Pub Date : 2023-12-20DOI: 10.1108/rpj-04-2023-0150
Prashant Anerao, A. Kulkarni, Y. Munde
Purpose This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics. Design/methodology/approach The study presents a variety of biocomposite materials that have been used in filaments for 3D printing by different researchers. The process of making filaments is then described, followed by a discussion of the process parameters associated with the FDM. Findings To achieve better mechanical properties of 3D-printed parts, it is essential to optimize the process parameters of FDM while considering the characteristics of the biocomposite material. Polylactic acid is considered the most promising matrix material due to its biodegradability and lower cost. Moreover, the use of natural fibres like hemp, flax and sugarcane bagasse as reinforcement to the polymer in FDM filaments improves the mechanical performance of printed parts. Originality/value The paper discusses the influence of critical process parameters of FDM like raster angle, layer thickness, infill density, infill pattern and extruder temperature on the mechanical properties of 3D-printed biocomposite.
{"title":"A review on exploration of the mechanical characteristics of 3D-printed biocomposites fabricated by fused deposition modelling (FDM)","authors":"Prashant Anerao, A. Kulkarni, Y. Munde","doi":"10.1108/rpj-04-2023-0150","DOIUrl":"https://doi.org/10.1108/rpj-04-2023-0150","url":null,"abstract":"\u0000Purpose\u0000This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.\u0000\u0000\u0000Design/methodology/approach\u0000The study presents a variety of biocomposite materials that have been used in filaments for 3D printing by different researchers. The process of making filaments is then described, followed by a discussion of the process parameters associated with the FDM.\u0000\u0000\u0000Findings\u0000To achieve better mechanical properties of 3D-printed parts, it is essential to optimize the process parameters of FDM while considering the characteristics of the biocomposite material. Polylactic acid is considered the most promising matrix material due to its biodegradability and lower cost. Moreover, the use of natural fibres like hemp, flax and sugarcane bagasse as reinforcement to the polymer in FDM filaments improves the mechanical performance of printed parts.\u0000\u0000\u0000Originality/value\u0000The paper discusses the influence of critical process parameters of FDM like raster angle, layer thickness, infill density, infill pattern and extruder temperature on the mechanical properties of 3D-printed biocomposite.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"73 11","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138956920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1108/rpj-01-2023-0027
İ. T. Gülenç, Mingwen Bai, Ria L. Mitchell, Iain Todd, B. Inkson
Purpose Current methods for the preparation of composite powder feedstock for selective laser melting (SLM) rely on costly nanoparticles or yield inconsistent powder morphology. This study aims to develop a cost-effective Ti6Al4V-carbon feedstock, which preserves the parent Ti6Al4V particle’s flowability, and produces in situ TiC-reinforced Ti6Al4V composites with superior traits. Design/methodology/approach Ti6Al4V particles were directly mixed with graphite flakes in a planetary ball mill. This composite powder feedstock was used to manufacture in situ TiC-Ti6Al4V composites using various energy densities. Relative porosity, microstructure and hardness of the composites were evaluated for different SLM processing parameters. Findings Homogeneously carbon-coated Ti6Al4V particles were produced by direct mixing. After SLM processing, in situ grown 100–500 nm size TiC nanoparticles were distributed within the α-martensite Ti6Al4V matrix. The formation of TiC particles refines the Ti6Al4V β grain size. Relative density varied between 96.4% and 99.5% depending on the processing parameters. Hatch distance, exposure time and point distance were all effective on relative porosity change, whereas only exposure time and point distance were effective on hardness change. Originality/value This work introduces a novel, cost-effective powder feedstock preparation method for SLM manufacture of Ti6Al4V-TiC composites. The in situ SLM composites achieved in this study have high relative density values, well-dispersed TiC nanoparticles and increased hardness. In addition, the feedstock preparation method can be readily adapted for various matrix and reinforcement materials in future studies.
{"title":"In situ TiC reinforced Ti6Al4V matrix composites manufactured via selective laser melting","authors":"İ. T. Gülenç, Mingwen Bai, Ria L. Mitchell, Iain Todd, B. Inkson","doi":"10.1108/rpj-01-2023-0027","DOIUrl":"https://doi.org/10.1108/rpj-01-2023-0027","url":null,"abstract":"\u0000Purpose\u0000Current methods for the preparation of composite powder feedstock for selective laser melting (SLM) rely on costly nanoparticles or yield inconsistent powder morphology. This study aims to develop a cost-effective Ti6Al4V-carbon feedstock, which preserves the parent Ti6Al4V particle’s flowability, and produces in situ TiC-reinforced Ti6Al4V composites with superior traits.\u0000\u0000\u0000Design/methodology/approach\u0000Ti6Al4V particles were directly mixed with graphite flakes in a planetary ball mill. This composite powder feedstock was used to manufacture in situ TiC-Ti6Al4V composites using various energy densities. Relative porosity, microstructure and hardness of the composites were evaluated for different SLM processing parameters.\u0000\u0000\u0000Findings\u0000Homogeneously carbon-coated Ti6Al4V particles were produced by direct mixing. After SLM processing, in situ grown 100–500 nm size TiC nanoparticles were distributed within the α-martensite Ti6Al4V matrix. The formation of TiC particles refines the Ti6Al4V β grain size. Relative density varied between 96.4% and 99.5% depending on the processing parameters. Hatch distance, exposure time and point distance were all effective on relative porosity change, whereas only exposure time and point distance were effective on hardness change.\u0000\u0000\u0000Originality/value\u0000This work introduces a novel, cost-effective powder feedstock preparation method for SLM manufacture of Ti6Al4V-TiC composites. The in situ SLM composites achieved in this study have high relative density values, well-dispersed TiC nanoparticles and increased hardness. In addition, the feedstock preparation method can be readily adapted for various matrix and reinforcement materials in future studies.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"130 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138953654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1108/rpj-04-2023-0149
Jibing Chen, Shisen Huang, Nan Chen, Chengze Yu, Shanji Yu, Bowen Liu, Maohui Hu, Ruidi Li
Purpose This paper aims to identify the optimal forming angle for the selective laser melting (SLM) process and evaluate the mechanical properties of the SLM-formed GH3536 alloy in the aero-engine field. Design/methodology/approach Forming the samples with optimized parameters and analyzing the microstructure and properties of the block samples in different forming angles with scanning electron microscope, XRD, etc. so as to analyze and reveal the laws and mechanism of the block samples in different forming angles by SLM. Findings There are few cracks on the construction surface of SLM formed samples, and the microstructure shows columnar subgrains and cellular subgrains. The segregation of metal elements was not observed in the microstructure. The pattern shows strong texture strength on the (111) crystal plane. In the sample, the tensile strength of 60° sample is the highest, the plasticity of 90° forming sample is the best, the comprehensive property of 45° sample is the best and the fracture mode is plastic fracture. The comprehensive performance of the part is the best under the forming angle of 45°. To ensure the part size, performance and support structure processing, additional dimensions are added to the part structure. Originality/value In this paper, how to make samples with different forming angles is described. Combined with the standard of forged GH3536 alloy, the microstructure and properties of the samples are analyzed, and the optimal forming angle is obtained.
{"title":"Effect of forming angle on the microstructure and properties of GH3536 nickel-based superalloy formed by SLM","authors":"Jibing Chen, Shisen Huang, Nan Chen, Chengze Yu, Shanji Yu, Bowen Liu, Maohui Hu, Ruidi Li","doi":"10.1108/rpj-04-2023-0149","DOIUrl":"https://doi.org/10.1108/rpj-04-2023-0149","url":null,"abstract":"\u0000Purpose\u0000This paper aims to identify the optimal forming angle for the selective laser melting (SLM) process and evaluate the mechanical properties of the SLM-formed GH3536 alloy in the aero-engine field.\u0000\u0000\u0000Design/methodology/approach\u0000Forming the samples with optimized parameters and analyzing the microstructure and properties of the block samples in different forming angles with scanning electron microscope, XRD, etc. so as to analyze and reveal the laws and mechanism of the block samples in different forming angles by SLM.\u0000\u0000\u0000Findings\u0000There are few cracks on the construction surface of SLM formed samples, and the microstructure shows columnar subgrains and cellular subgrains. The segregation of metal elements was not observed in the microstructure. The pattern shows strong texture strength on the (111) crystal plane. In the sample, the tensile strength of 60° sample is the highest, the plasticity of 90° forming sample is the best, the comprehensive property of 45° sample is the best and the fracture mode is plastic fracture. The comprehensive performance of the part is the best under the forming angle of 45°. To ensure the part size, performance and support structure processing, additional dimensions are added to the part structure.\u0000\u0000\u0000Originality/value\u0000In this paper, how to make samples with different forming angles is described. Combined with the standard of forged GH3536 alloy, the microstructure and properties of the samples are analyzed, and the optimal forming angle is obtained.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"121 41","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138953881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-15DOI: 10.1108/rpj-03-2023-0114
M. A. Mahmood, Chioibasu Diana, Uzair Sajjad, S. Mihai, Ion Tiseanu, Andrei C. Popescu
Purpose Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification. Currently, the porosity estimation is limited to powder bed fusion. The porosity estimation needs to be explored in the laser melting deposition (LMD) process, particularly analytical models that provide cost- and time-effective solutions compared to finite element analysis. For this purpose, this study aims to formulate two mathematical models for deposited layer dimensions and corresponding porosity in the LMD process. Design/methodology/approach In this study, analytical models have been proposed. Initially, deposited layer dimensions, including layer height, width and depth, were calculated based on the operating parameters. These outputs were introduced in the second model to estimate the part porosity. The models were validated with experimental data for Ti6Al4V depositions on Ti6Al4V substrate. A calibration curve (CC) was also developed for Ti6Al4V material and characterized using X-ray computed tomography. The models were also validated with the experimental results adopted from literature. The validated models were linked with the deep neural network (DNN) for its training and testing using a total of 6,703 computations with 1,500 iterations. Here, laser power, laser scanning speed and powder feeding rate were selected inputs, whereas porosity was set as an output. Findings The computations indicate that owing to the simultaneous inclusion of powder particulates, the powder elements use a substantial percentage of the laser beam energy for their melting, resulting in laser beam energy attenuation and reducing thermal value at the substrate. The primary operating parameters are directly correlated with the number of layers and total height in CC. Through X-ray computed tomography analyses, the number of layers showed a straightforward correlation with mean sphericity, while a converse relation was identified with the number, mean volume and mean diameter of pores. DNN and analytical models showed 2%–3% and 7%–9% mean absolute deviations, respectively, compared to the experimental results. Originality/value This research provides a unique solution for LMD porosity estimation by linking the developed analytical computational models with artificial neural networking. The presented framework predicts the porosity in the LMD-ed parts efficiently.
目的由于反复熔化和凝固造成的巨大热梯度,气孔是激光增材制造工艺中常见的缺陷。目前,孔隙率估算仅限于粉末床熔融。在激光熔融沉积(LMD)过程中,需要对孔隙率估算进行探索,特别是与有限元分析相比,分析模型能提供成本和时间效益高的解决方案。为此,本研究旨在为激光熔融沉积过程中的沉积层尺寸和相应的孔隙率制定两个数学模型。首先,根据操作参数计算沉积层尺寸,包括层高、宽度和深度。这些输出结果被引入第二个模型,以估算零件的孔隙率。这些模型与 Ti6Al4V 基底上 Ti6Al4V 沉积的实验数据进行了验证。还为 Ti6Al4V 材料开发了校准曲线 (CC),并使用 X 射线计算机断层扫描进行了表征。模型还与文献中采用的实验结果进行了验证。经过验证的模型与深度神经网络(DNN)相连接,通过 1,500 次迭代共 6,703 次计算对其进行训练和测试。计算结果表明,由于同时加入了粉末颗粒,粉末元素在熔化过程中消耗了很大比例的激光束能量,导致激光束能量衰减,降低了基底的热值。主要运行参数与 CC 的层数和总高度直接相关。通过 X 射线计算机断层扫描分析,层数与平均球度直接相关,而与孔的数量、平均体积和平均直径的关系则相反。与实验结果相比,DNN 和分析模型分别显示出 2%-3% 和 7%-9% 的平均绝对偏差。 原创性/价值 这项研究通过将开发的分析计算模型与人工神经网络联系起来,为 LMD 孔隙度估算提供了独特的解决方案。所提出的框架可有效预测 LMD 零件中的孔隙率。
{"title":"Printed layers height calibration curve and porosity in laser melting deposition of Ti6Al4V combining experiments, mathematical modelling and deep neural network","authors":"M. A. Mahmood, Chioibasu Diana, Uzair Sajjad, S. Mihai, Ion Tiseanu, Andrei C. Popescu","doi":"10.1108/rpj-03-2023-0114","DOIUrl":"https://doi.org/10.1108/rpj-03-2023-0114","url":null,"abstract":"\u0000Purpose\u0000Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification. Currently, the porosity estimation is limited to powder bed fusion. The porosity estimation needs to be explored in the laser melting deposition (LMD) process, particularly analytical models that provide cost- and time-effective solutions compared to finite element analysis. For this purpose, this study aims to formulate two mathematical models for deposited layer dimensions and corresponding porosity in the LMD process.\u0000\u0000\u0000Design/methodology/approach\u0000In this study, analytical models have been proposed. Initially, deposited layer dimensions, including layer height, width and depth, were calculated based on the operating parameters. These outputs were introduced in the second model to estimate the part porosity. The models were validated with experimental data for Ti6Al4V depositions on Ti6Al4V substrate. A calibration curve (CC) was also developed for Ti6Al4V material and characterized using X-ray computed tomography. The models were also validated with the experimental results adopted from literature. The validated models were linked with the deep neural network (DNN) for its training and testing using a total of 6,703 computations with 1,500 iterations. Here, laser power, laser scanning speed and powder feeding rate were selected inputs, whereas porosity was set as an output.\u0000\u0000\u0000Findings\u0000The computations indicate that owing to the simultaneous inclusion of powder particulates, the powder elements use a substantial percentage of the laser beam energy for their melting, resulting in laser beam energy attenuation and reducing thermal value at the substrate. The primary operating parameters are directly correlated with the number of layers and total height in CC. Through X-ray computed tomography analyses, the number of layers showed a straightforward correlation with mean sphericity, while a converse relation was identified with the number, mean volume and mean diameter of pores. DNN and analytical models showed 2%–3% and 7%–9% mean absolute deviations, respectively, compared to the experimental results.\u0000\u0000\u0000Originality/value\u0000This research provides a unique solution for LMD porosity estimation by linking the developed analytical computational models with artificial neural networking. The presented framework predicts the porosity in the LMD-ed parts efficiently.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"331 6","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138996707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-15DOI: 10.1108/rpj-08-2023-0266
Mohamed Ahmed Omrane, Raphaël Côté, Vincent Demers
Purpose The purpose of this study is to determine the material extrusion (MEX) printability envelope of a new kind of low-viscosity powder-binder feedstocks using rheological properties. Design/methodology/approach Formulation of 13 feedstocks (variation of solid loading 60–67 Vol.% and thickening agent proportion 3–15 Vol.%) that were characterized and printed at different temperatures. Findings Three rheological models were successfully used to define the viscosity envelope, producing stable and defect-free printing. At a shear deformation rate experienced by the feedstock in the nozzle ranging from 100 to 300 s–1, it was confirmed that metal injection molding (MIM) feedstocks exhibiting a low viscosity between 100 and 150 Pa s could be printed using an extrusion temperature as low as 85 °C. Practical implications MEX can be used in synergy with MIM to accelerate mold development for a new injected part or simply as a replacement for MIM when the cost of the mold becomes too high for very small production volumes. Originality/value Correlation between the rheological properties of this new generation of low-viscosity feedstocks and MEX printability has been demonstrated for the first time.
本研究的目的是利用流变特性确定新型低粘度粉末粘合剂原料的材料挤压(MEX)印刷适性包络线。设计/方法/方法配制了 13 种原料(固体含量变化范围为 60-67 Vol.%,增稠剂比例变化范围为 3-15 Vol.%),并在不同温度下进行了表征和印刷。当原料在喷嘴中的剪切变形率在 100 到 300 s-1 之间时,可以确认粘度在 100 到 150 Pa s 之间的金属注射成型(MIM)原料可以在低至 85 °C 的挤出温度下进行印刷。原创性/价值首次证明了新一代低粘度原料的流变特性与 MEX 印刷能力之间的相关性。
{"title":"Optimization of the printability envelope of low-viscosity powder-binder feedstocks used in material extrusion 3D printing","authors":"Mohamed Ahmed Omrane, Raphaël Côté, Vincent Demers","doi":"10.1108/rpj-08-2023-0266","DOIUrl":"https://doi.org/10.1108/rpj-08-2023-0266","url":null,"abstract":"\u0000Purpose\u0000The purpose of this study is to determine the material extrusion (MEX) printability envelope of a new kind of low-viscosity powder-binder feedstocks using rheological properties.\u0000\u0000\u0000Design/methodology/approach\u0000Formulation of 13 feedstocks (variation of solid loading 60–67 Vol.% and thickening agent proportion 3–15 Vol.%) that were characterized and printed at different temperatures.\u0000\u0000\u0000Findings\u0000Three rheological models were successfully used to define the viscosity envelope, producing stable and defect-free printing. At a shear deformation rate experienced by the feedstock in the nozzle ranging from 100 to 300 s–1, it was confirmed that metal injection molding (MIM) feedstocks exhibiting a low viscosity between 100 and 150 Pa s could be printed using an extrusion temperature as low as 85 °C.\u0000\u0000\u0000Practical implications\u0000MEX can be used in synergy with MIM to accelerate mold development for a new injected part or simply as a replacement for MIM when the cost of the mold becomes too high for very small production volumes.\u0000\u0000\u0000Originality/value\u0000Correlation between the rheological properties of this new generation of low-viscosity feedstocks and MEX printability has been demonstrated for the first time.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"1 8","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139000993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.1108/rpj-06-2023-0185
Austin R. Colon, David O. Kazmer, Amy M. Peterson, Jonathan E. Seppala
Purpose A main cause of defects within material extrusion (MatEx) additive manufacturing is the nonisothermal condition in the hot end, which causes inconsistent extrusion and polymer welding. This paper aims to validate a custom hot end design intended to heat the thermoplastic to form a melt prior to the nozzle and to reduce variability in melt temperature. A full 3D temperature verification methodology for hot ends is also presented. Design/methodology/approach Infrared (IR) thermography of steady-state extrusion for varying volumetric flow rates, hot end temperature setpoints and nozzle orifice diameters provides data for model validation. A finite-element model is used to predict the temperature of the extrudate. Model tuning demonstrates the effects of different model assumptions on the simulated melt temperature. Findings The experimental results show that the measured temperature and variance are functions of volumetric flow rate, temperature setpoint and the nozzle orifice diameter. Convection to the surrounding air is a primary heat transfer mechanism. The custom hot end brings the melt to its setpoint temperature prior to entering the nozzle. Originality/value This work provides a full set of steady-state IR thermography data for various parameter settings. It also provides insight into the performance of a custom hot end designed to improve the robustness of melting in MatEx. Finally, it proposes a strategy for modeling such systems that incorporates the metal components and the air around the system.
{"title":"Steady melting in material extrusion additive manufacturing","authors":"Austin R. Colon, David O. Kazmer, Amy M. Peterson, Jonathan E. Seppala","doi":"10.1108/rpj-06-2023-0185","DOIUrl":"https://doi.org/10.1108/rpj-06-2023-0185","url":null,"abstract":"\u0000Purpose\u0000A main cause of defects within material extrusion (MatEx) additive manufacturing is the nonisothermal condition in the hot end, which causes inconsistent extrusion and polymer welding. This paper aims to validate a custom hot end design intended to heat the thermoplastic to form a melt prior to the nozzle and to reduce variability in melt temperature. A full 3D temperature verification methodology for hot ends is also presented.\u0000\u0000\u0000Design/methodology/approach\u0000Infrared (IR) thermography of steady-state extrusion for varying volumetric flow rates, hot end temperature setpoints and nozzle orifice diameters provides data for model validation. A finite-element model is used to predict the temperature of the extrudate. Model tuning demonstrates the effects of different model assumptions on the simulated melt temperature.\u0000\u0000\u0000Findings\u0000The experimental results show that the measured temperature and variance are functions of volumetric flow rate, temperature setpoint and the nozzle orifice diameter. Convection to the surrounding air is a primary heat transfer mechanism. The custom hot end brings the melt to its setpoint temperature prior to entering the nozzle.\u0000\u0000\u0000Originality/value\u0000This work provides a full set of steady-state IR thermography data for various parameter settings. It also provides insight into the performance of a custom hot end designed to improve the robustness of melting in MatEx. Finally, it proposes a strategy for modeling such systems that incorporates the metal components and the air around the system.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"36 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138633217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-08DOI: 10.1108/rpj-06-2023-0199
F. Calignano, Alessandro Bove, Vincenza Mercurio, G. Marchiandi
Purpose Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism. Design/methodology/approach Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms. Findings Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism. Originality/value In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.
{"title":"Effect of recycled powder and gear profile into the functionality of additive manufacturing polymer gears","authors":"F. Calignano, Alessandro Bove, Vincenza Mercurio, G. Marchiandi","doi":"10.1108/rpj-06-2023-0199","DOIUrl":"https://doi.org/10.1108/rpj-06-2023-0199","url":null,"abstract":"\u0000Purpose\u0000Polymer laser powder bed fusion (PBF-LB/P) is an additive manufacturing technology that is sustainable due to the possibility of recycling the powder multiple times and allowing the fabrication of gears without the aid of support structures and subsequent assembly. However, there are constraints in the process that negatively affect its adoption compared to other additive technologies such as material extrusion to produce gears. This study aims to demonstrate that it is possible to overcome the problems due to the physics of the process to produce accurate mechanism.\u0000\u0000\u0000Design/methodology/approach\u0000Technological aspects such as orientation, wheel-shaft thicknesses and degree of powder recycling were examined. Furthermore, the evolving tooth profile was considered as a design parameter to provide a manufacturability map of gear-based mechanisms.\u0000\u0000\u0000Findings\u0000Results show that there are some differences in the functioning of the gear depending on the type of powder used, 100% virgin or 50% virgin and 50% recycled for five cycles. The application of a groove on a gear produced with 100% virgin powder allows the mechanism to be easily unlocked regardless of the orientation and wheel-shaft thicknesses. The application of a specific evolutionary profile independent of the diameter of the reference circle on vertically oriented gears guarantees rotation continuity while preserving the functionality of the assembled mechanism.\u0000\u0000\u0000Originality/value\u0000In the literature, there are various studies on material aging and reuse in the PBF-LB/P process, mainly focused on the powder deterioration mechanism, powder fluidity, microstructure and mechanical properties of the parts and process parameters. This study, instead, was focused on the functioning of gears, which represent one of the applications in which this technology can have great success, by analyzing the two main effects that can compromise it: recycled powder and vertical orientation during construction.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"9 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138586278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.1108/rpj-12-2022-0420
Murat Isik, Isa Emami Tabrizi, Raja Muhammad Awais Khan, Mehmet Yildiz, E. Aydogan, B. Koc
Purpose In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and machinery industries. Most complex or assembled parts require internal features (IF) such as holes, channels, slots, or guides for locational and mating requirements. Therefore, it is critical to understand and compare the structural and mechanical properties of additively manufactured and conventionally machined IFs. Design/methodology/approach In this study, mechanical and microstructural properties of Inconel 718 (Inc718) alloy internal features, manufactured either as-built with AM or machining of additively manufactured (AMed) part thereafter were investigated. Findings The results showed that the average ultimate tensile strength (UTS) of additively manufactured center internal feature (AM-IF) is almost analogous to the machined internal feature (M-IF). However, the yield strength of M-IF is greater than that of AM-IF due the greater surface roughness of the internal feature in AM-IF, which is deemed to surpass the effect of microstructure on the mechanical performance. The results of digital image correlation (DIC) analysis suggest that AM-IF and M-IF conditions have similar strain values under the same stress levels but the specimens with as built IF have a more locally ductile region around their IF, which is confirmed by hardness test results. But this does not change global elongation behavior. The microstructural evolution starting from as-built (AB) and heat-treated (HT) samples to specimens with IF are examined. The microstructure of HT specimens has bimodal grain structure with d phase while the AB specimens display a very fine dendritic microstructure with the presence of carbides. Although they both have close values, machined specimens have a higher frequency of finer grains based on SEM images. Originality/value It was shown that the concurrent creation of the IF during AM can provide a final part with a preserved ultimate tensile strength and elongation but a decreased yield strength. The variation in UTS of AM-IF increases due to the surface roughness near the internal feature as compared to smooth internal surfaces in M-IF. Hence, the outcomes of this study are believed to be valuable for the industry in terms of determining the appropriate production strategy of parts with IF using AM and postprocessing processes.
{"title":"The effect of additively and subtractively created center internal features on microstructure and mechanical performance of inconel-718 parts","authors":"Murat Isik, Isa Emami Tabrizi, Raja Muhammad Awais Khan, Mehmet Yildiz, E. Aydogan, B. Koc","doi":"10.1108/rpj-12-2022-0420","DOIUrl":"https://doi.org/10.1108/rpj-12-2022-0420","url":null,"abstract":"\u0000Purpose\u0000In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and machinery industries. Most complex or assembled parts require internal features (IF) such as holes, channels, slots, or guides for locational and mating requirements. Therefore, it is critical to understand and compare the structural and mechanical properties of additively manufactured and conventionally machined IFs.\u0000\u0000\u0000Design/methodology/approach\u0000In this study, mechanical and microstructural properties of Inconel 718 (Inc718) alloy internal features, manufactured either as-built with AM or machining of additively manufactured (AMed) part thereafter were investigated.\u0000\u0000\u0000Findings\u0000The results showed that the average ultimate tensile strength (UTS) of additively manufactured center internal feature (AM-IF) is almost analogous to the machined internal feature (M-IF). However, the yield strength of M-IF is greater than that of AM-IF due the greater surface roughness of the internal feature in AM-IF, which is deemed to surpass the effect of microstructure on the mechanical performance. The results of digital image correlation (DIC) analysis suggest that AM-IF and M-IF conditions have similar strain values under the same stress levels but the specimens with as built IF have a more locally ductile region around their IF, which is confirmed by hardness test results. But this does not change global elongation behavior. The microstructural evolution starting from as-built (AB) and heat-treated (HT) samples to specimens with IF are examined. The microstructure of HT specimens has bimodal grain structure with d phase while the AB specimens display a very fine dendritic microstructure with the presence of carbides. Although they both have close values, machined specimens have a higher frequency of finer grains based on SEM images.\u0000\u0000\u0000Originality/value\u0000It was shown that the concurrent creation of the IF during AM can provide a final part with a preserved ultimate tensile strength and elongation but a decreased yield strength. The variation in UTS of AM-IF increases due to the surface roughness near the internal feature as compared to smooth internal surfaces in M-IF. Hence, the outcomes of this study are believed to be valuable for the industry in terms of determining the appropriate production strategy of parts with IF using AM and postprocessing processes.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"15 17","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138591430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1108/rpj-05-2023-0172
Zhe Du, Changjie Chen, Xinhou Wang
Purpose Stab-resistant body armor (SRBA) is used to protect the body from sharp knives. However, most SRBA materials currently have the disadvantages of large weight and thickness. This paper aims to prepare lightweight and high-performance SRBA by 3D printing truss structure and resin-filling method. Design/methodology/approach The stab resistance truss structure was prepared by the fused deposition modeling method, and the composite structure was formed after filling with resin for dynamic and quasi-static stab tests. The optimized structural plate can meet the standard GA68-2019. Digital image correlation technology was used to analyze the local strain changes during puncture. The puncture failure mode was summarized by the final failure morphologies. The explicit dynamics module in ANSYS Workbench was used to analyze the design of the overlapped structure stab resistance process in this paper. Findings The stab resistance performance of the 3D-printed structural plate is affected by the internal filling pattern. The stab resistance performance of 3D-printed structural parts was significantly improved after resin filling. The 50%-diamond-PLA-epoxy, with a thickness of only 5 mm was able to meet the stab resistance standard. Resins are used to increase the strength and hardness of the material but also to increase crack propagation and reduce the toughness of the material. The overlapping semicircular structure was inspired by the exoskeleton structure of the demon iron beetle, which improved the stab resistance between gaps. The truss structure can effectively disperse stress for toughening. The filled resin was reinforced by absorbing impact energy. Originality/value The 3D-printed resin-filled truss structure can be used to prepare high-performance stab resistance structural plates, which balance the toughness and strength of the overall structure and ultimately reduce the thickness and weight of the SRBA.
{"title":"Study on the mechanism and performance of 3D-printed PLA/epoxy composite for stab resistance","authors":"Zhe Du, Changjie Chen, Xinhou Wang","doi":"10.1108/rpj-05-2023-0172","DOIUrl":"https://doi.org/10.1108/rpj-05-2023-0172","url":null,"abstract":"\u0000Purpose\u0000Stab-resistant body armor (SRBA) is used to protect the body from sharp knives. However, most SRBA materials currently have the disadvantages of large weight and thickness. This paper aims to prepare lightweight and high-performance SRBA by 3D printing truss structure and resin-filling method.\u0000\u0000\u0000Design/methodology/approach\u0000The stab resistance truss structure was prepared by the fused deposition modeling method, and the composite structure was formed after filling with resin for dynamic and quasi-static stab tests. The optimized structural plate can meet the standard GA68-2019. Digital image correlation technology was used to analyze the local strain changes during puncture. The puncture failure mode was summarized by the final failure morphologies. The explicit dynamics module in ANSYS Workbench was used to analyze the design of the overlapped structure stab resistance process in this paper.\u0000\u0000\u0000Findings\u0000The stab resistance performance of the 3D-printed structural plate is affected by the internal filling pattern. The stab resistance performance of 3D-printed structural parts was significantly improved after resin filling. The 50%-diamond-PLA-epoxy, with a thickness of only 5 mm was able to meet the stab resistance standard. Resins are used to increase the strength and hardness of the material but also to increase crack propagation and reduce the toughness of the material. The overlapping semicircular structure was inspired by the exoskeleton structure of the demon iron beetle, which improved the stab resistance between gaps. The truss structure can effectively disperse stress for toughening. The filled resin was reinforced by absorbing impact energy.\u0000\u0000\u0000Originality/value\u0000The 3D-printed resin-filled truss structure can be used to prepare high-performance stab resistance structural plates, which balance the toughness and strength of the overall structure and ultimately reduce the thickness and weight of the SRBA.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"42 8","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138626426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1108/rpj-07-2023-0243
Francois Du Rand, André Francois van der Merwe, Malan van Tonder
Purpose This paper aims to discuss the development of a defect classification system that can be used to detect and classify powder bed surface defects from captured layer images without the need for specialised computational hardware. The idea is to develop this system by making use of more traditional machine learning (ML) models instead of using computationally intensive deep learning (DL) models. Design/methodology/approach The approach that is used by this study is to use traditional image processing and classification techniques that can be applied to captured layer images to detect and classify defects without the need for DL algorithms. Findings The study proved that a defect classification algorithm could be developed by making use of traditional ML models with a high degree of accuracy and the images could be processed at higher speeds than typically reported in literature when making use of DL models. Originality/value This paper addresses a need that has been identified for a high-speed defect classification algorithm that can detect and classify defects without the need for specialised hardware that is typically used when making use of DL technologies. This is because when developing closed-loop feedback systems for these additive manufacturing machines, it is important to detect and classify defects without inducing additional delays to the control system.
{"title":"Powder bed defect classification methods: deep learning vs traditional machine learning","authors":"Francois Du Rand, André Francois van der Merwe, Malan van Tonder","doi":"10.1108/rpj-07-2023-0243","DOIUrl":"https://doi.org/10.1108/rpj-07-2023-0243","url":null,"abstract":"\u0000Purpose\u0000This paper aims to discuss the development of a defect classification system that can be used to detect and classify powder bed surface defects from captured layer images without the need for specialised computational hardware. The idea is to develop this system by making use of more traditional machine learning (ML) models instead of using computationally intensive deep learning (DL) models.\u0000\u0000\u0000Design/methodology/approach\u0000The approach that is used by this study is to use traditional image processing and classification techniques that can be applied to captured layer images to detect and classify defects without the need for DL algorithms.\u0000\u0000\u0000Findings\u0000The study proved that a defect classification algorithm could be developed by making use of traditional ML models with a high degree of accuracy and the images could be processed at higher speeds than typically reported in literature when making use of DL models.\u0000\u0000\u0000Originality/value\u0000This paper addresses a need that has been identified for a high-speed defect classification algorithm that can detect and classify defects without the need for specialised hardware that is typically used when making use of DL technologies. This is because when developing closed-loop feedback systems for these additive manufacturing machines, it is important to detect and classify defects without inducing additional delays to the control system.\u0000","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"119 30","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138609490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}