Mel Lucas, Gordana Rašić, Alessandro Filazzola, Steve Matter, Jens Roland, Nusha Keyghobadi
Weather is an important short-term, local driver of population size and dispersal, which in turn contribute to patterns of genetic diversity and differentiation within species. Climate change is leading to greater weather variability and more frequent extreme weather events. While the effects of long-term and broad-scale mean climate conditions on genetic variation are well studied, our understanding of the effects of weather variability and extreme conditions on genetic variation is less developed. We assessed the influence of temperature and snow depth on genetic diversity and differentiation of populations of the alpine butterfly, Parnassius smintheus. We examined the relationships between a suite of variables, including those representing extreme conditions, and population-level genetic diversity and differentiation across 1453 single nucleotide polymorphisms, using both linear and gravity models. We additionally examined effects of land cover variables known to influence dispersal and gene flow in this species. We found that extreme low temperature events and the lowest recorded mean snow depth were significant predictors of genetic diversity. Extreme low temperature events, mean snow depth and land cover resistance were significant predictors of genetic differentiation. These results are congruent with known effects of early winter weather on population size and habitat connectivity on dispersal in P. smintheus. Our results demonstrate the potential for changes in the frequency or magnitude of extreme weather events to alter patterns of genetic diversity and differentiation.
{"title":"Extremes of snow and temperature affect patterns of genetic diversity and differentiation in the alpine butterfly Parnassius smintheus","authors":"Mel Lucas, Gordana Rašić, Alessandro Filazzola, Steve Matter, Jens Roland, Nusha Keyghobadi","doi":"10.1111/mec.17503","DOIUrl":"10.1111/mec.17503","url":null,"abstract":"<p>Weather is an important short-term, local driver of population size and dispersal, which in turn contribute to patterns of genetic diversity and differentiation within species. Climate change is leading to greater weather variability and more frequent extreme weather events. While the effects of long-term and broad-scale mean climate conditions on genetic variation are well studied, our understanding of the effects of weather variability and extreme conditions on genetic variation is less developed. We assessed the influence of temperature and snow depth on genetic diversity and differentiation of populations of the alpine butterfly, <i>Parnassius smintheus</i>. We examined the relationships between a suite of variables, including those representing extreme conditions, and population-level genetic diversity and differentiation across 1453 single nucleotide polymorphisms, using both linear and gravity models. We additionally examined effects of land cover variables known to influence dispersal and gene flow in this species. We found that extreme low temperature events and the lowest recorded mean snow depth were significant predictors of genetic diversity. Extreme low temperature events, mean snow depth and land cover resistance were significant predictors of genetic differentiation. These results are congruent with known effects of early winter weather on population size and habitat connectivity on dispersal in <i>P. smintheus</i>. Our results demonstrate the potential for changes in the frequency or magnitude of extreme weather events to alter patterns of genetic diversity and differentiation.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 18","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17503","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Carranza, Javier Pérez-González, Gabriel Anaya, Menno de Jong, Camilla Broggini, Frank E. Zachos, Allan D. McDevitt, Magdalena Niedziałkowska, Maciej Sykut, Sándor Csányi, Norber Bleier, Lázló Csirke, Knut Røed, Christine Saint-Andrieux, Aurelie Barboiron, Araceli Gort-Esteve, Jordi Ruiz-Olmo, Jose Manuel Seoane, Jose Antonio Godoy, Paweł Mackiewicz, Eva de la Peña, Giovanni Vedel, S. Eryn McFarlane, Josephine Pemberton, Alberto Membrillo
Genome-wide technologies open up new possibilities to clarify questions on genetic structure and phylogeographic history of taxa previously studied with microsatellite loci and mitochondrial sequences. Here, we used 736 individual red deer (Cervus elaphus) samples genotyped at 35,701 single nucleotide polymorphism loci (SNPs) to assess the population structure of the species throughout Europe. The results identified 28 populations, with higher degrees of genetic distinction in peripheral compared to mainland populations. Iberian red deer show high genetic differentiation, with lineages in Western and Central Iberia maintaining their distinctiveness, which supports separate refugial ranges within Iberia along with little recent connection between Iberian and the remaining Western European populations. The Norwegian population exhibited the lowest variability and the largest allele frequency differences from mainland European populations, compatible with a history of bottlenecks and drift during post-glacial colonization from southern refugia. Scottish populations showed high genetic distance from the mainland but high levels of diversity. Hybrid zones were found between Eastern and Western European lineages in Central Europe as well as in the Pyrenees, where red deer from France are in close contact with Iberian red deer. Anthropogenic restocking has promoted the Pyrenean contact zone, admixture events in populations on the Isle of Rum and in the Netherlands, and at least partly the admixture of the two main lineages in central-eastern Europe. Our analysis enabled detailed resolution of population structure of a large mammal widely distributed throughout Europe and contributes to resolving the evolutionary history, which can also inform conservation and management policies.
{"title":"Genome-wide SNP assessment of contemporary European red deer genetic structure highlights the distinction of peripheral populations and the main admixture zones in Europe","authors":"Juan Carranza, Javier Pérez-González, Gabriel Anaya, Menno de Jong, Camilla Broggini, Frank E. Zachos, Allan D. McDevitt, Magdalena Niedziałkowska, Maciej Sykut, Sándor Csányi, Norber Bleier, Lázló Csirke, Knut Røed, Christine Saint-Andrieux, Aurelie Barboiron, Araceli Gort-Esteve, Jordi Ruiz-Olmo, Jose Manuel Seoane, Jose Antonio Godoy, Paweł Mackiewicz, Eva de la Peña, Giovanni Vedel, S. Eryn McFarlane, Josephine Pemberton, Alberto Membrillo","doi":"10.1111/mec.17508","DOIUrl":"10.1111/mec.17508","url":null,"abstract":"<p>Genome-wide technologies open up new possibilities to clarify questions on genetic structure and phylogeographic history of taxa previously studied with microsatellite loci and mitochondrial sequences. Here, we used 736 individual red deer (<i>Cervus elaphus</i>) samples genotyped at 35,701 single nucleotide polymorphism loci (SNPs) to assess the population structure of the species throughout Europe. The results identified 28 populations, with higher degrees of genetic distinction in peripheral compared to mainland populations. Iberian red deer show high genetic differentiation, with lineages in Western and Central Iberia maintaining their distinctiveness, which supports separate refugial ranges within Iberia along with little recent connection between Iberian and the remaining Western European populations. The Norwegian population exhibited the lowest variability and the largest allele frequency differences from mainland European populations, compatible with a history of bottlenecks and drift during post-glacial colonization from southern refugia. Scottish populations showed high genetic distance from the mainland but high levels of diversity. Hybrid zones were found between Eastern and Western European lineages in Central Europe as well as in the Pyrenees, where red deer from France are in close contact with Iberian red deer. Anthropogenic restocking has promoted the Pyrenean contact zone, admixture events in populations on the Isle of Rum and in the Netherlands, and at least partly the admixture of the two main lineages in central-eastern Europe. Our analysis enabled detailed resolution of population structure of a large mammal widely distributed throughout Europe and contributes to resolving the evolutionary history, which can also inform conservation and management policies.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 18","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
April A. Jauhal, Rochelle Constantine, Richard Newcomb
The relative importance of various sensory modalities can shift in response to evolutionary transitions, resulting in changes to underlying gene families encoding their reception systems. The rapid birth-and-death process underlying the evolution of the large olfactory receptor (OR) gene family has accelerated genomic-level change for the sense of smell in particular. The transition from the land to sea in marine mammals is an attractive model for understanding the influence of habitat shifts on sensory systems, with the retained OR repertoire of baleen whales contrasting with its loss in toothed whales. In this study, we examine to what extent the transition from a terrestrial to a marine environment has influenced the evolution of baleen whale OR repertoires. We developed Gene Mining Pipeline (GMPipe) (https://github.com/AprilJauhal/GMPipe), which can accurately identify large numbers of candidate OR genes. GMPipe identified 707 OR sequences from eight baleen whale species. These repertoires exhibited distinct family count distributions compared to terrestrial mammals, including signs of relative expansion in families OR10, OR11 and OR13. While many receptors have been lost or show signs of random drift in baleen whales, others exhibit signs of evolving under purifying or positive selection. Over 85% of OR genes could be sorted into orthologous groups of sequences containing at least four homologous sequences. Many of these groups, particularly from family OR10, presented signs of relative expansion and purifying selective pressure. Overall, our results suggest that the relatively small size of baleen whale OR repertoires result from specialisation to novel olfactory landscapes, as opposed to random drift.
{"title":"Conservation and selective pressures shaping baleen whale olfactory receptor genes supports their use of olfaction in the marine environment","authors":"April A. Jauhal, Rochelle Constantine, Richard Newcomb","doi":"10.1111/mec.17497","DOIUrl":"10.1111/mec.17497","url":null,"abstract":"<p>The relative importance of various sensory modalities can shift in response to evolutionary transitions, resulting in changes to underlying gene families encoding their reception systems. The rapid birth-and-death process underlying the evolution of the large olfactory receptor (OR) gene family has accelerated genomic-level change for the sense of smell in particular. The transition from the land to sea in marine mammals is an attractive model for understanding the influence of habitat shifts on sensory systems, with the retained OR repertoire of baleen whales contrasting with its loss in toothed whales. In this study, we examine to what extent the transition from a terrestrial to a marine environment has influenced the evolution of baleen whale OR repertoires. We developed Gene Mining Pipeline (GMPipe) (https://github.com/AprilJauhal/GMPipe), which can accurately identify large numbers of candidate OR genes. GMPipe identified 707 OR sequences from eight baleen whale species. These repertoires exhibited distinct family count distributions compared to terrestrial mammals, including signs of relative expansion in families OR10, OR11 and OR13. While many receptors have been lost or show signs of random drift in baleen whales, others exhibit signs of evolving under purifying or positive selection. Over 85% of OR genes could be sorted into orthologous groups of sequences containing at least four homologous sequences. Many of these groups, particularly from family OR10, presented signs of relative expansion and purifying selective pressure. Overall, our results suggest that the relatively small size of baleen whale OR repertoires result from specialisation to novel olfactory landscapes, as opposed to random drift.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 18","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17497","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanna Berggren, Yeşerin Yıldırım, Oscar Nordahl, Per Larsson, Mark Dopson, Petter Tibblin, Daniel Lundin, Jarone Pinhassi, Anders Forsman
Skin microbiomes provide vital functions, yet knowledge about the drivers and processes structuring their species assemblages is limited—especially for non-model organisms. In this study, fish skin microbiome was assessed by high throughput sequencing of amplicon sequence variants from metabarcoding of V3–V4 regions in the 16S rRNA gene on fish hosts subjected to the following experimental manipulations: (i) translocation between fresh and brackish water habitats to investigate the role of environment; (ii) treatment with an antibacterial disinfectant to reboot the microbiome and investigate community assembly and priority effects; and (iii) maintained alone or in pairs to study the role of social environment and inter-host dispersal of microbes. The results revealed that fish skin microbiomes harbour a highly dynamic microbial composition that was distinct from bacterioplankton communities in the ambient water. Microbiome composition first diverged as an effect of translocation to either the brackish or freshwater habitat. When the freshwater individuals were translocated back to brackish water, their microbiome composition converged towards the fish microbiomes in the brackish habitat. In summary, external environmental conditions and individual-specific factors jointly determined the community composition dynamics, whereas inter-host dispersal had negligible effects. The dynamics of the microbiome composition was seemingly non-affected by reboot treatment, pointing towards high resilience to disturbance. The results emphasised the role of inter-individual variability for the unexplained variation found in many host-microbiome systems, although the mechanistic underpinnings remain to be identified.
{"title":"Ecological filtering drives rapid spatiotemporal dynamics in fish skin microbiomes","authors":"Hanna Berggren, Yeşerin Yıldırım, Oscar Nordahl, Per Larsson, Mark Dopson, Petter Tibblin, Daniel Lundin, Jarone Pinhassi, Anders Forsman","doi":"10.1111/mec.17496","DOIUrl":"10.1111/mec.17496","url":null,"abstract":"<p>Skin microbiomes provide vital functions, yet knowledge about the drivers and processes structuring their species assemblages is limited—especially for non-model organisms. In this study, fish skin microbiome was assessed by high throughput sequencing of amplicon sequence variants from metabarcoding of V3–V4 regions in the 16S rRNA gene on fish hosts subjected to the following experimental manipulations: (i) translocation between fresh and brackish water habitats to investigate the role of environment; (ii) treatment with an antibacterial disinfectant to reboot the microbiome and investigate community assembly and priority effects; and (iii) maintained alone or in pairs to study the role of social environment and inter-host dispersal of microbes. The results revealed that fish skin microbiomes harbour a highly dynamic microbial composition that was distinct from bacterioplankton communities in the ambient water. Microbiome composition first diverged as an effect of translocation to either the brackish or freshwater habitat. When the freshwater individuals were translocated back to brackish water, their microbiome composition converged towards the fish microbiomes in the brackish habitat. In summary, external environmental conditions and individual-specific factors jointly determined the community composition dynamics, whereas inter-host dispersal had negligible effects. The dynamics of the microbiome composition was seemingly non-affected by reboot treatment, pointing towards high resilience to disturbance. The results emphasised the role of inter-individual variability for the unexplained variation found in many host-microbiome systems, although the mechanistic underpinnings remain to be identified.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 18","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17496","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Laura Cano-Argüelles, Elianne Piloto-Sardiñas, Apolline Maitre, Lourdes Mateos-Hernández, Jennifer Maye, Alejandra Wu-Chuang, Lianet Abuin-Denis, Dasiel Obregón, Timothy Bamgbose, Ana Oleaga, Alejandro Cabezas-Cruz, Ricardo Pérez-Sánchez
The Ornithodoros moubata (Om) soft tick, a vector for diseases like tick-borne human relapsing fever and African swine fever, poses challenges to conventional control methods. With diminishing insecticide efficacy, harnessing the tick's microbiota through innovative approaches like microbiota-driven vaccination emerges as a promising strategy for sustainable and targeted disease control. This study investigated the intricate relationship between Pseudomonas, a keystone taxon in the Om microbiome, and its impact on tick fitness, microbiome structure and network dynamics. Utilizing in silico analyses and empirical vaccination experiments, the role of Pseudomonas within microbial networks in the tick midguts (MG) and salivary glands (SG) of Om was studied. Additionally, the consequences of anti-microbiota vaccines targeting Pseudomonas and Lactobacillus on tick fitness, microbiome diversity and community assembly were explored. The result of the study shows that in Om, Pseudomonas plays a central role in microbial networks, influencing keystone species despite being categorized as peripheral (interacting with 47 different taxa, 13 of which are keystone species). Anti-microbiota vaccination targeting Pseudomonas and Lactobacillus yields distinct effects on tick fitness, with Pseudomonas vaccination significantly impacting female tick survival, while Lactobacillus significantly reduced oviposition and fertility. Microbiome changes post-vaccination reveal diversity alterations, emphasizing the impact of vaccine choice. Community assembly dynamics and network robustness analyses highlight Pseudomonas' pivotal role, in influencing topological features and network resilience. The findings of the study provide comprehensive insights into the intricate dynamics of Om microbial networks and the potential of targeted microbiota-driven vaccines for tick control.
Ornithodoros moubata(Om)软蜱是蜱传人类复发性热病和非洲猪瘟等疾病的病媒,它对传统的控制方法构成了挑战。随着杀虫剂效力的降低,通过微生物群驱动疫苗接种等创新方法来利用蜱的微生物群,成为一种可持续和有针对性的疾病控制策略。本研究调查了假单胞菌(Om 微生物组中的一个关键类群)之间错综复杂的关系及其对蜱的适应性、微生物组结构和网络动力学的影响。利用硅学分析和经验疫苗接种实验,研究了假单胞菌在 Om 的蜱中肠(MG)和唾液腺(SG)微生物网络中的作用。此外,还探讨了针对假单胞菌和乳酸杆菌的抗微生物群疫苗对蜱的适应性、微生物群多样性和群落组合的影响。研究结果表明,在 Om 中,假单胞菌在微生物网络中发挥着核心作用,尽管它被归类为边缘物种(与 47 个不同类群相互作用,其中 13 个是关键物种),但却影响着关键物种。针对假单胞菌和乳酸杆菌的抗微生物群疫苗接种对蜱的适应性产生了不同的影响,假单胞菌疫苗接种会显著影响雌蜱的存活率,而乳酸杆菌则会显著降低雌蜱的产卵率和繁殖力。接种疫苗后微生物组的变化揭示了多样性的改变,强调了疫苗选择的影响。群落组装动力学和网络鲁棒性分析突出了假单胞菌在影响拓扑特征和网络弹性方面的关键作用。这项研究的结果提供了对 Om 微生物网络复杂动态的全面见解,以及有针对性的微生物群驱动疫苗在蜱虫控制方面的潜力。
{"title":"Microbiota-driven vaccination in soft ticks: Implications for survival, fitness and reproductive capabilities in Ornithodoros moubata","authors":"Ana Laura Cano-Argüelles, Elianne Piloto-Sardiñas, Apolline Maitre, Lourdes Mateos-Hernández, Jennifer Maye, Alejandra Wu-Chuang, Lianet Abuin-Denis, Dasiel Obregón, Timothy Bamgbose, Ana Oleaga, Alejandro Cabezas-Cruz, Ricardo Pérez-Sánchez","doi":"10.1111/mec.17506","DOIUrl":"10.1111/mec.17506","url":null,"abstract":"<p>The <i>Ornithodoros moubata</i> (Om) soft tick, a vector for diseases like tick-borne human relapsing fever and African swine fever, poses challenges to conventional control methods. With diminishing insecticide efficacy, harnessing the tick's microbiota through innovative approaches like microbiota-driven vaccination emerges as a promising strategy for sustainable and targeted disease control. This study investigated the intricate relationship between <i>Pseudomonas</i>, a keystone taxon in the Om microbiome, and its impact on tick fitness, microbiome structure and network dynamics. Utilizing in silico analyses and empirical vaccination experiments, the role of <i>Pseudomonas</i> within microbial networks in the tick midguts (MG) and salivary glands (SG) of Om was studied. Additionally, the consequences of anti-microbiota vaccines targeting <i>Pseudomonas</i> and <i>Lactobacillus</i> on tick fitness, microbiome diversity and community assembly were explored. The result of the study shows that in Om, <i>Pseudomonas</i> plays a central role in microbial networks, influencing keystone species despite being categorized as peripheral (interacting with 47 different taxa, 13 of which are keystone species). Anti-microbiota vaccination targeting <i>Pseudomonas</i> and <i>Lactobacillus</i> yields distinct effects on tick fitness, with <i>Pseudomonas</i> vaccination significantly impacting female tick survival, while <i>Lactobacillus</i> significantly reduced oviposition and fertility. Microbiome changes post-vaccination reveal diversity alterations, emphasizing the impact of vaccine choice. Community assembly dynamics and network robustness analyses highlight <i>Pseudomonas</i>' pivotal role, in influencing topological features and network resilience. The findings of the study provide comprehensive insights into the intricate dynamics of Om microbial networks and the potential of targeted microbiota-driven vaccines for tick control.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 18","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17506","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuzhen Ming, Mamun Abdullah Al, Dandan Zhang, Wengen Zhu, Huanping Liu, Lanlan Cai, Xiaoli Yu, Kun Wu, Mingyang Niu, Qinglu Zeng, Zhili He, Qingyun Yan
Denitrification is a crucial process in the global nitrogen cycle, in which two functionally equivalent genes, nirS and nirK, catalyse the critical reaction and are usually used as marker genes. The nirK gene can function independently, whereas nirS requires additional genes to encode nitrite reductase and is more sensitive to environmental factors than nirK. However, the ecological differentiation mechanisms of those denitrifying microbial communities and their adaptation strategies to environmental stresses remain unclear. Here, we conducted metagenomic analysis for sediments and bioreactor samples from Lake Donghu, China. We found that nirS-type denitrifying communities had a significantly lower horizontal gene transfer frequency than that of nirK-type denitrifying communities, and nirS gene phylogeny was more congruent with taxonomy than that of nirK gene. Metabolic reconstruction of metagenome-assembled genomes further revealed that nirS-type denitrifying communities have robust metabolic systems for energy conservation, enabling them to survive under environmental stresses. Nevertheless, nirK-type denitrifying communities seemed to adapt to oxygen-limited environments with the ability to utilize various carbon and nitrogen compounds. Thus, this study provides novel insights into the ecological differentiation mechanism of nirS and nirK-type denitrifying communities, as well as the regulation of the global nitrogen cycle and greenhouse gas emissions.
{"title":"Insights into the evolutionary and ecological adaption strategies of nirS- and nirK-type denitrifying communities","authors":"Yuzhen Ming, Mamun Abdullah Al, Dandan Zhang, Wengen Zhu, Huanping Liu, Lanlan Cai, Xiaoli Yu, Kun Wu, Mingyang Niu, Qinglu Zeng, Zhili He, Qingyun Yan","doi":"10.1111/mec.17507","DOIUrl":"10.1111/mec.17507","url":null,"abstract":"<p>Denitrification is a crucial process in the global nitrogen cycle, in which two functionally equivalent genes, <i>nirS</i> and <i>nirK</i>, catalyse the critical reaction and are usually used as marker genes. The <i>nirK</i> gene can function independently, whereas <i>nirS</i> requires additional genes to encode nitrite reductase and is more sensitive to environmental factors than <i>nirK</i>. However, the ecological differentiation mechanisms of those denitrifying microbial communities and their adaptation strategies to environmental stresses remain unclear. Here, we conducted metagenomic analysis for sediments and bioreactor samples from Lake Donghu, China. We found that <i>nirS</i>-type denitrifying communities had a significantly lower horizontal gene transfer frequency than that of <i>nirK</i>-type denitrifying communities, and <i>nirS</i> gene phylogeny was more congruent with taxonomy than that of <i>nirK</i> gene. Metabolic reconstruction of metagenome-assembled genomes further revealed that <i>nirS</i>-type denitrifying communities have robust metabolic systems for energy conservation, enabling them to survive under environmental stresses. Nevertheless, <i>nirK</i>-type denitrifying communities seemed to adapt to oxygen-limited environments with the ability to utilize various carbon and nitrogen compounds. Thus, this study provides novel insights into the ecological differentiation mechanism of <i>nirS</i> and <i>nirK</i>-type denitrifying communities, as well as the regulation of the global nitrogen cycle and greenhouse gas emissions.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 18","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandre Hassanin, Vuong Tan Tu, Tamás Görföl, Lam Quang Ngon, Phu Van Pham, Chu Thi Hang, Tran Anh Tuan, Mathieu Prot, Etienne Simon-Lorière, Gábor Kemenesi, Gábor Endre Tóth, Laurent Moulin, Sébastien Wurtzer
Previous studies on horseshoe bats (Rhinolophus spp.) have described many coronaviruses related to SARS-CoV (SARSCoVr) in China and only a few coronaviruses related to SARS-CoV-2 (SARSCoV2r) in Yunnan (southern China), Cambodia, Laos and Thailand. Here, we report the results of several field missions carried out in 2017, 2021 and 2022 across Vietnam during which 1218 horseshoe bats were sampled from 19 locations. Sarbecoviruses were detected in 11% of faecal RNA extracts, with much more positives among Rhinolophus thomasi (46%). We assembled 38 Sarbecovirus genomes, including 32 SARSCoVr, four SARSCoV2r, and two recombinants of SARSCoVr and SARSCoV2r (RecSar), one showing a Spike protein very similar to SARS-CoV-2. We detected a bat co-infected with four coronaviruses, including two sarbecoviruses. Our analyses revealed that Sarbecovirus genomes evolve in Vietnam under strong geographical and host constraints. First, we found evidence for a deep separation between viruses from northern Vietnam and those from central and southern Vietnam. Second, we detected only SARSCoVr in Rhinolophus thomasi, both SARSCoVr and SARSCoV2r in Rhinolophus affinis, and only RecSar in Rhinolophus pusillus captured close to the border with China. Third, the bias in favour of Uracil in synonymous third codon positions of SARSCoVr extracted from R. thomasi showed a negative correlation with latitudes. Our results also provided support for an emergence of SARS-CoV in horseshoe bats from northern Yunnan and emergence of SARS-CoV-2 in horseshoe bats from northern Indochina subtropical forests (southern Yunnan, northern Laos and north-western Vietnam).
{"title":"Phylogeography of horseshoe bat sarbecoviruses in Vietnam and neighbouring countries. Implications for the origins of SARS-CoV and SARS-CoV-2","authors":"Alexandre Hassanin, Vuong Tan Tu, Tamás Görföl, Lam Quang Ngon, Phu Van Pham, Chu Thi Hang, Tran Anh Tuan, Mathieu Prot, Etienne Simon-Lorière, Gábor Kemenesi, Gábor Endre Tóth, Laurent Moulin, Sébastien Wurtzer","doi":"10.1111/mec.17486","DOIUrl":"10.1111/mec.17486","url":null,"abstract":"<p>Previous studies on horseshoe bats (<i>Rhinolophus</i> spp.) have described many coronaviruses related to SARS-CoV (<i>SARSCoVr</i>) in China and only a few coronaviruses related to SARS-CoV-2 (<i>SARSCoV2r</i>) in Yunnan (southern China), Cambodia, Laos and Thailand. Here, we report the results of several field missions carried out in 2017, 2021 and 2022 across Vietnam during which 1218 horseshoe bats were sampled from 19 locations. Sarbecoviruses were detected in 11% of faecal RNA extracts, with much more positives among <i>Rhinolophus thomasi</i> (46%). We assembled 38 <i>Sarbecovirus</i> genomes, including 32 <i>SARSCoVr</i>, four <i>SARSCoV2r</i>, and two recombinants of <i>SARSCoVr</i> and <i>SARSCoV2r</i> (<i>RecSar</i>), one showing a Spike protein very similar to SARS-CoV-2. We detected a bat co-infected with four coronaviruses, including two sarbecoviruses. Our analyses revealed that <i>Sarbecovirus</i> genomes evolve in Vietnam under strong geographical and host constraints. First, we found evidence for a deep separation between viruses from northern Vietnam and those from central and southern Vietnam. Second, we detected only <i>SARSCoVr</i> in <i>Rhinolophus thomasi</i>, both <i>SARSCoVr</i> and <i>SARSCoV2r</i> in <i>Rhinolophus affinis</i>, and only <i>RecSar</i> in <i>Rhinolophus pusillus</i> captured close to the border with China. Third, the bias in favour of Uracil in synonymous third codon positions of <i>SARSCoVr</i> extracted from <i>R. thomasi</i> showed a negative correlation with latitudes. Our results also provided support for an emergence of SARS-CoV in horseshoe bats from northern Yunnan and emergence of SARS-CoV-2 in horseshoe bats from northern Indochina subtropical forests (southern Yunnan, northern Laos and north-western Vietnam).</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 18","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17486","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luiz A. Cauz-Santos, Rosabelle Samuel, Dominik Metschina, Maarten J. M. Christenhusz, Steven Dodsworth, Kingsley W. Dixon, John G. Conran, Ovidiu Paun, Mark W. Chase
Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.
在过去的 600 万年里,干旱的澳大利亚埃里米安区(EZ)一直保持着今天的干燥状态。一种广为接受的假说认为,在干旱化开始之前,干旱地区的动植物分布更为广泛。在澳大利亚,这一过程大约始于 2000 万年前,随着气候变得越来越干旱,物种也逐渐分化。在此,我们利用基因组数据研究了原生异源四倍体烟草(Nicotiana section Suaveolentes,茄科)的生物地理学和分化时间。来自南美洲的原始全四倍体移民适应了澳大利亚的中生地区,最近在EZ地区,包括沙丘地带(仅有1.2Ma的历史),发展了对干旱的适应。聚合分析和最大似然法分析表明,烟草属(Nicotiana)Suaveolentes部分在公元前6年左右到达澳大利亚大陆,而皮尔巴拉(西澳大利亚)品系的祖先则是在公元前5年极端干旱开始时,通过在当地适应这些不同的古老、高度稳定的栖息地而辐射到澳大利亚大陆的。因此,皮尔巴拉既是中温带的避难所,也是适应更恶劣条件的摇篮,因为这里地形多样,提供了不同湿度的微生境,而且靠近海洋,可以缓冲极端干旱。这使得烟草等物种能够在中温带的缓冲地带生存下来,随后适应更干旱的条件。这些结果表明,最初适应性较差的植物群体可以在原地发展出新的适应性,从而在 EZ 极端条件变化多端、难以预测的情况下仍能广泛而迅速地扩散。
{"title":"Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts","authors":"Luiz A. Cauz-Santos, Rosabelle Samuel, Dominik Metschina, Maarten J. M. Christenhusz, Steven Dodsworth, Kingsley W. Dixon, John G. Conran, Ovidiu Paun, Mark W. Chase","doi":"10.1111/mec.17498","DOIUrl":"10.1111/mec.17498","url":null,"abstract":"<p>Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, <i>Nicotiana</i> section <i>Suaveolentes</i> (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that <i>Nicotiana</i> section <i>Suaveolentes</i> arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like <i>Nicotiana</i> to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 18","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17498","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rachael M. Giglio, Courtney F. Bowden, Ryan K. Brook, Antoinette J. Piaggio, Timothy J. Smyser
Globalization has led to the frequent movement of species out of their native habitat. Some of these species become highly invasive and capable of profoundly altering invaded ecosystems. Feral swine (Sus scrofa × domesticus) are recognized as being among the most destructive invasive species, with populations established on all continents except Antarctica. Within the United States (US), feral swine are responsible for extensive crop damage, the destruction of native ecosystems, and the spread of disease. Purposeful human-mediated movement of feral swine has contributed to their rapid range expansion over the past 30 years. Patterns of deliberate introduction of feral swine have not been well described as populations may be established or augmented through small, undocumented releases. By leveraging an extensive genomic database of 18,789 samples genotyped at 35,141 single nucleotide polymorphisms (SNPs), we used deep neural networks to identify translocated feral swine across the contiguous US. We classified 20% (3364/16,774) of sampled animals as having been translocated and described general patterns of translocation using measures of centrality in a network analysis. These findings unveil extensive movement of feral swine well beyond their dispersal capabilities, including individuals with predicted origins >1000 km away from their sampling locations. Our study provides insight into the patterns of human-mediated movement of feral swine across the US and from Canada to the northern areas of the US. Further, our study validates the use of neural networks for studying the spread of invasive species.
{"title":"Characterizing feral swine movement across the contiguous United States using neural networks and genetic data","authors":"Rachael M. Giglio, Courtney F. Bowden, Ryan K. Brook, Antoinette J. Piaggio, Timothy J. Smyser","doi":"10.1111/mec.17489","DOIUrl":"10.1111/mec.17489","url":null,"abstract":"<p>Globalization has led to the frequent movement of species out of their native habitat. Some of these species become highly invasive and capable of profoundly altering invaded ecosystems. Feral swine (<i>Sus scrofa</i> × <i>domesticus</i>) are recognized as being among the most destructive invasive species, with populations established on all continents except Antarctica. Within the United States (US), feral swine are responsible for extensive crop damage, the destruction of native ecosystems, and the spread of disease. Purposeful human-mediated movement of feral swine has contributed to their rapid range expansion over the past 30 years. Patterns of deliberate introduction of feral swine have not been well described as populations may be established or augmented through small, undocumented releases. By leveraging an extensive genomic database of 18,789 samples genotyped at 35,141 single nucleotide polymorphisms (SNPs), we used deep neural networks to identify translocated feral swine across the contiguous US. We classified 20% (3364/16,774) of sampled animals as having been translocated and described general patterns of translocation using measures of centrality in a network analysis. These findings unveil extensive movement of feral swine well beyond their dispersal capabilities, including individuals with predicted origins >1000 km away from their sampling locations. Our study provides insight into the patterns of human-mediated movement of feral swine across the US and from Canada to the northern areas of the US. Further, our study validates the use of neural networks for studying the spread of invasive species.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 17","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17489","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiujie Zhou, Piyal Karunarathne, Lili Andersson-Li, Chen Chen, Lars Opgenoorth, Katrin Heer, Andrea Piotti, Giovanni Giuseppe Vendramin, Elena Nakvasina, Martin Lascoux, Pascal Milesi
Most tree species underwent cycles of contraction and expansion during the Quaternary. These cycles led to an ancient and complex genetic structure that has since been affected by extensive gene flow and by strong local adaptation. The extent to which hybridization played a role in this multi-layered genetic structure is important to be investigated. To study the effect of hybridization on the joint population genetic structure of two dominant species of the Eurasian boreal forest, Picea abies and P. obovata, we used targeted resequencing and obtained around 480 K nuclear SNPs and 87 chloroplast SNPs in 542 individuals sampled across most of their distribution ranges. Despite extensive gene flow and a clear pattern of Isolation-by-Distance, distinct genetic clusters emerged, indicating the presence of barriers and corridors to migration. Two cryptic refugia located in the large hybrid zone between the two species played a critical role in shaping their current distributions. The two species repeatedly hybridized during the Pleistocene and the direction of introgression depended on latitude. Our study suggests that hybridization helped both species to overcome main shifts in their distribution ranges during glacial cycles and highlights the importance of considering whole species complex instead of separate entities to retrieve complex demographic histories.
{"title":"Recurrent hybridization and gene flow shaped Norway and Siberian spruce evolutionary history over multiple glacial cycles","authors":"Qiujie Zhou, Piyal Karunarathne, Lili Andersson-Li, Chen Chen, Lars Opgenoorth, Katrin Heer, Andrea Piotti, Giovanni Giuseppe Vendramin, Elena Nakvasina, Martin Lascoux, Pascal Milesi","doi":"10.1111/mec.17495","DOIUrl":"10.1111/mec.17495","url":null,"abstract":"<p>Most tree species underwent cycles of contraction and expansion during the Quaternary. These cycles led to an ancient and complex genetic structure that has since been affected by extensive gene flow and by strong local adaptation. The extent to which hybridization played a role in this multi-layered genetic structure is important to be investigated. To study the effect of hybridization on the joint population genetic structure of two dominant species of the Eurasian boreal forest, <i>Picea abies</i> and <i>P. obovata</i>, we used targeted resequencing and obtained around 480 K nuclear SNPs and 87 chloroplast SNPs in 542 individuals sampled across most of their distribution ranges. Despite extensive gene flow and a clear pattern of Isolation-by-Distance, distinct genetic clusters emerged, indicating the presence of barriers and corridors to migration. Two cryptic refugia located in the large hybrid zone between the two species played a critical role in shaping their current distributions. The two species repeatedly hybridized during the Pleistocene and the direction of introgression depended on latitude. Our study suggests that hybridization helped both species to overcome main shifts in their distribution ranges during glacial cycles and highlights the importance of considering whole species complex instead of separate entities to retrieve complex demographic histories.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"33 17","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17495","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}