Pub Date : 2022-04-30DOI: 10.7844/kirr.2022.31.2.33
Sang-hun Lee, K. Chung
In this study, analytical thermochemical modeling factors that contribute to maintaining a specific temperature range during vanadium roasting as a pretreatment using a rotary kiln are investigated. The model-related mechanisms include thermochemical reaction rates, heat balance, and heat transfer, through which the resultant temperature can be estimated intuitively. Ultimately, by optimizing these parameters, the ideal roasting temperature in the kiln is ≈1000 °C (or ≈1273 K) for long-term operation. Therefore, the heat generated from hydrocarbon (natural gas) fuel combustion and ore oxidation reactions, as well as the radiant heat transferred to ores, are assessed. In addition, thermochemical methods for relieving the temperature gradient in order to maintain the optimum temperature range of the rotary kiln are suggested.
{"title":"Thermochemical Modeling Factors in Roasting Pre-treatment using a Rotary Kiln for Efficient Vanadium Recovery","authors":"Sang-hun Lee, K. Chung","doi":"10.7844/kirr.2022.31.2.33","DOIUrl":"https://doi.org/10.7844/kirr.2022.31.2.33","url":null,"abstract":"In this study, analytical thermochemical modeling factors that contribute to maintaining a specific temperature range during vanadium roasting as a pretreatment using a rotary kiln are investigated. The model-related mechanisms include thermochemical reaction rates, heat balance, and heat transfer, through which the resultant temperature can be estimated intuitively. Ultimately, by optimizing these parameters, the ideal roasting temperature in the kiln is ≈1000 °C (or ≈1273 K) for long-term operation. Therefore, the heat generated from hydrocarbon (natural gas) fuel combustion and ore oxidation reactions, as well as the radiant heat transferred to ores, are assessed. In addition, thermochemical methods for relieving the temperature gradient in order to maintain the optimum temperature range of the rotary kiln are suggested.","PeriodicalId":20967,"journal":{"name":"Resources Recycling","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85800803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-30DOI: 10.7844/kirr.2022.31.2.49
Youngjae Kim, Kyungsob Choi, Hyunsik Park, K. Chung
In the present study, the thermodynamic evaluation of the sulfate-roasting process was conducted to extract vanadium from the Korean vanadium titano-magnetite ore. The leaching efficiency of vanadium and other impurities was analyzed for varying roasting temperatures and addition of Na 2 SO 4 . In the case of sulfate roasting, the roasting temperature was 200 ℃ higher than that previously observed Na 2 CO 3 roasting. However, the higher leaching efficiency of vanadium and lower leaching efficiency of other impurities, such as aluminum and silicon, were observed. The high selectivity for the extraction of vanadium in sulfate roasting would result from the reaction mechanism between SO 2 gas and vanadium concentrate.
{"title":"Thermodynamic Evaluation of Sulfate-Roasting Process for the Vanadium Extraction from Korean VTM Ore","authors":"Youngjae Kim, Kyungsob Choi, Hyunsik Park, K. Chung","doi":"10.7844/kirr.2022.31.2.49","DOIUrl":"https://doi.org/10.7844/kirr.2022.31.2.49","url":null,"abstract":"In the present study, the thermodynamic evaluation of the sulfate-roasting process was conducted to extract vanadium from the Korean vanadium titano-magnetite ore. The leaching efficiency of vanadium and other impurities was analyzed for varying roasting temperatures and addition of Na 2 SO 4 . In the case of sulfate roasting, the roasting temperature was 200 ℃ higher than that previously observed Na 2 CO 3 roasting. However, the higher leaching efficiency of vanadium and lower leaching efficiency of other impurities, such as aluminum and silicon, were observed. The high selectivity for the extraction of vanadium in sulfate roasting would result from the reaction mechanism between SO 2 gas and vanadium concentrate.","PeriodicalId":20967,"journal":{"name":"Resources Recycling","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74071576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}