The growing production of cosmetic products such as organic UV filters (OUVFs) in recent years has raised concern regarding their safety to human and environmental health. The inability of wastewater treatment plants in removing these chemical entities and their high octanol-water partition coefficient values tend to result in the persistence of OUVFs in several environmental matrices, leading these to be categorized as "emerging environmental contaminants" because of their unknown risk. Besides aquatic ecosystem contamination, the application of sludge disposal equally threatens terrestrial biota. Besides, the available reviews focusing on levels of OUVFs in aqueous systems (freshwater and marine), instrumental analysis from various samples, and specific toxicity effects, compiled information on the ecotoxicity of OUVFs is currently lacking. Hence, the present manuscript systematically reviews the ecotoxicity of OUVFs in freshwater and marine organisms occupying lower to higher trophic levels, including the underlying mechanisms of action and current knowledge gaps. The available scientific evidence suggests that OUVFs are a prime candidate for environmental concern due to their potential toxic effects. To the best of our knowledge, this is the first document detailing the toxicological effects of OUVFs in aquatic organisms.
{"title":"A Systematic Review on Occurrence and Ecotoxicity of Organic UV Filters in Aquatic Organisms.","authors":"Ved Prakash, Sadasivam Anbumani","doi":"10.1007/398_2021_68","DOIUrl":"https://doi.org/10.1007/398_2021_68","url":null,"abstract":"<p><p>The growing production of cosmetic products such as organic UV filters (OUVFs) in recent years has raised concern regarding their safety to human and environmental health. The inability of wastewater treatment plants in removing these chemical entities and their high octanol-water partition coefficient values tend to result in the persistence of OUVFs in several environmental matrices, leading these to be categorized as \"emerging environmental contaminants\" because of their unknown risk. Besides aquatic ecosystem contamination, the application of sludge disposal equally threatens terrestrial biota. Besides, the available reviews focusing on levels of OUVFs in aqueous systems (freshwater and marine), instrumental analysis from various samples, and specific toxicity effects, compiled information on the ecotoxicity of OUVFs is currently lacking. Hence, the present manuscript systematically reviews the ecotoxicity of OUVFs in freshwater and marine organisms occupying lower to higher trophic levels, including the underlying mechanisms of action and current knowledge gaps. The available scientific evidence suggests that OUVFs are a prime candidate for environmental concern due to their potential toxic effects. To the best of our knowledge, this is the first document detailing the toxicological effects of OUVFs in aquatic organisms.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"257 ","pages":"121-161"},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39463461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Endemic fluorosis in Guizhou Province, Southwest China was firstly reported by Lyth in 1946 and was extensively concerned since the early 1980s. Initially, the pathological cause of endemic fluorosis in Guizhou Province was instinctively ascribed to the drinking water. However, increasing evidences pointed that the major exposure route of fluorine for the local residents is via the roasted foodstuffs, especially the roasted pepper and corn. Source of fluorine in roasted foodstuffs was once blamed on the local coal and subsequently imputed to clay mixed in the coal. In fact, both are probably the source. Geogenic fluorine concentration in soil and clay is indeed high in Guizhou Province, but is not likely to be the direct cause for endemic fluorosis. The real culprit for endemic fluorosis in Guizhou Province is the unhealthy lifestyle of the local residents, who usually roasted their foodstuffs using local coal or briquettes (a mixture of coal and clay), resulting in the elevated fluorine in roasted foodstuffs. Nowadays, endemic fluorosis in Guizhou Province has substantially mitigated. Nevertheless, millions of confirmed cases of dental fluorosis remain left. In addition to endemic fluorosis, other health problems associated with domestic coal burning may also exist, because of the enrichment of toxic/harmful elements in the local coal. It is necessary to determine how serious the situation is and find out the possible solution. As people in other developing countries may suffer from similar health issues, same health issues around the world deserve more attention.
{"title":"Review on Health Impacts from Domestic Coal Burning: Emphasis on Endemic Fluorosis in Guizhou Province, Southwest China.","authors":"Jianyang Guo, Hongchen Wu, Zhiqi Zhao, Jingfu Wang, Haiqing Liao","doi":"10.1007/398_2021_71","DOIUrl":"https://doi.org/10.1007/398_2021_71","url":null,"abstract":"<p><p>Endemic fluorosis in Guizhou Province, Southwest China was firstly reported by Lyth in 1946 and was extensively concerned since the early 1980s. Initially, the pathological cause of endemic fluorosis in Guizhou Province was instinctively ascribed to the drinking water. However, increasing evidences pointed that the major exposure route of fluorine for the local residents is via the roasted foodstuffs, especially the roasted pepper and corn. Source of fluorine in roasted foodstuffs was once blamed on the local coal and subsequently imputed to clay mixed in the coal. In fact, both are probably the source. Geogenic fluorine concentration in soil and clay is indeed high in Guizhou Province, but is not likely to be the direct cause for endemic fluorosis. The real culprit for endemic fluorosis in Guizhou Province is the unhealthy lifestyle of the local residents, who usually roasted their foodstuffs using local coal or briquettes (a mixture of coal and clay), resulting in the elevated fluorine in roasted foodstuffs. Nowadays, endemic fluorosis in Guizhou Province has substantially mitigated. Nevertheless, millions of confirmed cases of dental fluorosis remain left. In addition to endemic fluorosis, other health problems associated with domestic coal burning may also exist, because of the enrichment of toxic/harmful elements in the local coal. It is necessary to determine how serious the situation is and find out the possible solution. As people in other developing countries may suffer from similar health issues, same health issues around the world deserve more attention.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"258 ","pages":"1-25"},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39500188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Shahid, Natasha, Camille Dumat, Nabeel Khan Niazi, Tian Tian Xiong, Abu Bakr Umer Farooq, Sana Khalid
Atmospheric contamination by heavy metal-enriched particulate matter (metal-PM) is highly topical nowadays because of its high persistence and toxic nature. Metal-PMs are emitted to the atmosphere by various natural and anthropogenic activities, the latter being the major source. After being released into the atmosphere, metal-PM can travel over a long distance and can deposit on the buildings, water, soil, and plant canopy. In this way, these metal-PMs can contaminate different parts of the ecosystem. In addition, metal-PMs can be directly inhaled by humans and induce several health effects. Therefore, it is of great importance to understand the fate and behavior of these metal-PMs in the environment. In this review, we highlighted the atmospheric contamination by metal-PMs, possible sources, speciation, transport over a long distance, and deposition on soil, plants, and buildings. This review also describes the foliar deposition and uptake of metal-PMs by plants. Moreover, the inhalation of these metal-PMs by humans and the associated health risks have been critically discussed. Finally, the article proposed some key management strategies and future perspectives along with the summary of the entire review. The abovementioned facts about the biogeochemical behavior of metal-PMs in the ecosystem have been supported with well-summarized tables (total 14) and figures (4), which make this review article highly informative and useful for researchers, scientists, students, policymakers, and the organizations involved in development and management. It is proposed that management strategies should be developed and adapted to cope with atmospheric release and contamination of metal-PM.
{"title":"Ecotoxicology of Heavy Metal(loid)-Enriched Particulate Matter: Foliar Accumulation by Plants and Health Impacts.","authors":"Muhammad Shahid, Natasha, Camille Dumat, Nabeel Khan Niazi, Tian Tian Xiong, Abu Bakr Umer Farooq, Sana Khalid","doi":"10.1007/398_2019_38","DOIUrl":"https://doi.org/10.1007/398_2019_38","url":null,"abstract":"<p><p>Atmospheric contamination by heavy metal-enriched particulate matter (metal-PM) is highly topical nowadays because of its high persistence and toxic nature. Metal-PMs are emitted to the atmosphere by various natural and anthropogenic activities, the latter being the major source. After being released into the atmosphere, metal-PM can travel over a long distance and can deposit on the buildings, water, soil, and plant canopy. In this way, these metal-PMs can contaminate different parts of the ecosystem. In addition, metal-PMs can be directly inhaled by humans and induce several health effects. Therefore, it is of great importance to understand the fate and behavior of these metal-PMs in the environment. In this review, we highlighted the atmospheric contamination by metal-PMs, possible sources, speciation, transport over a long distance, and deposition on soil, plants, and buildings. This review also describes the foliar deposition and uptake of metal-PMs by plants. Moreover, the inhalation of these metal-PMs by humans and the associated health risks have been critically discussed. Finally, the article proposed some key management strategies and future perspectives along with the summary of the entire review. The abovementioned facts about the biogeochemical behavior of metal-PMs in the ecosystem have been supported with well-summarized tables (total 14) and figures (4), which make this review article highly informative and useful for researchers, scientists, students, policymakers, and the organizations involved in development and management. It is proposed that management strategies should be developed and adapted to cope with atmospheric release and contamination of metal-PM.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"253 ","pages":"65-113"},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/398_2019_38","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37509635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unconventional methods of oil and natural gas extraction have been a growing part of North America's energy sector for the past 20-30 years. Technologies such as horizontal hydraulic fracturing have facilitated the exploitation of geologic reserves that were previously resistant to standard drilling approaches. However, the environmental risks associated with hydraulic fracturing are relatively understudied. One such hazard is the wastewater by-product of hydraulic fracturing processes: flowback and produced water (FPW). During FPW production, transport, and storage, there are many potential pathways for environmental exposure. In the current review, toxicological hazards associated with FPW surface water contamination events and potential effects on freshwater biota are assessed. This review contains an extensive survey of chemicals commonly associated with FPW samples from shale formations across North America and median 50% lethal concentration values (LC50) of corresponding chemicals for many freshwater organisms. We identify the characteristics of FPW which may have the greatest potential to be drivers of toxicity to freshwater organisms. Notably, components associated with salinity, the organic fraction, and metal species are reviewed. Additionally, we examine the current state of FPW production in North America and identify the most significant obstacles impeding proper risk assessment development when environmental contamination events of this wastewater occur. Findings within this study will serve to catalyze further work on areas currently lacking in FPW research, including expanded whole effluent testing, repeated and chronic FPW exposure studies, and toxicity identification evaluations.
{"title":"Investigating the Potential Toxicity of Hydraulic Fracturing Flowback and Produced Water Spills to Aquatic Animals in Freshwater Environments: A North American Perspective.","authors":"Erik J Folkerts, Greg G Goss, Tamzin A Blewett","doi":"10.1007/398_2020_43","DOIUrl":"https://doi.org/10.1007/398_2020_43","url":null,"abstract":"<p><p>Unconventional methods of oil and natural gas extraction have been a growing part of North America's energy sector for the past 20-30 years. Technologies such as horizontal hydraulic fracturing have facilitated the exploitation of geologic reserves that were previously resistant to standard drilling approaches. However, the environmental risks associated with hydraulic fracturing are relatively understudied. One such hazard is the wastewater by-product of hydraulic fracturing processes: flowback and produced water (FPW). During FPW production, transport, and storage, there are many potential pathways for environmental exposure. In the current review, toxicological hazards associated with FPW surface water contamination events and potential effects on freshwater biota are assessed. This review contains an extensive survey of chemicals commonly associated with FPW samples from shale formations across North America and median 50% lethal concentration values (LC<sub>50</sub>) of corresponding chemicals for many freshwater organisms. We identify the characteristics of FPW which may have the greatest potential to be drivers of toxicity to freshwater organisms. Notably, components associated with salinity, the organic fraction, and metal species are reviewed. Additionally, we examine the current state of FPW production in North America and identify the most significant obstacles impeding proper risk assessment development when environmental contamination events of this wastewater occur. Findings within this study will serve to catalyze further work on areas currently lacking in FPW research, including expanded whole effluent testing, repeated and chronic FPW exposure studies, and toxicity identification evaluations.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"254 ","pages":"1-56"},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/398_2020_43","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37859942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Femi F Oloye, Oluwabunmi P Femi-Oloye, Jonathan K Challis, Paul D Jones, John P Giesy
Safeners are a group of chemicals applied with herbicides to protect crop plants from potential adverse effects of agricultural products used to kill weeds in monocotyledonous crops. Various routes of dissipation of safeners from their point of applications were evaluated. Despite the large numbers of safeners (over 18) commercially available and the relatively large quantities (~2 × 106 kg/year) used, there is little information on their mobility and fate in the environment and occurrence in various environmental matrices. The only class of safeners for which a significant amount of information is available is dichloroacetamide safeners, which have been observed in some rivers in the USA at concentrations ranging from 42 to 190 ng/L. Given this gap in the literature, there is a clear need to determine the occurrence, fate, and bioavailability of other classes of safeners. Furthermore, since safeners are typically used in commercial formulations, it is useful to study them in relation to their corresponding herbicides. Common routes of dissipation for herbicides and applied safeners are surface run off (erosion), hydrolysis, photolysis, sorption, leaching, volatilization, and microbial degradation. Toxic potencies of safeners vary among organisms and safener compounds, ranging from as low as the LC50 for fish (Oncorhynchus mykiss) for isoxadifen-ethyl, which was 0.34 mg/L, to as high as the LC50 for Daphnia magna from dichlormid, which was 161 mg/L. Solubilities and octanol-water partition coefficients seem to be the principal driving force in understanding safener mobilities. This paper provides an up-to-date literature review regarding the occurrence, behaviour, and toxic potency of herbicide safeners and identifies important knowledge gaps in our understanding of these compounds and the potential risks posed to potentially impacted ecosystems.
{"title":"Dissipation, Fate, and Toxicity of Crop Protection Chemical Safeners in Aquatic Environments.","authors":"Femi F Oloye, Oluwabunmi P Femi-Oloye, Jonathan K Challis, Paul D Jones, John P Giesy","doi":"10.1007/398_2021_70","DOIUrl":"https://doi.org/10.1007/398_2021_70","url":null,"abstract":"<p><p>Safeners are a group of chemicals applied with herbicides to protect crop plants from potential adverse effects of agricultural products used to kill weeds in monocotyledonous crops. Various routes of dissipation of safeners from their point of applications were evaluated. Despite the large numbers of safeners (over 18) commercially available and the relatively large quantities (~2 × 10<sup>6</sup> kg/year) used, there is little information on their mobility and fate in the environment and occurrence in various environmental matrices. The only class of safeners for which a significant amount of information is available is dichloroacetamide safeners, which have been observed in some rivers in the USA at concentrations ranging from 42 to 190 ng/L. Given this gap in the literature, there is a clear need to determine the occurrence, fate, and bioavailability of other classes of safeners. Furthermore, since safeners are typically used in commercial formulations, it is useful to study them in relation to their corresponding herbicides. Common routes of dissipation for herbicides and applied safeners are surface run off (erosion), hydrolysis, photolysis, sorption, leaching, volatilization, and microbial degradation. Toxic potencies of safeners vary among organisms and safener compounds, ranging from as low as the LC<sub>50</sub> for fish (Oncorhynchus mykiss) for isoxadifen-ethyl, which was 0.34 mg/L, to as high as the LC<sub>50</sub> for Daphnia magna from dichlormid, which was 161 mg/L. Solubilities and octanol-water partition coefficients seem to be the principal driving force in understanding safener mobilities. This paper provides an up-to-date literature review regarding the occurrence, behaviour, and toxic potency of herbicide safeners and identifies important knowledge gaps in our understanding of these compounds and the potential risks posed to potentially impacted ecosystems.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"258 ","pages":"27-53"},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39421835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ignacio Fernández-Olmo, Paula Mantecón, Bohdana Markiv, Laura Ruiz-Azcona, Miguel Santibáñez
The occupational exposure to airborne manganese (Mn) has been linked for decades with neurological effects. With respect to its environmental exposure, the first reviews on this matter stated that the risk posed to human health by this kind of exposure was still unknown. Later, many studies have been developed to analyze the association between environmental Mn exposure and health effects, most of them including the measure of Mn in selected human biomarkers. This review aims at collecting and organizing the literature dealing with the environmental airborne Mn exposure (other routes of exposure were intentionally removed from this review), the biomonitoring of this metal in different body matrices (e.g., blood, urine, nails, hair), and the association between exposure and several adverse health effects, such as, e.g., neurocognitive, neurodevelopmental, or neurobehavioral outcomes. From the different exposure routes, inhalation was the only one considered in this review, to take into account the areas influenced by industrial activities closely related to the Mn industry (ferromanganese and silicomanganese plants, Mn ore mines, and their processing plants) and by traffic in countries where a fuel additive, methylcyclopentadienyl manganese tricarbonyl (MMT), has been used for years. In these areas, high air Mn levels have been reported in comparison with the annual Reference Concentration (RfC) given by the US EPA for Mn, 50 ng/m3. This review was performed using Scopus and MEDLINE databases with a keyword search strategy that took into account that each valid reference should include at least participants that were exposed to environmental airborne Mn and that were subjected to analysis of Mn in biomarkers or subjected to neurological/neuropsychological tests or both. Overall, 47 references matching these criteria were included in the discussion. Most of them report the measure of Mn in selected biomarkers (N = 43) and the assessment of different neurological outcomes (N = 31). A negative association is usually obtained between Mn levels in hair and some neurological outcomes, such as cognitive, motor, olfactory, and emotional functions, but not always significant. However, other biomarkers, such as blood and urine, do not seem to reflect the chronic environmental exposure to low/moderate levels of airborne Mn. Further studies combining the determination of the Mn exposure through environmental airborne sources and biomarkers of exposure and the evaluation of at least cognitive and motor functions are needed to better understand the effects of chronic non-occupational exposure to airborne Mn.
{"title":"A Review on the Environmental Exposure to Airborne Manganese, Biomonitoring, and Neurological/Neuropsychological Outcomes.","authors":"Ignacio Fernández-Olmo, Paula Mantecón, Bohdana Markiv, Laura Ruiz-Azcona, Miguel Santibáñez","doi":"10.1007/398_2020_46","DOIUrl":"https://doi.org/10.1007/398_2020_46","url":null,"abstract":"<p><p>The occupational exposure to airborne manganese (Mn) has been linked for decades with neurological effects. With respect to its environmental exposure, the first reviews on this matter stated that the risk posed to human health by this kind of exposure was still unknown. Later, many studies have been developed to analyze the association between environmental Mn exposure and health effects, most of them including the measure of Mn in selected human biomarkers. This review aims at collecting and organizing the literature dealing with the environmental airborne Mn exposure (other routes of exposure were intentionally removed from this review), the biomonitoring of this metal in different body matrices (e.g., blood, urine, nails, hair), and the association between exposure and several adverse health effects, such as, e.g., neurocognitive, neurodevelopmental, or neurobehavioral outcomes. From the different exposure routes, inhalation was the only one considered in this review, to take into account the areas influenced by industrial activities closely related to the Mn industry (ferromanganese and silicomanganese plants, Mn ore mines, and their processing plants) and by traffic in countries where a fuel additive, methylcyclopentadienyl manganese tricarbonyl (MMT), has been used for years. In these areas, high air Mn levels have been reported in comparison with the annual Reference Concentration (RfC) given by the US EPA for Mn, 50 ng/m<sup>3</sup>. This review was performed using Scopus and MEDLINE databases with a keyword search strategy that took into account that each valid reference should include at least participants that were exposed to environmental airborne Mn and that were subjected to analysis of Mn in biomarkers or subjected to neurological/neuropsychological tests or both. Overall, 47 references matching these criteria were included in the discussion. Most of them report the measure of Mn in selected biomarkers (N = 43) and the assessment of different neurological outcomes (N = 31). A negative association is usually obtained between Mn levels in hair and some neurological outcomes, such as cognitive, motor, olfactory, and emotional functions, but not always significant. However, other biomarkers, such as blood and urine, do not seem to reflect the chronic environmental exposure to low/moderate levels of airborne Mn. Further studies combining the determination of the Mn exposure through environmental airborne sources and biomarkers of exposure and the evaluation of at least cognitive and motor functions are needed to better understand the effects of chronic non-occupational exposure to airborne Mn.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"254 ","pages":"85-130"},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/398_2020_46","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37992608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esperanza Gil-Jiménez, Manuela de Lucas, Miguel Ferrer
Metalliferous mining, a major source of metals and metalloids, has severe potential environmental impacts. However, the number of papers published in international peer-reviewed journals seems to be low regarding its effects in terrestrial wildlife. To the best of our knowledge, our review is the first on this topic. We used 186 studies published in scientific journals concerning metalliferous mining or mining spill pollution and their effects on terrestrial and semi-terrestrial vertebrates. We identified the working status of the mine complexes studied, the different biomarkers of exposure and effect used, and the studied taxa. Most studies (128) were developed in former mine sites and 46 in active mining areas. Additionally, although several mining accidents have occurred throughout the world, all papers about effects on terrestrial vertebrates from mining spillages were from Aznalcóllar (Spain). We also observed a lack of studies in some countries with a prominent mining industry. Despite >50% of the studies used some biomarker of effect, 42% of them only assessed exposure by measuring metal content in internal tissues or by non-invasive sampling, without considering the effect in their populations. Most studied species were birds and small mammals, with a negligible representation of reptiles and amphibians. The information gathered in this review could be helpful for future studies and protocols on the topic and it facilitates a database with valuable information on risk assessment of metalliferous mining pollution.
{"title":"Metalliferous Mining Pollution and Its Impact on Terrestrial and Semi-terrestrial Vertebrates: A Review.","authors":"Esperanza Gil-Jiménez, Manuela de Lucas, Miguel Ferrer","doi":"10.1007/398_2021_65","DOIUrl":"https://doi.org/10.1007/398_2021_65","url":null,"abstract":"<p><p>Metalliferous mining, a major source of metals and metalloids, has severe potential environmental impacts. However, the number of papers published in international peer-reviewed journals seems to be low regarding its effects in terrestrial wildlife. To the best of our knowledge, our review is the first on this topic. We used 186 studies published in scientific journals concerning metalliferous mining or mining spill pollution and their effects on terrestrial and semi-terrestrial vertebrates. We identified the working status of the mine complexes studied, the different biomarkers of exposure and effect used, and the studied taxa. Most studies (128) were developed in former mine sites and 46 in active mining areas. Additionally, although several mining accidents have occurred throughout the world, all papers about effects on terrestrial vertebrates from mining spillages were from Aznalcóllar (Spain). We also observed a lack of studies in some countries with a prominent mining industry. Despite >50% of the studies used some biomarker of effect, 42% of them only assessed exposure by measuring metal content in internal tissues or by non-invasive sampling, without considering the effect in their populations. Most studied species were birds and small mammals, with a negligible representation of reptiles and amphibians. The information gathered in this review could be helpful for future studies and protocols on the topic and it facilitates a database with valuable information on risk assessment of metalliferous mining pollution.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"256 ","pages":"1-69"},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39581796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plastic has been an incredibly useful and indispensable material in all aspects of human life. Without it many advances in medicine, technology or industry would not have been possible. However, its easy accessibility and low cost have led to global misuse. Basically, the production of the plastics from different chemical agents is very easy but unfortunately difficult to reuse or recycle, and it is thrown away as litter, incinerated or disposed of in landfill. Plastic once in the environment begins to degrade to very small sizes. Thus, many animals mistake them for food, so plastic enters a marine, terrestrial or freshwater food web. These microplastics although chemically inert have been shown to act as tiny "bio-sponges" for harmful chemicals found in the environment changing the nature of a plastic particle from chemically harmless to potentially toxic. It was believed that microparticles would simply pass through the gastrointestinal tract of animals and humans with no biological effect. However, studies have shown that they are sometimes taken up and distributed throughout the circulatory and lymphatic system and may be stored in the fatty tissues of different organisms. The result of the uptake of them showed potential carcinogenic effects, liver dysfunction and endocrine disruption. This review focuses on micro- and nanoplastics and their way entering marine and freshwater food webs, with particular attention to microplastic trophic transfer, their toxic side effects and influence to the human consumer in health and safety in the future.
{"title":"Microplastics in the Food Chain: Food Safety and Environmental Aspects.","authors":"József Lehel, Sadhbh Murphy","doi":"10.1007/398_2021_77","DOIUrl":"https://doi.org/10.1007/398_2021_77","url":null,"abstract":"<p><p>Plastic has been an incredibly useful and indispensable material in all aspects of human life. Without it many advances in medicine, technology or industry would not have been possible. However, its easy accessibility and low cost have led to global misuse. Basically, the production of the plastics from different chemical agents is very easy but unfortunately difficult to reuse or recycle, and it is thrown away as litter, incinerated or disposed of in landfill. Plastic once in the environment begins to degrade to very small sizes. Thus, many animals mistake them for food, so plastic enters a marine, terrestrial or freshwater food web. These microplastics although chemically inert have been shown to act as tiny \"bio-sponges\" for harmful chemicals found in the environment changing the nature of a plastic particle from chemically harmless to potentially toxic. It was believed that microparticles would simply pass through the gastrointestinal tract of animals and humans with no biological effect. However, studies have shown that they are sometimes taken up and distributed throughout the circulatory and lymphatic system and may be stored in the fatty tissues of different organisms. The result of the uptake of them showed potential carcinogenic effects, liver dysfunction and endocrine disruption. This review focuses on micro- and nanoplastics and their way entering marine and freshwater food webs, with particular attention to microplastic trophic transfer, their toxic side effects and influence to the human consumer in health and safety in the future.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"259 ","pages":"1-49"},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39512409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the continued growth in plastic production, its ubiquitous use and insufficient waste management and disposal, the increased levels of plastics in the environment have led to growing ecological concerns. The breakdown of these plastic macromolecules to smaller micro and nanosized particles and their detection in the aerial, aquatic, marine and terrestrial environments has been reviewed extensively, especially for thermoplastics. However, the formation of micro and nanoplastics has typically been explained as a physical abrasion process, largely overlooking the underlying chemical structure-morphology correlations to the degradation mechanisms of the plastics. This is particularly true for the common commodity thermosets. This review focuses on the degradation pathways for the most widely produced commodity thermoplastics and thermosets into microplastics (MP)s and nanoplastics (NP)s, as well as their behaviour and associated toxicity. Special emphasis is placed on NPs, which are associated with greater risks for toxicity compared to MPs, due to their higher surface area to volume ratios. This review also assesses the current state of standardized detection and quantification methods as well as comprehensive regulations for these fragments in the aquatic environment.
{"title":"Role of Structural Morphology of Commodity Polymers in Microplastics and Nanoplastics Formation: Fragmentation, Effects and Associated Toxicity in the Aquatic Environment.","authors":"Cassandra Johannessen, Shegufa Shetranjiwalla","doi":"10.1007/398_2021_80","DOIUrl":"https://doi.org/10.1007/398_2021_80","url":null,"abstract":"<p><p>With the continued growth in plastic production, its ubiquitous use and insufficient waste management and disposal, the increased levels of plastics in the environment have led to growing ecological concerns. The breakdown of these plastic macromolecules to smaller micro and nanosized particles and their detection in the aerial, aquatic, marine and terrestrial environments has been reviewed extensively, especially for thermoplastics. However, the formation of micro and nanoplastics has typically been explained as a physical abrasion process, largely overlooking the underlying chemical structure-morphology correlations to the degradation mechanisms of the plastics. This is particularly true for the common commodity thermosets. This review focuses on the degradation pathways for the most widely produced commodity thermoplastics and thermosets into microplastics (MP)s and nanoplastics (NP)s, as well as their behaviour and associated toxicity. Special emphasis is placed on NPs, which are associated with greater risks for toxicity compared to MPs, due to their higher surface area to volume ratios. This review also assesses the current state of standardized detection and quantification methods as well as comprehensive regulations for these fragments in the aquatic environment.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"259 ","pages":"123-169"},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39520649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chloé Bonnineau, Joan Artigas, Betty Chaumet, Aymeric Dabrin, Juliette Faburé, Benoît J D Ferrari, Jérémie D Lebrun, Christelle Margoum, Nicolas Mazzella, Cécile Miège, Soizic Morin, Emmanuelle Uher, Marc Babut, Stéphane Pesce
In freshwater environments, microbial assemblages attached to submerged substrates play an essential role in ecosystem processes such as primary production, supported by periphyton, or organic matter decomposition, supported by microbial communities attached to leaf litter or sediments. These microbial assemblages, also called biofilms, are not only involved in nutrients fluxes but also in contaminants dynamics. Biofilms can accumulate metals and organic contaminants transported by the water flow and/or adsorbed onto substrates. Furthermore, due to their high metabolic activity and their role in aquatic food webs, microbial biofilms are also likely to influence contaminant fate in aquatic ecosystems. In this review, we provide (1) a critical overview of the analytical methods currently in use for detecting and quantifying metals and organic micropollutants in microbial biofilms attached to benthic substrata (rocks, sediments, leaf litter); (2) a review of the distribution of those contaminants within aquatic biofilms and the role of these benthic microbial communities in contaminant fate; (3) a set of future challenges concerning the role of biofilms in contaminant accumulation and trophic transfers in the aquatic food web. This literature review highlighted that most knowledge on the interaction between biofilm and contaminants is focused on contaminants dynamics in periphyton while technical limitations are still preventing a thorough estimation of contaminants accumulation in biofilms attached to leaf litter or sediments. In addition, microbial biofilms represent an important food resource in freshwater ecosystems, yet their role in dietary contaminant exposure has been neglected for a long time, and the importance of biofilms in trophic transfer of contaminants is still understudied.
{"title":"Role of Biofilms in Contaminant Bioaccumulation and Trophic Transfer in Aquatic Ecosystems: Current State of Knowledge and Future Challenges.","authors":"Chloé Bonnineau, Joan Artigas, Betty Chaumet, Aymeric Dabrin, Juliette Faburé, Benoît J D Ferrari, Jérémie D Lebrun, Christelle Margoum, Nicolas Mazzella, Cécile Miège, Soizic Morin, Emmanuelle Uher, Marc Babut, Stéphane Pesce","doi":"10.1007/398_2019_39","DOIUrl":"https://doi.org/10.1007/398_2019_39","url":null,"abstract":"<p><p>In freshwater environments, microbial assemblages attached to submerged substrates play an essential role in ecosystem processes such as primary production, supported by periphyton, or organic matter decomposition, supported by microbial communities attached to leaf litter or sediments. These microbial assemblages, also called biofilms, are not only involved in nutrients fluxes but also in contaminants dynamics. Biofilms can accumulate metals and organic contaminants transported by the water flow and/or adsorbed onto substrates. Furthermore, due to their high metabolic activity and their role in aquatic food webs, microbial biofilms are also likely to influence contaminant fate in aquatic ecosystems. In this review, we provide (1) a critical overview of the analytical methods currently in use for detecting and quantifying metals and organic micropollutants in microbial biofilms attached to benthic substrata (rocks, sediments, leaf litter); (2) a review of the distribution of those contaminants within aquatic biofilms and the role of these benthic microbial communities in contaminant fate; (3) a set of future challenges concerning the role of biofilms in contaminant accumulation and trophic transfers in the aquatic food web. This literature review highlighted that most knowledge on the interaction between biofilm and contaminants is focused on contaminants dynamics in periphyton while technical limitations are still preventing a thorough estimation of contaminants accumulation in biofilms attached to leaf litter or sediments. In addition, microbial biofilms represent an important food resource in freshwater ecosystems, yet their role in dietary contaminant exposure has been neglected for a long time, and the importance of biofilms in trophic transfer of contaminants is still understudied.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"253 ","pages":"115-153"},"PeriodicalIF":6.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/398_2019_39","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37733682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}