Emily J Booth, Chris J Brauer, Jonathan Sandoval-Castillo, Katherine Harrisson, Meaghan L Rourke, Catherine R M Attard, Dean M Gilligan, Zeb Tonkin, Jason D Thiem, Peter J Unmack, Brenton Zampatti, Luciano B Beheregaray
Genomic vulnerability is a measure of how much evolutionary change is required for a population to maintain optimal genotype-environment associations under projected climates. Aquatic species, and in particular migratory ectotherms, are largely underrepresented in studies of genomic vulnerability. Such species might be well equipped for tracking suitable habitat and spreading diversity that could promote adaptation to future climates. We characterised range-wide genomic diversity and genomic vulnerability in the migratory and fisheries-important golden perch (Macquaria ambigua) from Australia's expansive Murray-Darling Basin (MDB). The MDB has a steep hydroclimatic gradient and is one of the world's most variable regions in terms of climate and streamflow. Golden perch are threatened by fragmentation and obstruction of waterways, alteration of flow regimes, and a progressively hotter and drying climate. We gathered a genomic dataset of 1049 individuals from 186 MDB localities. Despite high range-wide gene flow, golden perch in the warmer, northern catchments had higher predicted vulnerability than those in the cooler, southern catchments. A new cross-validation approach showed that these predictions were insensitive to the exclusion of individual catchments. The results raise concern for populations at warm range edges, which may already be close to their thermal limits. However, a population with functional variants beneficial for climate adaptation found in the most arid and hydrologically variable catchment was predicted to be less vulnerable. Native fish management plans, such as captive breeding and stocking, should consider spatial variation in genomic vulnerability to improve conservation outcomes under climate change, even for dispersive species with high connectivity.
{"title":"Genomic Vulnerability to Climate Change of an Australian Migratory Freshwater Fish, the Golden Perch (Macquaria ambigua).","authors":"Emily J Booth, Chris J Brauer, Jonathan Sandoval-Castillo, Katherine Harrisson, Meaghan L Rourke, Catherine R M Attard, Dean M Gilligan, Zeb Tonkin, Jason D Thiem, Peter J Unmack, Brenton Zampatti, Luciano B Beheregaray","doi":"10.1111/mec.17570","DOIUrl":"https://doi.org/10.1111/mec.17570","url":null,"abstract":"<p><p>Genomic vulnerability is a measure of how much evolutionary change is required for a population to maintain optimal genotype-environment associations under projected climates. Aquatic species, and in particular migratory ectotherms, are largely underrepresented in studies of genomic vulnerability. Such species might be well equipped for tracking suitable habitat and spreading diversity that could promote adaptation to future climates. We characterised range-wide genomic diversity and genomic vulnerability in the migratory and fisheries-important golden perch (Macquaria ambigua) from Australia's expansive Murray-Darling Basin (MDB). The MDB has a steep hydroclimatic gradient and is one of the world's most variable regions in terms of climate and streamflow. Golden perch are threatened by fragmentation and obstruction of waterways, alteration of flow regimes, and a progressively hotter and drying climate. We gathered a genomic dataset of 1049 individuals from 186 MDB localities. Despite high range-wide gene flow, golden perch in the warmer, northern catchments had higher predicted vulnerability than those in the cooler, southern catchments. A new cross-validation approach showed that these predictions were insensitive to the exclusion of individual catchments. The results raise concern for populations at warm range edges, which may already be close to their thermal limits. However, a population with functional variants beneficial for climate adaptation found in the most arid and hydrologically variable catchment was predicted to be less vulnerable. Native fish management plans, such as captive breeding and stocking, should consider spatial variation in genomic vulnerability to improve conservation outcomes under climate change, even for dispersive species with high connectivity.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17570"},"PeriodicalIF":4.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter A Moran, Thomas J Colgan, Karl P Phillips, Jamie Coughlan, Philip McGinnity, Thomas E Reed
Migration in animals and associated adaptations to contrasting environments are underpinned by complex genetic architecture. Here, we explore the genomic basis of facultative anadromy in brown trout (Salmo trutta), wherein some individuals migrate to sea while others remain resident in natal rivers, to better understand how alternative migratory tactics (AMTs) are maintained evolutionarily. To identify genomic variants associated with AMTs, we sequenced whole genomes for 194 individual trout from five anadromous-resident population pairs, situated above and below waterfalls, in five different Irish rivers. These waterfalls act as natural barriers to upstream migration and hence we predicted that loci underpinning AMTs should be under similar divergent selection across these replicate pairs. A sliding windows based analysis revealed a highly polygenic adaptive divergence between anadromous and resident populations, encompassing 329 differentiated genomic regions. These regions were associated with 292 genes involved in various processes crucial for AMTs, including energy homeostasis, reproduction, osmoregulation, immunity, circadian rhythm and neural function. Furthermore, examining patterns of diversity we were able to link specific genes and biological processes to putative AMT trait classes: migratory-propensity, migratory-lifestyle and residency. Importantly, AMT outlier regions possessed higher genetic diversity than the background genome, particularly in the anadromous group, suggesting balancing selection may play a role in maintaining genetic variation. Overall, the results from this study provide important insights into the genetic architecture of migration and the evolutionary mechanisms shaping genomic diversity within and across populations.
动物的洄游以及对不同环境的相关适应性是由复杂的遗传结构支撑的。在这里,我们探索了褐鳟(Salmo trutta)的溯河洄游基因组学基础,即一些个体洄游到海洋,而另一些个体则留在出生地的河流中,从而更好地了解替代性洄游策略(AMTs)是如何在进化过程中得以维持的。为了确定与AMTs相关的基因组变异,我们对来自爱尔兰五条不同河流中瀑布上方和下方的五个溯河而居种群对的194条鳟鱼个体进行了全基因组测序。这些瀑布是鳟鱼向上游迁徙的天然屏障,因此我们预测,在这些重复的鳟鱼种群对中,支撑AMT的基因位点应该受到类似的分化选择。基于滑动窗口的分析表明,溯河洄游种群和常住种群之间存在高度多基因适应性差异,包括 329 个差异基因组区域。这些区域与 292 个基因有关,这些基因参与了对溯河生态系统至关重要的各种过程,包括能量平衡、繁殖、渗透调节、免疫、昼夜节律和神经功能。此外,通过研究多样性模式,我们能够将特定基因和生物过程与推定的 AMT 特征类别联系起来:迁徙倾向、迁徙生活方式和居住地。重要的是,AMT离群区域的遗传多样性高于背景基因组,尤其是在溯河群中,这表明平衡选择可能在维持遗传变异方面发挥了作用。总之,这项研究的结果为我们了解迁徙的遗传结构以及形成种群内和种群间基因组多样性的进化机制提供了重要的启示。
{"title":"Whole-Genome Resequencing Reveals Polygenic Signatures of Directional and Balancing Selection on Alternative Migratory Life Histories.","authors":"Peter A Moran, Thomas J Colgan, Karl P Phillips, Jamie Coughlan, Philip McGinnity, Thomas E Reed","doi":"10.1111/mec.17538","DOIUrl":"https://doi.org/10.1111/mec.17538","url":null,"abstract":"<p><p>Migration in animals and associated adaptations to contrasting environments are underpinned by complex genetic architecture. Here, we explore the genomic basis of facultative anadromy in brown trout (Salmo trutta), wherein some individuals migrate to sea while others remain resident in natal rivers, to better understand how alternative migratory tactics (AMTs) are maintained evolutionarily. To identify genomic variants associated with AMTs, we sequenced whole genomes for 194 individual trout from five anadromous-resident population pairs, situated above and below waterfalls, in five different Irish rivers. These waterfalls act as natural barriers to upstream migration and hence we predicted that loci underpinning AMTs should be under similar divergent selection across these replicate pairs. A sliding windows based analysis revealed a highly polygenic adaptive divergence between anadromous and resident populations, encompassing 329 differentiated genomic regions. These regions were associated with 292 genes involved in various processes crucial for AMTs, including energy homeostasis, reproduction, osmoregulation, immunity, circadian rhythm and neural function. Furthermore, examining patterns of diversity we were able to link specific genes and biological processes to putative AMT trait classes: migratory-propensity, migratory-lifestyle and residency. Importantly, AMT outlier regions possessed higher genetic diversity than the background genome, particularly in the anadromous group, suggesting balancing selection may play a role in maintaining genetic variation. Overall, the results from this study provide important insights into the genetic architecture of migration and the evolutionary mechanisms shaping genomic diversity within and across populations.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17538"},"PeriodicalIF":4.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alison McAfee, Baptiste Martinet, Kimberly Przybyla, Félicien Degueldre, Shelley E Hoover, Serge Aron, Leonard J Foster
Hymenopteran queens are collectively highly fecund, often long-lived individuals that undergo dramatic physiological changes after they mate and establish a nest. However, the degree to which these changes are conserved among species with different life histories is not well-defined. We conducted a comparative proteomic study investigating differences between reproductive stages (virgin, mated and established queens) of Apis mellifera, Bombus impatiens, B. terrestris and Lasius niger. We analysed haemolymph for all species except L. niger, for which a whole-body analysis was performed due to the small size of these queens. We identified conserved upregulation of proteins involved in anatomical and system development as queens transition to establishing a nest in all species except B. terrestris. We also identified conserved patterns of vitellogenin, vitellogenin receptor and immune-responsive protein (IRP)30, all of which are proteins typically associated with oviposition. However, expression patterns of other immune proteins, heat-shock proteins (HSPs), detoxification enzymes and antioxidant enzymes were more dissimilar, with some species exhibiting similar trends and co-occurrence through reproductive stages, while others exhibited variable or opposite patterns. These conserved and unique profiles likely in part reflect similarities and differences in selective pressure on reproductive stages of each species and may indicate differing abilities to respond to emergent pathogens or environmental change.
{"title":"Conserved and Unique Protein Expression Patterns Across Reproductive Stage Transitions in Social Hymenopteran Queens.","authors":"Alison McAfee, Baptiste Martinet, Kimberly Przybyla, Félicien Degueldre, Shelley E Hoover, Serge Aron, Leonard J Foster","doi":"10.1111/mec.17568","DOIUrl":"https://doi.org/10.1111/mec.17568","url":null,"abstract":"<p><p>Hymenopteran queens are collectively highly fecund, often long-lived individuals that undergo dramatic physiological changes after they mate and establish a nest. However, the degree to which these changes are conserved among species with different life histories is not well-defined. We conducted a comparative proteomic study investigating differences between reproductive stages (virgin, mated and established queens) of Apis mellifera, Bombus impatiens, B. terrestris and Lasius niger. We analysed haemolymph for all species except L. niger, for which a whole-body analysis was performed due to the small size of these queens. We identified conserved upregulation of proteins involved in anatomical and system development as queens transition to establishing a nest in all species except B. terrestris. We also identified conserved patterns of vitellogenin, vitellogenin receptor and immune-responsive protein (IRP)30, all of which are proteins typically associated with oviposition. However, expression patterns of other immune proteins, heat-shock proteins (HSPs), detoxification enzymes and antioxidant enzymes were more dissimilar, with some species exhibiting similar trends and co-occurrence through reproductive stages, while others exhibited variable or opposite patterns. These conserved and unique profiles likely in part reflect similarities and differences in selective pressure on reproductive stages of each species and may indicate differing abilities to respond to emergent pathogens or environmental change.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17568"},"PeriodicalIF":4.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter T Euclide, Heiner Kuhl, Chris C Wilson, Kim T Scribner, Loren M Miller, Wendylee Stott, Wesley A Larson
Artificial propagation and wild release may influence the genetic integrity of wild populations. This practice has been prevalent in fisheries for centuries and is often termed 'stocking'. In the Laurentian Great Lakes (Great Lakes here-on), walleye populations faced declines from the 1950s to the 1970s, prompting extensive stocking efforts for restoration. By the mid-2010s, walleye populations showed signs of recovery, but the genetic legacy of stocking on population structure at the genomic level remains unclear. Using a dataset of 45,600 genome-aligned SNP loci genotyped in 1075 walleye individuals, we investigated the genetic impacts of over 50 years of stocking across the Great Lakes. Population structure was associated with both natural geographic barriers and stocking from non-native sources. Admixture between Lake Erie walleye and walleye from the re-populated Tittabawassee River indicate that stocking may have re-distributed putatively adaptive alleles around the Great Lakes. Genome scans identified FST outliers and evidence of selective sweeps, indicating local adaptation of spawning populations is likely. Notably, one genomic region showed strong differentiation between Muskegon River and walleye from the Tittabawassee River, which was re-populated by Muskegon strain walleye, suggesting admixture and selection both impact the observed genetic diversity. Overall, our study underscores how artificial propagation and translocations can significantly alter the evolutionary trajectory of populations. The findings highlight the complex interplay between stocking practices and population genetic diversity, emphasising the need for careful management strategies to preserve the genetic integrity of wild populations amidst conservation efforts.
{"title":"Human Impacts on Great Lakes Walleye Sander vitreus Structure, Diversity and Local Adaptation.","authors":"Peter T Euclide, Heiner Kuhl, Chris C Wilson, Kim T Scribner, Loren M Miller, Wendylee Stott, Wesley A Larson","doi":"10.1111/mec.17558","DOIUrl":"https://doi.org/10.1111/mec.17558","url":null,"abstract":"<p><p>Artificial propagation and wild release may influence the genetic integrity of wild populations. This practice has been prevalent in fisheries for centuries and is often termed 'stocking'. In the Laurentian Great Lakes (Great Lakes here-on), walleye populations faced declines from the 1950s to the 1970s, prompting extensive stocking efforts for restoration. By the mid-2010s, walleye populations showed signs of recovery, but the genetic legacy of stocking on population structure at the genomic level remains unclear. Using a dataset of 45,600 genome-aligned SNP loci genotyped in 1075 walleye individuals, we investigated the genetic impacts of over 50 years of stocking across the Great Lakes. Population structure was associated with both natural geographic barriers and stocking from non-native sources. Admixture between Lake Erie walleye and walleye from the re-populated Tittabawassee River indicate that stocking may have re-distributed putatively adaptive alleles around the Great Lakes. Genome scans identified F<sub>ST</sub> outliers and evidence of selective sweeps, indicating local adaptation of spawning populations is likely. Notably, one genomic region showed strong differentiation between Muskegon River and walleye from the Tittabawassee River, which was re-populated by Muskegon strain walleye, suggesting admixture and selection both impact the observed genetic diversity. Overall, our study underscores how artificial propagation and translocations can significantly alter the evolutionary trajectory of populations. The findings highlight the complex interplay between stocking practices and population genetic diversity, emphasising the need for careful management strategies to preserve the genetic integrity of wild populations amidst conservation efforts.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17558"},"PeriodicalIF":4.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suvratha Jayaprasad, Valentina Peona, Simon J Ellerstrand, Roberto Rossini, Ignas Bunikis, Olga V Pettersson, Remi-André Olsen, Carl-Johan Rubin, Elisabet Einarsdottir, Franziska Bonath, Tessa M Bradford, Steven J B Cooper, Bengt Hansson, Alexander Suh, Takeshi Kawakami, Holger Schielzeth, Octavio M Palacios-Gimenez
The early evolution of sex chromosomes has remained obscure for more than a century. The Vandiemenella viatica species group of morabine grasshoppers is highly suited for studying the early stages of sex chromosome divergence and degeneration of the Y chromosome. This stems from the fact that neo-XY sex chromosomes have independently evolved multiple times by X-autosome fusions with different autosomes. Here, we generated new chromosome-level assemblies for two chromosomal races representing karyotypes with and without neo-sex chromosomes (P24XY and P24X0), and sequence data of a third chromosomal race with a different neo-XY chromosome system (P25XY). Interestingly, these two neo-XY chromosomal races are formed by different X-autosome fusions (involving chr1 and chrB, respectively), and we found that both neo-Y chromosomes have partly ceased to recombine with their neo-X counterpart. We show that the neo-XY chromosomes have diverged through accumulation of SNPs and structural mutations, and that many neo-Y-linked genes have degenerated since recombination ceased. However, the non-recombining regions of neo-Y chromosomes host non-degenerated genes crucial for sex determination, such as sex-lethal and transformer, alongside genes associated with spermatogenesis, fertility, and reproduction, illustrating their integrative role as a masculinizing supergene. Contrary to expectations, the neo-Y chromosomes showed (slightly) lower density of transposable elements (TEs) compared to other genomic regions. The study reveals the unique dynamics of young sex chromosomes, with evolution of recombination suppression and pronounced decay of (some) neo-sex chromosome genes, and provides a compelling case illustrating how chromosomal fusions and post-fusion mutational processes contribute to the evolution of supergenes.
一个多世纪以来,性染色体的早期进化一直模糊不清。摩拉宾蚱蜢的 Vandiemenella viatica 物种群非常适合研究性染色体分化和 Y 染色体退化的早期阶段。这是因为新XY性染色体是通过X-常染色体与不同的常染色体融合而独立进化多次的。在这里,我们生成了代表具有和不具有新性染色体核型的两个染色体种族(P24XY 和 P24X0)的新染色体组,以及具有不同新 XY 染色体系统的第三个染色体种族(P25XY)的序列数据。有趣的是,这两个新 XY 染色体种族是由不同的 X 自体融合(分别涉及 chr1 和 chrB)形成的,而且我们发现这两个新 Y 染色体都部分停止了与新 X 染色体的重组。我们发现,新 XY 染色体通过 SNPs 和结构突变的积累而发生了分化,许多新 Y 连锁基因在重组停止后发生了退化。然而,新-Y 染色体的非重组区域除了与精子发生、生育和繁殖相关的基因外,还含有对性别决定至关重要的未退化基因,如性致死基因和转化基因,这说明了它们作为男性化超级基因的整合作用。与预期相反,与其他基因组区域相比,新Y染色体上转座元件(TE)的密度(略低)。这项研究揭示了年轻性染色体的独特动态,即重组抑制的进化和(某些)新性染色体基因的明显衰变,并提供了一个令人信服的案例,说明染色体融合和融合后突变过程如何促进超级基因的进化。
{"title":"Orthopteran Neo-Sex Chromosomes Reveal Dynamics of Recombination Suppression and Evolution of Supergenes.","authors":"Suvratha Jayaprasad, Valentina Peona, Simon J Ellerstrand, Roberto Rossini, Ignas Bunikis, Olga V Pettersson, Remi-André Olsen, Carl-Johan Rubin, Elisabet Einarsdottir, Franziska Bonath, Tessa M Bradford, Steven J B Cooper, Bengt Hansson, Alexander Suh, Takeshi Kawakami, Holger Schielzeth, Octavio M Palacios-Gimenez","doi":"10.1111/mec.17567","DOIUrl":"https://doi.org/10.1111/mec.17567","url":null,"abstract":"<p><p>The early evolution of sex chromosomes has remained obscure for more than a century. The Vandiemenella viatica species group of morabine grasshoppers is highly suited for studying the early stages of sex chromosome divergence and degeneration of the Y chromosome. This stems from the fact that neo-XY sex chromosomes have independently evolved multiple times by X-autosome fusions with different autosomes. Here, we generated new chromosome-level assemblies for two chromosomal races representing karyotypes with and without neo-sex chromosomes (P24XY and P24X0), and sequence data of a third chromosomal race with a different neo-XY chromosome system (P25XY). Interestingly, these two neo-XY chromosomal races are formed by different X-autosome fusions (involving chr1 and chrB, respectively), and we found that both neo-Y chromosomes have partly ceased to recombine with their neo-X counterpart. We show that the neo-XY chromosomes have diverged through accumulation of SNPs and structural mutations, and that many neo-Y-linked genes have degenerated since recombination ceased. However, the non-recombining regions of neo-Y chromosomes host non-degenerated genes crucial for sex determination, such as sex-lethal and transformer, alongside genes associated with spermatogenesis, fertility, and reproduction, illustrating their integrative role as a masculinizing supergene. Contrary to expectations, the neo-Y chromosomes showed (slightly) lower density of transposable elements (TEs) compared to other genomic regions. The study reveals the unique dynamics of young sex chromosomes, with evolution of recombination suppression and pronounced decay of (some) neo-sex chromosome genes, and provides a compelling case illustrating how chromosomal fusions and post-fusion mutational processes contribute to the evolution of supergenes.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17567"},"PeriodicalIF":4.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Sun, Emily Louisa Cavill, Ashot Margaryan, Jianqing Lin, Søren Thingaard, Tamrini A Said, Shyam Gopalakrishnan, M Thomas P Gilbert
The recently extirpated Zanzibar leopard was the only known African leopard (Panthera pardus spp.) population restricted exclusively to a major island habitat. Although its demise was driven through habitat change and conflict with humans, given its role as a keystone species for the Zanzibar Archipelago, its successful potential reintroduction might offer a means for helping preserve the natural biodiversity of its former habitat. Whether this is feasible, however, would be contingent on both whether closely related source populations can be identified on mainland Africa, and whether the Zanzibar form exhibited any special adaptations that might need to be considered when choosing such a source. In light of these questions, we genomically profiled two of the six known historic specimens, to explore whether they represent a realistic candidate for de-extirpation through reintroduction. Our analyses indicate that despite its geographical separation, the Zanzibar leopard shared a close genetic relationship with mainland East African individuals. Furthermore, although its uniqueness as an island population was emphasised by genomic signatures of high inbreeding and increased mutation load, the latter similar to the level of the critically endangered Amur leopard (P. p. orientalis), we find no evidence of functionally significant genetic diversity unique to Zanzibar. We therefore conclude that should attempts to restore leopards to Zanzibar be considered, then mainland East African leopards would provide a suitable gene pool.
最近灭绝的桑给巴尔豹是已知的非洲豹(Panthera pardus spp.)种群中唯一仅局限于一个主要岛屿栖息地的物种。虽然它的灭绝是由于栖息地的改变和与人类的冲突,但鉴于它是桑给巴尔群岛的关键物种,成功地重新引入它可能为帮助保护其前栖息地的自然生物多样性提供了一种手段。然而,这是否可行,将取决于能否在非洲大陆找到密切相关的来源种群,以及桑给巴尔种是否表现出任何特殊的适应性,在选择来源地时可能需要考虑这些因素。鉴于这些问题,我们对已知的六个历史标本中的两个进行了基因组分析,以探讨它们是否是通过重新引入来实现去外来化的现实候选物种。我们的分析表明,尽管桑给巴尔豹与东非大陆的个体在地理上相隔遥远,但它们之间却有着密切的遗传关系。此外,尽管近亲繁殖和变异负荷增加的基因组特征(后者与极度濒危的阿穆尔豹(P. p. orientalis)的水平相似)强调了桑给巴尔豹作为一个岛屿种群的独特性,但我们并没有发现桑给巴尔豹独有的具有重要功能的遗传多样性的证据。因此,我们得出结论,如果考虑在桑给巴尔恢复豹,那么东非大陆的豹将提供一个合适的基因库。
{"title":"A Genomic Exploration of the Possible De-Extirpation of the Zanzibar Leopard.","authors":"Xin Sun, Emily Louisa Cavill, Ashot Margaryan, Jianqing Lin, Søren Thingaard, Tamrini A Said, Shyam Gopalakrishnan, M Thomas P Gilbert","doi":"10.1111/mec.17566","DOIUrl":"https://doi.org/10.1111/mec.17566","url":null,"abstract":"<p><p>The recently extirpated Zanzibar leopard was the only known African leopard (Panthera pardus spp.) population restricted exclusively to a major island habitat. Although its demise was driven through habitat change and conflict with humans, given its role as a keystone species for the Zanzibar Archipelago, its successful potential reintroduction might offer a means for helping preserve the natural biodiversity of its former habitat. Whether this is feasible, however, would be contingent on both whether closely related source populations can be identified on mainland Africa, and whether the Zanzibar form exhibited any special adaptations that might need to be considered when choosing such a source. In light of these questions, we genomically profiled two of the six known historic specimens, to explore whether they represent a realistic candidate for de-extirpation through reintroduction. Our analyses indicate that despite its geographical separation, the Zanzibar leopard shared a close genetic relationship with mainland East African individuals. Furthermore, although its uniqueness as an island population was emphasised by genomic signatures of high inbreeding and increased mutation load, the latter similar to the level of the critically endangered Amur leopard (P. p. orientalis), we find no evidence of functionally significant genetic diversity unique to Zanzibar. We therefore conclude that should attempts to restore leopards to Zanzibar be considered, then mainland East African leopards would provide a suitable gene pool.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17566"},"PeriodicalIF":4.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erik E Sotka, A Randall Hughes, Torrance C Hanley, Cynthia G Hays
Species conservation and management benefit from precise understanding of natural patterns of dispersal and genetic variation. Using recent advances in indirect genetic methods applied to both adult plants and dispersed seeds, we find that the mean seed dispersal in a threatened marine foundation plant (the eelgrass Zostera marina) is approximately 100-200 m. This distance is surprisingly more similar to that of wind-dispersed terrestrial seeds (~10s to 100s of meters) than the passive dispersal of marine propagules via currents (~10s to 100s of kilometres). Because nearshore marine plants like Zostera are commonly distributed across strong selective gradients driven by bathymetry (depth) even within these restricted spatial scales, seeds are capable of dispersing to novel water depths and experiencing profound shifts in light availability, temperature and wave exposure. We documented strong phenotypic variation and genome-wide differentiation among plants separated by approximately the spatial scale of mean realised dispersal. This result suggests genetic isolation by environment in response to depth-related environmental gradients as one plausible explanation for this pattern. The ratio of effective to census size (or Ne/Nc) approximated 0.1%, indicating that a fraction of existing plants provides the genetic variation to allow adaptation to environmental change. Our results suggest that successful conservation of seagrass meadows that can adapt to microspatial and temporal variation in environmental conditions will be low without direct and persistent intervention using large numbers of individuals or a targeted selection of genotypes.
{"title":"Restricted Dispersal and Phenotypic Response to Water Depth in a Foundation Seagrass.","authors":"Erik E Sotka, A Randall Hughes, Torrance C Hanley, Cynthia G Hays","doi":"10.1111/mec.17565","DOIUrl":"https://doi.org/10.1111/mec.17565","url":null,"abstract":"<p><p>Species conservation and management benefit from precise understanding of natural patterns of dispersal and genetic variation. Using recent advances in indirect genetic methods applied to both adult plants and dispersed seeds, we find that the mean seed dispersal in a threatened marine foundation plant (the eelgrass Zostera marina) is approximately 100-200 m. This distance is surprisingly more similar to that of wind-dispersed terrestrial seeds (~10s to 100s of meters) than the passive dispersal of marine propagules via currents (~10s to 100s of kilometres). Because nearshore marine plants like Zostera are commonly distributed across strong selective gradients driven by bathymetry (depth) even within these restricted spatial scales, seeds are capable of dispersing to novel water depths and experiencing profound shifts in light availability, temperature and wave exposure. We documented strong phenotypic variation and genome-wide differentiation among plants separated by approximately the spatial scale of mean realised dispersal. This result suggests genetic isolation by environment in response to depth-related environmental gradients as one plausible explanation for this pattern. The ratio of effective to census size (or Ne/Nc) approximated 0.1%, indicating that a fraction of existing plants provides the genetic variation to allow adaptation to environmental change. Our results suggest that successful conservation of seagrass meadows that can adapt to microspatial and temporal variation in environmental conditions will be low without direct and persistent intervention using large numbers of individuals or a targeted selection of genotypes.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17565"},"PeriodicalIF":4.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marek Šlenker, Adam Kantor, Dušan Senko, Lenka Mártonfiová, Gabriela Šrámková, Veronika Cetlová, Ali A. Dönmez, Sırrı Yüzbaşıoğlu, Judita Zozomová-Lihová