首页 > 最新文献

Molecular Ecology最新文献

英文 中文
Genomic Vulnerability to Climate Change of an Australian Migratory Freshwater Fish, the Golden Perch (Macquaria ambigua). 澳大利亚洄游淡水鱼金鲈(Macquaria ambigua)基因组对气候变化的脆弱性。
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-04 DOI: 10.1111/mec.17570
Emily J Booth, Chris J Brauer, Jonathan Sandoval-Castillo, Katherine Harrisson, Meaghan L Rourke, Catherine R M Attard, Dean M Gilligan, Zeb Tonkin, Jason D Thiem, Peter J Unmack, Brenton Zampatti, Luciano B Beheregaray

Genomic vulnerability is a measure of how much evolutionary change is required for a population to maintain optimal genotype-environment associations under projected climates. Aquatic species, and in particular migratory ectotherms, are largely underrepresented in studies of genomic vulnerability. Such species might be well equipped for tracking suitable habitat and spreading diversity that could promote adaptation to future climates. We characterised range-wide genomic diversity and genomic vulnerability in the migratory and fisheries-important golden perch (Macquaria ambigua) from Australia's expansive Murray-Darling Basin (MDB). The MDB has a steep hydroclimatic gradient and is one of the world's most variable regions in terms of climate and streamflow. Golden perch are threatened by fragmentation and obstruction of waterways, alteration of flow regimes, and a progressively hotter and drying climate. We gathered a genomic dataset of 1049 individuals from 186 MDB localities. Despite high range-wide gene flow, golden perch in the warmer, northern catchments had higher predicted vulnerability than those in the cooler, southern catchments. A new cross-validation approach showed that these predictions were insensitive to the exclusion of individual catchments. The results raise concern for populations at warm range edges, which may already be close to their thermal limits. However, a population with functional variants beneficial for climate adaptation found in the most arid and hydrologically variable catchment was predicted to be less vulnerable. Native fish management plans, such as captive breeding and stocking, should consider spatial variation in genomic vulnerability to improve conservation outcomes under climate change, even for dispersive species with high connectivity.

基因组脆弱性是衡量一个种群在预测的气候条件下维持最佳基因型-环境关联所需的进化变化程度。水生物种,尤其是洄游外温动物,在基因组脆弱性的研究中大多代表性不足。这类物种可能具备追踪合适栖息地和传播多样性的良好条件,从而促进对未来气候的适应。我们研究了澳大利亚广阔的墨累-达令盆地(MDB)中具有重要洄游和渔业价值的金鲈鱼(Macquaria ambigua)的全域基因组多样性和基因组脆弱性。墨累达令盆地的水文气候梯度陡峭,是世界上气候和溪流变化最大的地区之一。水道的分割和阻塞、水流机制的改变以及逐渐变热和变干的气候使金鲈受到威胁。我们从 186 个 MDB 地点收集了 1049 个个体的基因组数据集。尽管在整个分布区范围内基因流动频繁,但较温暖的北部集水区的金鲈比较凉爽的南部集水区的金鲈具有更高的预测脆弱性。一种新的交叉验证方法表明,这些预测对排除个别流域并不敏感。这些结果引起了人们对暖区边缘种群的关注,因为这些种群可能已经接近其热极限。不过,据预测,在最干旱、水文变化最大的集水区发现的具有有利于适应气候的功能变异的种群的脆弱性较低。本土鱼类管理计划,如人工繁殖和放养,应考虑基因组脆弱性的空间差异,以改善气候变化下的保护结果,即使是对于具有高度连通性的分散物种也是如此。
{"title":"Genomic Vulnerability to Climate Change of an Australian Migratory Freshwater Fish, the Golden Perch (Macquaria ambigua).","authors":"Emily J Booth, Chris J Brauer, Jonathan Sandoval-Castillo, Katherine Harrisson, Meaghan L Rourke, Catherine R M Attard, Dean M Gilligan, Zeb Tonkin, Jason D Thiem, Peter J Unmack, Brenton Zampatti, Luciano B Beheregaray","doi":"10.1111/mec.17570","DOIUrl":"https://doi.org/10.1111/mec.17570","url":null,"abstract":"<p><p>Genomic vulnerability is a measure of how much evolutionary change is required for a population to maintain optimal genotype-environment associations under projected climates. Aquatic species, and in particular migratory ectotherms, are largely underrepresented in studies of genomic vulnerability. Such species might be well equipped for tracking suitable habitat and spreading diversity that could promote adaptation to future climates. We characterised range-wide genomic diversity and genomic vulnerability in the migratory and fisheries-important golden perch (Macquaria ambigua) from Australia's expansive Murray-Darling Basin (MDB). The MDB has a steep hydroclimatic gradient and is one of the world's most variable regions in terms of climate and streamflow. Golden perch are threatened by fragmentation and obstruction of waterways, alteration of flow regimes, and a progressively hotter and drying climate. We gathered a genomic dataset of 1049 individuals from 186 MDB localities. Despite high range-wide gene flow, golden perch in the warmer, northern catchments had higher predicted vulnerability than those in the cooler, southern catchments. A new cross-validation approach showed that these predictions were insensitive to the exclusion of individual catchments. The results raise concern for populations at warm range edges, which may already be close to their thermal limits. However, a population with functional variants beneficial for climate adaptation found in the most arid and hydrologically variable catchment was predicted to be less vulnerable. Native fish management plans, such as captive breeding and stocking, should consider spatial variation in genomic vulnerability to improve conservation outcomes under climate change, even for dispersive species with high connectivity.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17570"},"PeriodicalIF":4.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole-Genome Resequencing Reveals Polygenic Signatures of Directional and Balancing Selection on Alternative Migratory Life Histories. 全基因组重测序揭示了另类迁徙生活史上定向和平衡选择的多基因特征。
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-04 DOI: 10.1111/mec.17538
Peter A Moran, Thomas J Colgan, Karl P Phillips, Jamie Coughlan, Philip McGinnity, Thomas E Reed

Migration in animals and associated adaptations to contrasting environments are underpinned by complex genetic architecture. Here, we explore the genomic basis of facultative anadromy in brown trout (Salmo trutta), wherein some individuals migrate to sea while others remain resident in natal rivers, to better understand how alternative migratory tactics (AMTs) are maintained evolutionarily. To identify genomic variants associated with AMTs, we sequenced whole genomes for 194 individual trout from five anadromous-resident population pairs, situated above and below waterfalls, in five different Irish rivers. These waterfalls act as natural barriers to upstream migration and hence we predicted that loci underpinning AMTs should be under similar divergent selection across these replicate pairs. A sliding windows based analysis revealed a highly polygenic adaptive divergence between anadromous and resident populations, encompassing 329 differentiated genomic regions. These regions were associated with 292 genes involved in various processes crucial for AMTs, including energy homeostasis, reproduction, osmoregulation, immunity, circadian rhythm and neural function. Furthermore, examining patterns of diversity we were able to link specific genes and biological processes to putative AMT trait classes: migratory-propensity, migratory-lifestyle and residency. Importantly, AMT outlier regions possessed higher genetic diversity than the background genome, particularly in the anadromous group, suggesting balancing selection may play a role in maintaining genetic variation. Overall, the results from this study provide important insights into the genetic architecture of migration and the evolutionary mechanisms shaping genomic diversity within and across populations.

动物的洄游以及对不同环境的相关适应性是由复杂的遗传结构支撑的。在这里,我们探索了褐鳟(Salmo trutta)的溯河洄游基因组学基础,即一些个体洄游到海洋,而另一些个体则留在出生地的河流中,从而更好地了解替代性洄游策略(AMTs)是如何在进化过程中得以维持的。为了确定与AMTs相关的基因组变异,我们对来自爱尔兰五条不同河流中瀑布上方和下方的五个溯河而居种群对的194条鳟鱼个体进行了全基因组测序。这些瀑布是鳟鱼向上游迁徙的天然屏障,因此我们预测,在这些重复的鳟鱼种群对中,支撑AMT的基因位点应该受到类似的分化选择。基于滑动窗口的分析表明,溯河洄游种群和常住种群之间存在高度多基因适应性差异,包括 329 个差异基因组区域。这些区域与 292 个基因有关,这些基因参与了对溯河生态系统至关重要的各种过程,包括能量平衡、繁殖、渗透调节、免疫、昼夜节律和神经功能。此外,通过研究多样性模式,我们能够将特定基因和生物过程与推定的 AMT 特征类别联系起来:迁徙倾向、迁徙生活方式和居住地。重要的是,AMT离群区域的遗传多样性高于背景基因组,尤其是在溯河群中,这表明平衡选择可能在维持遗传变异方面发挥了作用。总之,这项研究的结果为我们了解迁徙的遗传结构以及形成种群内和种群间基因组多样性的进化机制提供了重要的启示。
{"title":"Whole-Genome Resequencing Reveals Polygenic Signatures of Directional and Balancing Selection on Alternative Migratory Life Histories.","authors":"Peter A Moran, Thomas J Colgan, Karl P Phillips, Jamie Coughlan, Philip McGinnity, Thomas E Reed","doi":"10.1111/mec.17538","DOIUrl":"https://doi.org/10.1111/mec.17538","url":null,"abstract":"<p><p>Migration in animals and associated adaptations to contrasting environments are underpinned by complex genetic architecture. Here, we explore the genomic basis of facultative anadromy in brown trout (Salmo trutta), wherein some individuals migrate to sea while others remain resident in natal rivers, to better understand how alternative migratory tactics (AMTs) are maintained evolutionarily. To identify genomic variants associated with AMTs, we sequenced whole genomes for 194 individual trout from five anadromous-resident population pairs, situated above and below waterfalls, in five different Irish rivers. These waterfalls act as natural barriers to upstream migration and hence we predicted that loci underpinning AMTs should be under similar divergent selection across these replicate pairs. A sliding windows based analysis revealed a highly polygenic adaptive divergence between anadromous and resident populations, encompassing 329 differentiated genomic regions. These regions were associated with 292 genes involved in various processes crucial for AMTs, including energy homeostasis, reproduction, osmoregulation, immunity, circadian rhythm and neural function. Furthermore, examining patterns of diversity we were able to link specific genes and biological processes to putative AMT trait classes: migratory-propensity, migratory-lifestyle and residency. Importantly, AMT outlier regions possessed higher genetic diversity than the background genome, particularly in the anadromous group, suggesting balancing selection may play a role in maintaining genetic variation. Overall, the results from this study provide important insights into the genetic architecture of migration and the evolutionary mechanisms shaping genomic diversity within and across populations.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17538"},"PeriodicalIF":4.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conserved and Unique Protein Expression Patterns Across Reproductive Stage Transitions in Social Hymenopteran Queens. 社会性膜翅目昆虫在生殖阶段转换过程中的保守和独特蛋白质表达模式
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-03 DOI: 10.1111/mec.17568
Alison McAfee, Baptiste Martinet, Kimberly Przybyla, Félicien Degueldre, Shelley E Hoover, Serge Aron, Leonard J Foster

Hymenopteran queens are collectively highly fecund, often long-lived individuals that undergo dramatic physiological changes after they mate and establish a nest. However, the degree to which these changes are conserved among species with different life histories is not well-defined. We conducted a comparative proteomic study investigating differences between reproductive stages (virgin, mated and established queens) of Apis mellifera, Bombus impatiens, B. terrestris and Lasius niger. We analysed haemolymph for all species except L. niger, for which a whole-body analysis was performed due to the small size of these queens. We identified conserved upregulation of proteins involved in anatomical and system development as queens transition to establishing a nest in all species except B. terrestris. We also identified conserved patterns of vitellogenin, vitellogenin receptor and immune-responsive protein (IRP)30, all of which are proteins typically associated with oviposition. However, expression patterns of other immune proteins, heat-shock proteins (HSPs), detoxification enzymes and antioxidant enzymes were more dissimilar, with some species exhibiting similar trends and co-occurrence through reproductive stages, while others exhibited variable or opposite patterns. These conserved and unique profiles likely in part reflect similarities and differences in selective pressure on reproductive stages of each species and may indicate differing abilities to respond to emergent pathogens or environmental change.

膜翅目昆虫的蜂王是繁殖力很强的集体,通常寿命很长,在交配和筑巢后会发生巨大的生理变化。然而,这些变化在具有不同生活史的物种之间的保守程度并不明确。我们进行了一项比较蛋白质组学研究,调查了蜜蜂、无患子蜂、赤麻蜂和黑姬蜂生殖阶段(处子、交配后的蜂王和已建立巢穴的蜂王)之间的差异。我们对所有物种的血淋巴进行了分析,但黑蜂除外,由于这些蜂后体型较小,我们对其进行了全身分析。在所有物种中,我们都发现,在蜂王向筑巢过渡的过程中,涉及解剖学和系统发育的蛋白质上调是一致的。我们还发现了卵黄原蛋白、卵黄原蛋白受体和免疫反应蛋白(IRP)30的保守模式,所有这些蛋白通常都与产卵有关。然而,其他免疫蛋白、热休克蛋白(HSPs)、解毒酶和抗氧化酶的表达模式则大相径庭,一些物种在整个生殖阶段表现出相似的趋势和共存性,而另一些物种则表现出不同或相反的模式。这些一致和独特的特征可能在一定程度上反映了每个物种生殖阶段所受选择性压力的异同,也可能表明它们应对新出现的病原体或环境变化的能力各不相同。
{"title":"Conserved and Unique Protein Expression Patterns Across Reproductive Stage Transitions in Social Hymenopteran Queens.","authors":"Alison McAfee, Baptiste Martinet, Kimberly Przybyla, Félicien Degueldre, Shelley E Hoover, Serge Aron, Leonard J Foster","doi":"10.1111/mec.17568","DOIUrl":"https://doi.org/10.1111/mec.17568","url":null,"abstract":"<p><p>Hymenopteran queens are collectively highly fecund, often long-lived individuals that undergo dramatic physiological changes after they mate and establish a nest. However, the degree to which these changes are conserved among species with different life histories is not well-defined. We conducted a comparative proteomic study investigating differences between reproductive stages (virgin, mated and established queens) of Apis mellifera, Bombus impatiens, B. terrestris and Lasius niger. We analysed haemolymph for all species except L. niger, for which a whole-body analysis was performed due to the small size of these queens. We identified conserved upregulation of proteins involved in anatomical and system development as queens transition to establishing a nest in all species except B. terrestris. We also identified conserved patterns of vitellogenin, vitellogenin receptor and immune-responsive protein (IRP)30, all of which are proteins typically associated with oviposition. However, expression patterns of other immune proteins, heat-shock proteins (HSPs), detoxification enzymes and antioxidant enzymes were more dissimilar, with some species exhibiting similar trends and co-occurrence through reproductive stages, while others exhibited variable or opposite patterns. These conserved and unique profiles likely in part reflect similarities and differences in selective pressure on reproductive stages of each species and may indicate differing abilities to respond to emergent pathogens or environmental change.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17568"},"PeriodicalIF":4.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human Impacts on Great Lakes Walleye Sander vitreus Structure, Diversity and Local Adaptation. 人类对五大湖瓦勒耶鱼(Walleye Sander vitreus)结构、多样性和当地适应性的影响。
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-02 DOI: 10.1111/mec.17558
Peter T Euclide, Heiner Kuhl, Chris C Wilson, Kim T Scribner, Loren M Miller, Wendylee Stott, Wesley A Larson

Artificial propagation and wild release may influence the genetic integrity of wild populations. This practice has been prevalent in fisheries for centuries and is often termed 'stocking'. In the Laurentian Great Lakes (Great Lakes here-on), walleye populations faced declines from the 1950s to the 1970s, prompting extensive stocking efforts for restoration. By the mid-2010s, walleye populations showed signs of recovery, but the genetic legacy of stocking on population structure at the genomic level remains unclear. Using a dataset of 45,600 genome-aligned SNP loci genotyped in 1075 walleye individuals, we investigated the genetic impacts of over 50 years of stocking across the Great Lakes. Population structure was associated with both natural geographic barriers and stocking from non-native sources. Admixture between Lake Erie walleye and walleye from the re-populated Tittabawassee River indicate that stocking may have re-distributed putatively adaptive alleles around the Great Lakes. Genome scans identified FST outliers and evidence of selective sweeps, indicating local adaptation of spawning populations is likely. Notably, one genomic region showed strong differentiation between Muskegon River and walleye from the Tittabawassee River, which was re-populated by Muskegon strain walleye, suggesting admixture and selection both impact the observed genetic diversity. Overall, our study underscores how artificial propagation and translocations can significantly alter the evolutionary trajectory of populations. The findings highlight the complex interplay between stocking practices and population genetic diversity, emphasising the need for careful management strategies to preserve the genetic integrity of wild populations amidst conservation efforts.

人工繁殖和野外放流可能会影响野生种群的遗传完整性。这种做法在渔业中已经盛行了几个世纪,通常被称为 "放养"。在劳伦森五大湖(此处为五大湖),从 20 世纪 50 年代到 70 年代,马眼鱼种群数量一直在下降,这促使人们为恢复种群数量而进行了大量的放养工作。到 2010 年代中期,马口鱼种群出现了恢复迹象,但在基因组水平上,放养对种群结构的遗传影响仍不清楚。我们利用对 1075 个马黑鱼个体的 45,600 个基因组对齐 SNP 位点进行基因分型的数据集,研究了五大湖地区 50 多年的放养对遗传的影响。种群结构既与自然地理障碍有关,也与非本地来源的放养有关。伊利湖马眼鱼与来自重新增殖的蒂塔巴瓦西河的马眼鱼之间的混杂表明,放养可能已经在五大湖重新分配了可能具有适应性的等位基因。基因组扫描发现了FST异常值和选择性扫描的证据,表明产卵种群很可能适应了当地环境。值得注意的是,有一个基因组区域在马斯基根河与来自蒂塔巴瓦西河(Tittabawassee River)的马黑鱼之间出现了强烈的分化,马斯基根河的马黑鱼在蒂塔巴瓦西河重新繁殖,这表明混杂和选择都会影响所观察到的遗传多样性。总之,我们的研究强调了人工繁殖和迁移如何显著改变种群的进化轨迹。研究结果凸显了放养实践与种群遗传多样性之间复杂的相互作用,强调了在保护工作中采取谨慎的管理策略以保护野生种群遗传完整性的必要性。
{"title":"Human Impacts on Great Lakes Walleye Sander vitreus Structure, Diversity and Local Adaptation.","authors":"Peter T Euclide, Heiner Kuhl, Chris C Wilson, Kim T Scribner, Loren M Miller, Wendylee Stott, Wesley A Larson","doi":"10.1111/mec.17558","DOIUrl":"https://doi.org/10.1111/mec.17558","url":null,"abstract":"<p><p>Artificial propagation and wild release may influence the genetic integrity of wild populations. This practice has been prevalent in fisheries for centuries and is often termed 'stocking'. In the Laurentian Great Lakes (Great Lakes here-on), walleye populations faced declines from the 1950s to the 1970s, prompting extensive stocking efforts for restoration. By the mid-2010s, walleye populations showed signs of recovery, but the genetic legacy of stocking on population structure at the genomic level remains unclear. Using a dataset of 45,600 genome-aligned SNP loci genotyped in 1075 walleye individuals, we investigated the genetic impacts of over 50 years of stocking across the Great Lakes. Population structure was associated with both natural geographic barriers and stocking from non-native sources. Admixture between Lake Erie walleye and walleye from the re-populated Tittabawassee River indicate that stocking may have re-distributed putatively adaptive alleles around the Great Lakes. Genome scans identified F<sub>ST</sub> outliers and evidence of selective sweeps, indicating local adaptation of spawning populations is likely. Notably, one genomic region showed strong differentiation between Muskegon River and walleye from the Tittabawassee River, which was re-populated by Muskegon strain walleye, suggesting admixture and selection both impact the observed genetic diversity. Overall, our study underscores how artificial propagation and translocations can significantly alter the evolutionary trajectory of populations. The findings highlight the complex interplay between stocking practices and population genetic diversity, emphasising the need for careful management strategies to preserve the genetic integrity of wild populations amidst conservation efforts.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17558"},"PeriodicalIF":4.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orthopteran Neo-Sex Chromosomes Reveal Dynamics of Recombination Suppression and Evolution of Supergenes. 直翅目新性腺染色体揭示了重组抑制和超级基因进化的动态。
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1111/mec.17567
Suvratha Jayaprasad, Valentina Peona, Simon J Ellerstrand, Roberto Rossini, Ignas Bunikis, Olga V Pettersson, Remi-André Olsen, Carl-Johan Rubin, Elisabet Einarsdottir, Franziska Bonath, Tessa M Bradford, Steven J B Cooper, Bengt Hansson, Alexander Suh, Takeshi Kawakami, Holger Schielzeth, Octavio M Palacios-Gimenez

The early evolution of sex chromosomes has remained obscure for more than a century. The Vandiemenella viatica species group of morabine grasshoppers is highly suited for studying the early stages of sex chromosome divergence and degeneration of the Y chromosome. This stems from the fact that neo-XY sex chromosomes have independently evolved multiple times by X-autosome fusions with different autosomes. Here, we generated new chromosome-level assemblies for two chromosomal races representing karyotypes with and without neo-sex chromosomes (P24XY and P24X0), and sequence data of a third chromosomal race with a different neo-XY chromosome system (P25XY). Interestingly, these two neo-XY chromosomal races are formed by different X-autosome fusions (involving chr1 and chrB, respectively), and we found that both neo-Y chromosomes have partly ceased to recombine with their neo-X counterpart. We show that the neo-XY chromosomes have diverged through accumulation of SNPs and structural mutations, and that many neo-Y-linked genes have degenerated since recombination ceased. However, the non-recombining regions of neo-Y chromosomes host non-degenerated genes crucial for sex determination, such as sex-lethal and transformer, alongside genes associated with spermatogenesis, fertility, and reproduction, illustrating their integrative role as a masculinizing supergene. Contrary to expectations, the neo-Y chromosomes showed (slightly) lower density of transposable elements (TEs) compared to other genomic regions. The study reveals the unique dynamics of young sex chromosomes, with evolution of recombination suppression and pronounced decay of (some) neo-sex chromosome genes, and provides a compelling case illustrating how chromosomal fusions and post-fusion mutational processes contribute to the evolution of supergenes.

一个多世纪以来,性染色体的早期进化一直模糊不清。摩拉宾蚱蜢的 Vandiemenella viatica 物种群非常适合研究性染色体分化和 Y 染色体退化的早期阶段。这是因为新XY性染色体是通过X-常染色体与不同的常染色体融合而独立进化多次的。在这里,我们生成了代表具有和不具有新性染色体核型的两个染色体种族(P24XY 和 P24X0)的新染色体组,以及具有不同新 XY 染色体系统的第三个染色体种族(P25XY)的序列数据。有趣的是,这两个新 XY 染色体种族是由不同的 X 自体融合(分别涉及 chr1 和 chrB)形成的,而且我们发现这两个新 Y 染色体都部分停止了与新 X 染色体的重组。我们发现,新 XY 染色体通过 SNPs 和结构突变的积累而发生了分化,许多新 Y 连锁基因在重组停止后发生了退化。然而,新-Y 染色体的非重组区域除了与精子发生、生育和繁殖相关的基因外,还含有对性别决定至关重要的未退化基因,如性致死基因和转化基因,这说明了它们作为男性化超级基因的整合作用。与预期相反,与其他基因组区域相比,新Y染色体上转座元件(TE)的密度(略低)。这项研究揭示了年轻性染色体的独特动态,即重组抑制的进化和(某些)新性染色体基因的明显衰变,并提供了一个令人信服的案例,说明染色体融合和融合后突变过程如何促进超级基因的进化。
{"title":"Orthopteran Neo-Sex Chromosomes Reveal Dynamics of Recombination Suppression and Evolution of Supergenes.","authors":"Suvratha Jayaprasad, Valentina Peona, Simon J Ellerstrand, Roberto Rossini, Ignas Bunikis, Olga V Pettersson, Remi-André Olsen, Carl-Johan Rubin, Elisabet Einarsdottir, Franziska Bonath, Tessa M Bradford, Steven J B Cooper, Bengt Hansson, Alexander Suh, Takeshi Kawakami, Holger Schielzeth, Octavio M Palacios-Gimenez","doi":"10.1111/mec.17567","DOIUrl":"https://doi.org/10.1111/mec.17567","url":null,"abstract":"<p><p>The early evolution of sex chromosomes has remained obscure for more than a century. The Vandiemenella viatica species group of morabine grasshoppers is highly suited for studying the early stages of sex chromosome divergence and degeneration of the Y chromosome. This stems from the fact that neo-XY sex chromosomes have independently evolved multiple times by X-autosome fusions with different autosomes. Here, we generated new chromosome-level assemblies for two chromosomal races representing karyotypes with and without neo-sex chromosomes (P24XY and P24X0), and sequence data of a third chromosomal race with a different neo-XY chromosome system (P25XY). Interestingly, these two neo-XY chromosomal races are formed by different X-autosome fusions (involving chr1 and chrB, respectively), and we found that both neo-Y chromosomes have partly ceased to recombine with their neo-X counterpart. We show that the neo-XY chromosomes have diverged through accumulation of SNPs and structural mutations, and that many neo-Y-linked genes have degenerated since recombination ceased. However, the non-recombining regions of neo-Y chromosomes host non-degenerated genes crucial for sex determination, such as sex-lethal and transformer, alongside genes associated with spermatogenesis, fertility, and reproduction, illustrating their integrative role as a masculinizing supergene. Contrary to expectations, the neo-Y chromosomes showed (slightly) lower density of transposable elements (TEs) compared to other genomic regions. The study reveals the unique dynamics of young sex chromosomes, with evolution of recombination suppression and pronounced decay of (some) neo-sex chromosome genes, and provides a compelling case illustrating how chromosomal fusions and post-fusion mutational processes contribute to the evolution of supergenes.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17567"},"PeriodicalIF":4.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Genomic Exploration of the Possible De-Extirpation of the Zanzibar Leopard. 对桑给巴尔豹可能的非外缘化进行基因组学探索。
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1111/mec.17566
Xin Sun, Emily Louisa Cavill, Ashot Margaryan, Jianqing Lin, Søren Thingaard, Tamrini A Said, Shyam Gopalakrishnan, M Thomas P Gilbert

The recently extirpated Zanzibar leopard was the only known African leopard (Panthera pardus spp.) population restricted exclusively to a major island habitat. Although its demise was driven through habitat change and conflict with humans, given its role as a keystone species for the Zanzibar Archipelago, its successful potential reintroduction might offer a means for helping preserve the natural biodiversity of its former habitat. Whether this is feasible, however, would be contingent on both whether closely related source populations can be identified on mainland Africa, and whether the Zanzibar form exhibited any special adaptations that might need to be considered when choosing such a source. In light of these questions, we genomically profiled two of the six known historic specimens, to explore whether they represent a realistic candidate for de-extirpation through reintroduction. Our analyses indicate that despite its geographical separation, the Zanzibar leopard shared a close genetic relationship with mainland East African individuals. Furthermore, although its uniqueness as an island population was emphasised by genomic signatures of high inbreeding and increased mutation load, the latter similar to the level of the critically endangered Amur leopard (P. p. orientalis), we find no evidence of functionally significant genetic diversity unique to Zanzibar. We therefore conclude that should attempts to restore leopards to Zanzibar be considered, then mainland East African leopards would provide a suitable gene pool.

最近灭绝的桑给巴尔豹是已知的非洲豹(Panthera pardus spp.)种群中唯一仅局限于一个主要岛屿栖息地的物种。虽然它的灭绝是由于栖息地的改变和与人类的冲突,但鉴于它是桑给巴尔群岛的关键物种,成功地重新引入它可能为帮助保护其前栖息地的自然生物多样性提供了一种手段。然而,这是否可行,将取决于能否在非洲大陆找到密切相关的来源种群,以及桑给巴尔种是否表现出任何特殊的适应性,在选择来源地时可能需要考虑这些因素。鉴于这些问题,我们对已知的六个历史标本中的两个进行了基因组分析,以探讨它们是否是通过重新引入来实现去外来化的现实候选物种。我们的分析表明,尽管桑给巴尔豹与东非大陆的个体在地理上相隔遥远,但它们之间却有着密切的遗传关系。此外,尽管近亲繁殖和变异负荷增加的基因组特征(后者与极度濒危的阿穆尔豹(P. p. orientalis)的水平相似)强调了桑给巴尔豹作为一个岛屿种群的独特性,但我们并没有发现桑给巴尔豹独有的具有重要功能的遗传多样性的证据。因此,我们得出结论,如果考虑在桑给巴尔恢复豹,那么东非大陆的豹将提供一个合适的基因库。
{"title":"A Genomic Exploration of the Possible De-Extirpation of the Zanzibar Leopard.","authors":"Xin Sun, Emily Louisa Cavill, Ashot Margaryan, Jianqing Lin, Søren Thingaard, Tamrini A Said, Shyam Gopalakrishnan, M Thomas P Gilbert","doi":"10.1111/mec.17566","DOIUrl":"https://doi.org/10.1111/mec.17566","url":null,"abstract":"<p><p>The recently extirpated Zanzibar leopard was the only known African leopard (Panthera pardus spp.) population restricted exclusively to a major island habitat. Although its demise was driven through habitat change and conflict with humans, given its role as a keystone species for the Zanzibar Archipelago, its successful potential reintroduction might offer a means for helping preserve the natural biodiversity of its former habitat. Whether this is feasible, however, would be contingent on both whether closely related source populations can be identified on mainland Africa, and whether the Zanzibar form exhibited any special adaptations that might need to be considered when choosing such a source. In light of these questions, we genomically profiled two of the six known historic specimens, to explore whether they represent a realistic candidate for de-extirpation through reintroduction. Our analyses indicate that despite its geographical separation, the Zanzibar leopard shared a close genetic relationship with mainland East African individuals. Furthermore, although its uniqueness as an island population was emphasised by genomic signatures of high inbreeding and increased mutation load, the latter similar to the level of the critically endangered Amur leopard (P. p. orientalis), we find no evidence of functionally significant genetic diversity unique to Zanzibar. We therefore conclude that should attempts to restore leopards to Zanzibar be considered, then mainland East African leopards would provide a suitable gene pool.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17566"},"PeriodicalIF":4.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Restricted Dispersal and Phenotypic Response to Water Depth in a Foundation Seagrass. 基础海草的限制性传播和表型对水深的反应
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1111/mec.17565
Erik E Sotka, A Randall Hughes, Torrance C Hanley, Cynthia G Hays

Species conservation and management benefit from precise understanding of natural patterns of dispersal and genetic variation. Using recent advances in indirect genetic methods applied to both adult plants and dispersed seeds, we find that the mean seed dispersal in a threatened marine foundation plant (the eelgrass Zostera marina) is approximately 100-200 m. This distance is surprisingly more similar to that of wind-dispersed terrestrial seeds (~10s to 100s of meters) than the passive dispersal of marine propagules via currents (~10s to 100s of kilometres). Because nearshore marine plants like Zostera are commonly distributed across strong selective gradients driven by bathymetry (depth) even within these restricted spatial scales, seeds are capable of dispersing to novel water depths and experiencing profound shifts in light availability, temperature and wave exposure. We documented strong phenotypic variation and genome-wide differentiation among plants separated by approximately the spatial scale of mean realised dispersal. This result suggests genetic isolation by environment in response to depth-related environmental gradients as one plausible explanation for this pattern. The ratio of effective to census size (or Ne/Nc) approximated 0.1%, indicating that a fraction of existing plants provides the genetic variation to allow adaptation to environmental change. Our results suggest that successful conservation of seagrass meadows that can adapt to microspatial and temporal variation in environmental conditions will be low without direct and persistent intervention using large numbers of individuals or a targeted selection of genotypes.

物种保护和管理得益于对自然扩散模式和遗传变异的精确了解。利用最近在成体植物和散播种子的间接遗传方法方面取得的进展,我们发现一种濒危海洋基础植物(鳗鲡)的平均种子散播距离约为 100-200 米。令人惊讶的是,这一距离与陆生种子随风传播的距离(约 10 到 100 米)相比,更类似于海洋繁殖体通过水流的被动传播距离(约 10 到 100 千米)。由于像 Zostera 这样的近岸海洋植物通常分布在由水深(深度)驱动的强大选择梯度上,即使在这些有限的空间尺度内,种子也能扩散到新的水深,并经历光照、温度和波浪暴露的深刻变化。我们发现,在表型差异和全基因组分化较强的植物中,它们之间的距离大约相当于平均实现扩散的空间尺度。这一结果表明,与深度相关的环境梯度导致的环境遗传隔离是这种模式的一个合理解释。有效规模与普查规模之比(或Ne/Nc)接近0.1%,表明现有植物中的一小部分提供了适应环境变化的遗传变异。我们的研究结果表明,如果不使用大量个体或有针对性地选择基因型进行直接和持续的干预,就很难成功保护能够适应环境条件微观空间和时间变化的海草草甸。
{"title":"Restricted Dispersal and Phenotypic Response to Water Depth in a Foundation Seagrass.","authors":"Erik E Sotka, A Randall Hughes, Torrance C Hanley, Cynthia G Hays","doi":"10.1111/mec.17565","DOIUrl":"https://doi.org/10.1111/mec.17565","url":null,"abstract":"<p><p>Species conservation and management benefit from precise understanding of natural patterns of dispersal and genetic variation. Using recent advances in indirect genetic methods applied to both adult plants and dispersed seeds, we find that the mean seed dispersal in a threatened marine foundation plant (the eelgrass Zostera marina) is approximately 100-200 m. This distance is surprisingly more similar to that of wind-dispersed terrestrial seeds (~10s to 100s of meters) than the passive dispersal of marine propagules via currents (~10s to 100s of kilometres). Because nearshore marine plants like Zostera are commonly distributed across strong selective gradients driven by bathymetry (depth) even within these restricted spatial scales, seeds are capable of dispersing to novel water depths and experiencing profound shifts in light availability, temperature and wave exposure. We documented strong phenotypic variation and genome-wide differentiation among plants separated by approximately the spatial scale of mean realised dispersal. This result suggests genetic isolation by environment in response to depth-related environmental gradients as one plausible explanation for this pattern. The ratio of effective to census size (or Ne/Nc) approximated 0.1%, indicating that a fraction of existing plants provides the genetic variation to allow adaptation to environmental change. Our results suggest that successful conservation of seagrass meadows that can adapt to microspatial and temporal variation in environmental conditions will be low without direct and persistent intervention using large numbers of individuals or a targeted selection of genotypes.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17565"},"PeriodicalIF":4.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-Wide Data Uncover Cryptic Diversity With Multiple Reticulation Events in the Balkan-Anatolian Cardamine (Brassicaceae) Species Complex 全基因组数据揭示了巴尔干-安纳托利亚卡达明(十字花科)物种群中具有多重网状结构的隐秘多样性。
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1111/mec.17564
Marek Šlenker, Adam Kantor, Dušan Senko, Lenka Mártonfiová, Gabriela Šrámková, Veronika Cetlová, Ali A. Dönmez, Sırrı Yüzbaşıoğlu, Judita Zozomová-Lihová

Plant species diversity may be considerably underestimated, especially in evolutionarily complex genera and in diversity hotspots that have enabled long-term species persistence and diversification, such as the Balkan Peninsula. Here, we address the topic of underexplored plant diversity and underlying evolutionary and biogeographic processes by investigating the hygrophytic mountain species complex of Cardamine acris s.l. distributed in the Balkans (three subspecies within C. acris) and northwestern Anatolia (C. anatolica). We performed a series of phylogenetic and phylogeographic analyses based on restriction-site associated DNA sequencing (RADseq) and target enrichment (Hyb-Seq) data in combination with habitat suitability modelling. We found C. anatolica as a clade nested within the Balkan C. acris, probably resulting from a founder event, and uncovered three allopatric cryptic lineages within C. acris subsp. acris, allowing us to recognise a total of six entities in this complex. We observed the deepest genetic split within C. acris subsp. acris in the western Balkans, which was at odds with taxonomy and showed no distribution gap. We inferred vicariance as the most likely process for population divergence in the Balkans, accompanied by gene flow between the recognised entities, which was consistent with the modelled habitat suitability dynamics. Furthermore, we discovered several polyploid populations in C. acris, representing both pure intra- and inter-lineage hybrid polyploids, but detected only minor traces of hybridization with related congeners. Overall, our results illustrate that diverse evolutionary processes may influence the history of mountain plant species in the Balkan Peninsula, including vicariance, reticulation, polyploidization and cryptic diversification.

植物物种多样性可能被严重低估,特别是在进化复杂的属和物种长期存在和多样化的多样性热点地区,如巴尔干半岛。在这里,我们通过研究分布在巴尔干半岛(C. acris 中的三个亚种)和安纳托利亚西北部(C. anatolica)的山地湿润物种群(Cardamine acris s.l.),探讨了未被充分探索的植物多样性及其背后的进化和生物地理过程。我们基于限制位点相关 DNA 测序(RADseq)和目标富集(Hyb-Seq)数据,结合栖息地适宜性建模,进行了一系列系统发育和系统地理分析。我们发现 C. anatolica 是嵌套在巴尔干 C. acris 中的一个支系,可能是由创始事件引起的,并在 C. acris subsp.我们在巴尔干半岛西部观察到了 C. acris subsp.我们推断巴尔干地区种群分化的最可能过程是沧海桑田,并伴随着公认实体之间的基因流动,这与模拟的栖息地适宜性动态相一致。此外,我们还在鸢尾属植物中发现了几个多倍体种群,既有纯系内杂交多倍体,也有系内杂交多倍体,但只检测到与相关同系植物的少量杂交痕迹。总之,我们的研究结果表明,巴尔干半岛山地植物物种的历史可能受到多种进化过程的影响,包括沧海桑田、网状结构、多倍体化和隐性多样化。
{"title":"Genome-Wide Data Uncover Cryptic Diversity With Multiple Reticulation Events in the Balkan-Anatolian Cardamine (Brassicaceae) Species Complex","authors":"Marek Šlenker,&nbsp;Adam Kantor,&nbsp;Dušan Senko,&nbsp;Lenka Mártonfiová,&nbsp;Gabriela Šrámková,&nbsp;Veronika Cetlová,&nbsp;Ali A. Dönmez,&nbsp;Sırrı Yüzbaşıoğlu,&nbsp;Judita Zozomová-Lihová","doi":"10.1111/mec.17564","DOIUrl":"10.1111/mec.17564","url":null,"abstract":"<div>\u0000 \u0000 <p>Plant species diversity may be considerably underestimated, especially in evolutionarily complex genera and in diversity hotspots that have enabled long-term species persistence and diversification, such as the Balkan Peninsula. Here, we address the topic of underexplored plant diversity and underlying evolutionary and biogeographic processes by investigating the hygrophytic mountain species complex of <i>Cardamine acris</i> s.l. distributed in the Balkans (three subspecies within <i>C. acris</i>) and northwestern Anatolia (<i>C. anatolica</i>). We performed a series of phylogenetic and phylogeographic analyses based on restriction-site associated DNA sequencing (RADseq) and target enrichment (Hyb-Seq) data in combination with habitat suitability modelling. We found <i>C. anatolica</i> as a clade nested within the Balkan <i>C. acris</i>, probably resulting from a founder event, and uncovered three allopatric cryptic lineages within <i>C. acris</i> subsp. <i>acris</i>, allowing us to recognise a total of six entities in this complex. We observed the deepest genetic split within <i>C. acris</i> subsp. <i>acris</i> in the western Balkans, which was at odds with taxonomy and showed no distribution gap. We inferred vicariance as the most likely process for population divergence in the Balkans, accompanied by gene flow between the recognised entities, which was consistent with the modelled habitat suitability dynamics. Furthermore, we discovered several polyploid populations in <i>C. acris</i>, representing both pure intra- and inter-lineage hybrid polyploids, but detected only minor traces of hybridization with related congeners. Overall, our results illustrate that diverse evolutionary processes may influence the history of mountain plant species in the Balkan Peninsula, including vicariance, reticulation, polyploidization and cryptic diversification.</p>\u0000 </div>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 22","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Associations Between Gut Microbiota Diversity and a Host Fitness Proxy in a Naturalistic Experiment Using Threespine Stickleback Fish. 利用三刺棒背鱼进行的自然实验中肠道微生物群多样性与宿主体质替代物之间的关系
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1111/mec.17571
Andreas Härer, Ken A Thompson, Dolph Schluter, Diana J Rennison

The vertebrate gut microbiota is a critical determinant of organismal function, yet whether and how gut microbial communities affect host fitness under natural conditions remains largely unclear. We characterised associations between a fitness proxy-individual growth rate-and bacterial gut microbiota diversity and composition in threespine stickleback fish introduced to large semi-natural ponds. We detected a 63% higher richness of bacterial taxa (α-diversity) in the guts of high-fitness fish compared to low-fitness fish, which might be driven by stronger bacterial dispersal among high-fitness fish according to the fit of a neutral community model. Further, microbial communities of high-fitness fish were more similar to one another (i.e., exhibited lower β-diversity) than those of low-fitness fish. The lower β-diversity found to be associated with higher host fitness is consistent with the Anna Karenina principle-that there are fewer ways to have a functional microbiota than a dysfunctional microbiota. Our study links differences in α- and β-diversity to a fitness-related trait in a vertebrate species reared under naturalistic conditions and our findings provide a basis for functional tests of the fitness consequences of host-microbiota interactions.

脊椎动物肠道微生物群是决定生物体功能的关键因素,但在自然条件下,肠道微生物群落是否以及如何影响宿主的体能,目前仍不清楚。我们研究了被引入大型半自然池塘的三刺鱼的个体生长率与细菌肠道微生物群多样性和组成之间的关系。与低适生性鱼类相比,我们发现高适生性鱼类肠道中细菌类群的丰富度(α-多样性)高出63%,根据中性群落模型的拟合,这可能是由于高适生性鱼类之间的细菌扩散能力更强。此外,高体能鱼类的微生物群落比低体能鱼类的微生物群落更相似(即表现出较低的β-多样性)。发现较低的β-多样性与较高的宿主适合度相关,这与安娜-卡列尼娜原则是一致的,即拥有一个功能性微生物群的方法比拥有一个功能失调的微生物群的方法要少。我们的研究将在自然条件下饲养的脊椎动物物种的 α 和 β 多样性差异与适应性相关特征联系起来,我们的发现为宿主-微生物群相互作用的适应性后果的功能测试提供了基础。
{"title":"Associations Between Gut Microbiota Diversity and a Host Fitness Proxy in a Naturalistic Experiment Using Threespine Stickleback Fish.","authors":"Andreas Härer, Ken A Thompson, Dolph Schluter, Diana J Rennison","doi":"10.1111/mec.17571","DOIUrl":"https://doi.org/10.1111/mec.17571","url":null,"abstract":"<p><p>The vertebrate gut microbiota is a critical determinant of organismal function, yet whether and how gut microbial communities affect host fitness under natural conditions remains largely unclear. We characterised associations between a fitness proxy-individual growth rate-and bacterial gut microbiota diversity and composition in threespine stickleback fish introduced to large semi-natural ponds. We detected a 63% higher richness of bacterial taxa (α-diversity) in the guts of high-fitness fish compared to low-fitness fish, which might be driven by stronger bacterial dispersal among high-fitness fish according to the fit of a neutral community model. Further, microbial communities of high-fitness fish were more similar to one another (i.e., exhibited lower β-diversity) than those of low-fitness fish. The lower β-diversity found to be associated with higher host fitness is consistent with the Anna Karenina principle-that there are fewer ways to have a functional microbiota than a dysfunctional microbiota. Our study links differences in α- and β-diversity to a fitness-related trait in a vertebrate species reared under naturalistic conditions and our findings provide a basis for functional tests of the fitness consequences of host-microbiota interactions.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17571"},"PeriodicalIF":4.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contrast and Genomic Characterisation of Ancient and Recent Interspecific Introgression Between Deeply Diverged Moustache Toads (Leptobrachium). 深度分化的小胡子蟾蜍(Leptobrachium)之间古代和近期种间杂交的对比和基因组特征。
IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1111/mec.17569
Jun Li, Qingbo Ai, Siyu Xie, Chunhua Huang, Fuyuan Qiu, Chao Fu, Mian Zhao, Jinzhong Fu, Hua Wu

Recent genomic analyses have provided new insights into the process of interspecific introgression and its consequences on species evolution. Most recent studies, however, focused on hybridization between recently radiated species, with few examining the genomic outcomes of ancient hybridization across deeply diverged species. Using whole genome data of moustache toads (Leptobrachium), we identified signals of three hybridization events among nine species that diverged at the Eocene. An ancient introgression from L. leishanense to the ancestral branch (C1) of L. liui introduced adaptive variants. The highly introgressed regions include genes with important functions in odorant detection and immune responses. These genes are preserved in all three descendent populations of L. liui_C1, and these regions likely have been positively selected over a long filtering process. A recent introgression occurred from L. huashen to L. tengchongense, with the introgressed regions being mostly neutral. Furthermore, one F1 hybrid individual was detected between sympatric L. ailaonicum and L. promustache. The signals of introgression largely disappeared after removing the hybrid individual, indicating an occasional hybridization but minimal introgression. Further examination of highly divergent but low introgressed genomic regions revealed both pre-mating isolation and genetic incompatibility as potential mechanisms of resisting introgression and maintaining species boundaries. Additionally, no large X-effect was found in these introgression events. Hybridization between deeply diverged amphibian species may be common, but detectable introgressions are likely less so, with recent introgression being mostly neutral and the rare ancient one potentially adaptive. Our findings complement recent genomic work, and together they provide a better understanding of the genomic characteristics of interspecific introgression and its significance in species adaptation and evolution.

最近的基因组分析为了解种间引种过程及其对物种进化的影响提供了新的视角。然而,最近的大多数研究都集中在新近辐射的物种之间的杂交,很少有研究深入分化物种之间古老杂交的基因组结果。利用小胡子蟾蜍(Leptobrachium)的全基因组数据,我们在始新世分化的九个物种中发现了三次杂交事件的信号。从L. leishanense到L. liui的祖先分支(C1)的一次古老杂交引入了适应性变异。高度引入的区域包括在气味检测和免疫反应中具有重要功能的基因。这些基因在 L. liui_C1 的三个后代种群中都得到了保留,这些区域很可能经过了长期的筛选过程。华参与腾冲滇金丝猴最近发生了引种,引种区域大多为中性。此外,在同域的 L. ailaonicum 和 L. promustache 之间发现了一个 F1 杂交个体。移除该杂交个体后,引种信号基本消失,表明杂交偶有发生,但引种极少。进一步研究发现,交配前隔离和遗传不相容是抵制外来入侵和维持物种边界的潜在机制。此外,在这些引种事件中没有发现大的 X 效应。深度分化的两栖动物物种之间的杂交可能很常见,但可检测到的引入可能较少,最近的引入大多是中性的,罕见的古老引入可能是适应性的。我们的研究结果补充了最近的基因组研究工作,它们共同使我们更好地了解了种间引种的基因组特征及其在物种适应和进化中的意义。
{"title":"Contrast and Genomic Characterisation of Ancient and Recent Interspecific Introgression Between Deeply Diverged Moustache Toads (Leptobrachium).","authors":"Jun Li, Qingbo Ai, Siyu Xie, Chunhua Huang, Fuyuan Qiu, Chao Fu, Mian Zhao, Jinzhong Fu, Hua Wu","doi":"10.1111/mec.17569","DOIUrl":"https://doi.org/10.1111/mec.17569","url":null,"abstract":"<p><p>Recent genomic analyses have provided new insights into the process of interspecific introgression and its consequences on species evolution. Most recent studies, however, focused on hybridization between recently radiated species, with few examining the genomic outcomes of ancient hybridization across deeply diverged species. Using whole genome data of moustache toads (Leptobrachium), we identified signals of three hybridization events among nine species that diverged at the Eocene. An ancient introgression from L. leishanense to the ancestral branch (C1) of L. liui introduced adaptive variants. The highly introgressed regions include genes with important functions in odorant detection and immune responses. These genes are preserved in all three descendent populations of L. liui_C1, and these regions likely have been positively selected over a long filtering process. A recent introgression occurred from L. huashen to L. tengchongense, with the introgressed regions being mostly neutral. Furthermore, one F1 hybrid individual was detected between sympatric L. ailaonicum and L. promustache. The signals of introgression largely disappeared after removing the hybrid individual, indicating an occasional hybridization but minimal introgression. Further examination of highly divergent but low introgressed genomic regions revealed both pre-mating isolation and genetic incompatibility as potential mechanisms of resisting introgression and maintaining species boundaries. Additionally, no large X-effect was found in these introgression events. Hybridization between deeply diverged amphibian species may be common, but detectable introgressions are likely less so, with recent introgression being mostly neutral and the rare ancient one potentially adaptive. Our findings complement recent genomic work, and together they provide a better understanding of the genomic characteristics of interspecific introgression and its significance in species adaptation and evolution.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17569"},"PeriodicalIF":4.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1