CNS)的两种主要胶质细胞类型,星形胶质细胞和小胶质细胞,负责神经免疫稳态。最近的证据表明,在神经退行性疾病条件下,当专业吞噬细胞小胶质细胞受损时,星形胶质细胞可以通过成为吞噬细胞参与病理结构的清除。我们假设三磷酸腺苷(ATP)作为损伤相关分子模式(DAMP),当高浓度释放到细胞外空间时,上调人类星形胶质细胞的吞噬活性。这项研究首次测量了人类星形细胞对细胞外ATP的吞噬活性和线粒体呼吸的变化。我们证明atp诱导的U118 MG星形细胞吞噬活性伴随着线粒体氧化磷酸化的上调,这可能支持这种能量依赖性过程。选择性拮抗剂A438079的应用为星形细胞嘌呤能P2X7受体(P2X7R)作为其吞噬功能的潜在调节剂提供了证据。我们还报道了atp诱导的细胞内钙([Ca2+]i)的快速增加,这可能作为吞噬活性和线粒体代谢的调节剂,但这一假设需要在未来的研究中进行验证。由于ATP上调星形胶质细胞分泌白细胞介素(IL)-8,但不影响其对神经元细胞的细胞毒性,我们得出结论,细胞外ATP仅影响星形胶质细胞的特定功能。细胞外ATP对星形胶质细胞功能的p2x7r依赖性调节的选择性可能允许靶向这种受体-配体相互作用来上调其吞噬功能。这可能对神经退行性疾病(如阿尔茨海默病)有有益的结果,这些疾病的特征是星形胶质细胞反应性和吞噬过程缺陷。
{"title":"Extracellular ATP regulates phagocytic activity, mitochondrial respiration, and cytokine secretion of human astrocytic cells.","authors":"Sijie Shirley Yang, Noah A H Brooks, Dylan E Da Silva, Julien Gibon, Hashim Islam, Andis Klegeris","doi":"10.1007/s11302-025-10066-x","DOIUrl":"10.1007/s11302-025-10066-x","url":null,"abstract":"<p><p>The two main glial cell types of the central nervous system (CNS), astrocytes and microglia, are responsible for neuroimmune homeostasis. Recent evidence indicates astrocytes can participate in removal of pathological structures by becoming phagocytic under conditions of neurodegenerative disease when microglia, the professional phagocytes, are impaired. We hypothesized that adenosine triphosphate (ATP), which acts as damage-associated molecular pattern (DAMP), when released at high concentrations into extracellular space, upregulates phagocytic activity of human astrocytes. This study is the first to measure changes in phagocytic activity and mitochondrial respiration of human astrocytic cells in response to extracellular ATP. We demonstrate that ATP-induced phagocytic activity of U118 MG astrocytic cells is accompanied by upregulated mitochondrial oxidative phosphorylation, which likely supports this energy-dependent process. Application of a selective antagonist A438079 provides evidence identifying astrocytic purinergic P2X7 receptor (P2X7R) as the potential regulator of their phagocytic function. We also report a rapid ATP-induced increase in intracellular calcium ([Ca<sup>2+</sup>]<sub>i</sub>), which could serve as regulator of both the phagocytic activity and mitochondrial metabolism, but this hypothesis will need to be tested in future studies. Since ATP upregulates interleukin (IL)-8 secretion by astrocytes but has no effect on their cytotoxicity towards neuronal cells, we conclude that extracellular ATP affects only specific functions of astrocytes. The selectivity of P2X7R-dependent regulation of astrocyte functions by extracellular ATP could allow targeting this receptor-ligand interaction to upregulate their phagocytic function. This could have beneficial outcomes in neurodegenerative disorders, such as Alzheimer's disease, that are characterized by reactive astrocytes and defective phagocytic processes.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"485-498"},"PeriodicalIF":3.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143010617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosmarinic acid modulates purinergic signaling and induces apoptosis in melanoma cells. 迷迭香酸可调节嘌呤能信号转导并诱导黑色素瘤细胞凋亡。
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2025-04-01 Epub Date: 2024-07-20 DOI: 10.1007/s11302-024-10040-z
Gilnei B da Silva, Daiane Manica, Paula Dallagnol, Rafael A Narzetti, Filomena Marafon, Alana P da Silva, Letícia de S Matias, Joana V Cassol, Marcelo Moreno, Aniela P Kempka, Margarete D Bagatini

Cancer cases have increased worldwide. Cutaneous melanoma (CM), a highly metastatic skin cancer, largely contributes to global statistical cancer death data. Research has shown that rosmarinic acid (RA) is a promising phenolic compound with antineoplastic properties. Thus, we investigated the effects of RA on apoptosis-inducing in melanoma cells, purinergic signaling modulation, and cytokine levels. We treated SK-MEL-28 cells for 24 h with different concentrations of RA and assessed the apoptosis, CD39, CD73, and A2A expression, and cytokine levels. We found RA-induced apoptosis in melanoma cells. Regarding the purinergic system, we verified that RA downregulated the expression of CD73 and A2A, specially at high concentrations of treatment. Additionally, RA increased IL-6, IL-4, IL-10, IFN-γ, and TNF-α levels. Our in vitro results confirm RA's potential to be used to induce melanoma cell apoptosis, having CD73 and A2A as targets when reversion of immune suppression is desired. Further studies in animal models and clinical trials focusing on RA's modulation of purinergic signaling in melanoma are required.

全球癌症病例不断增加。皮肤黑色素瘤(CM)是一种高度转移性皮肤癌,在全球癌症死亡统计数据中占很大比例。研究表明,迷迭香酸(RA)是一种具有抗肿瘤特性的酚类化合物。因此,我们研究了迷迭香酸对黑色素瘤细胞凋亡诱导、嘌呤能信号调节和细胞因子水平的影响。我们用不同浓度的 RA 处理 SK-MEL-28 细胞 24 小时,并评估细胞凋亡、CD39、CD73 和 A2A 表达以及细胞因子水平。我们发现 RA 可诱导黑色素瘤细胞凋亡。在嘌呤能系统方面,我们证实 RA 下调了 CD73 和 A2A 的表达,尤其是在高浓度处理时。此外,RA 还能提高 IL-6、IL-4、IL-10、IFN-γ 和 TNF-α 的水平。我们的体外研究结果证实了 RA 具有诱导黑色素瘤细胞凋亡的潜力,当需要逆转免疫抑制时,可将 CD73 和 A2A 作为靶点。我们需要在动物模型和临床试验中进一步研究 RA 对黑色素瘤嘌呤能信号转导的调节作用。
{"title":"Rosmarinic acid modulates purinergic signaling and induces apoptosis in melanoma cells.","authors":"Gilnei B da Silva, Daiane Manica, Paula Dallagnol, Rafael A Narzetti, Filomena Marafon, Alana P da Silva, Letícia de S Matias, Joana V Cassol, Marcelo Moreno, Aniela P Kempka, Margarete D Bagatini","doi":"10.1007/s11302-024-10040-z","DOIUrl":"10.1007/s11302-024-10040-z","url":null,"abstract":"<p><p>Cancer cases have increased worldwide. Cutaneous melanoma (CM), a highly metastatic skin cancer, largely contributes to global statistical cancer death data. Research has shown that rosmarinic acid (RA) is a promising phenolic compound with antineoplastic properties. Thus, we investigated the effects of RA on apoptosis-inducing in melanoma cells, purinergic signaling modulation, and cytokine levels. We treated SK-MEL-28 cells for 24 h with different concentrations of RA and assessed the apoptosis, CD39, CD73, and A2A expression, and cytokine levels. We found RA-induced apoptosis in melanoma cells. Regarding the purinergic system, we verified that RA downregulated the expression of CD73 and A2A, specially at high concentrations of treatment. Additionally, RA increased IL-6, IL-4, IL-10, IFN-γ, and TNF-α levels. Our in vitro results confirm RA's potential to be used to induce melanoma cell apoptosis, having CD73 and A2A as targets when reversion of immune suppression is desired. Further studies in animal models and clinical trials focusing on RA's modulation of purinergic signaling in melanoma are required.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"353-363"},"PeriodicalIF":3.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061826/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial-Translation of purinergic drugs into therapeutic use. 编辑-嘌呤能药物转化为治疗用途。
IF 2.4 4区 医学 Q2 NEUROSCIENCES Pub Date : 2025-04-01 DOI: 10.1007/s11302-025-10077-8
Charles Kennedy
{"title":"Editorial-Translation of purinergic drugs into therapeutic use.","authors":"Charles Kennedy","doi":"10.1007/s11302-025-10077-8","DOIUrl":"10.1007/s11302-025-10077-8","url":null,"abstract":"","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"193"},"PeriodicalIF":2.4,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143503864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Purinergic Signalling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1