首页 > 最新文献

RNA Biology最新文献

英文 中文
Estrogen receptor alpha (ERα) regulates PARN-mediated nuclear deadenylation and gene expression in breast cancer cells. 雌激素受体α(ERα)调控 PARN 介导的乳腺癌细胞核变性和基因表达。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-10-11 DOI: 10.1080/15476286.2024.2413821
Sophia Varriano, Amy Yu, Yu Qing Xu, Devorah M Natelson, Anthony Ramadei, Frida E Kleiman

The estrogen signalling pathway is highly dynamic and primarily mediated by estrogen receptors (ERs) that transcriptionally regulate the expression of target genes. While transcriptional functions of ERs have been widely studied, their roles in RNA biology have not been extensively explored. Here, we reveal a novel biological role of ER alpha (ERα) in mRNA 3' end processing in breast cancer cells, providing an alternative mechanism in regulating gene expression at the post-transcriptional level. We show that ERα activates poly(A) specific ribonuclease (PARN) deadenylase using in vitro assays, and that this activation is further increased by tumour suppressor p53, a factor involved in mRNA processing. Consistent with this, we confirm ERα-mediated activation of nuclear deadenylation by PARN in samples from MCF7 and T47D breast cancer cells that vary in expression of ERα and p53. We further show that ERα can form complex(es) with PARN and p53. Lastly, we identify and validate expression of common mRNA targets of ERα and PARN known to be involved in cell invasion, metastasis and angiogenesis, supporting the functional overlap of these factors in regulating gene expression in a transactivation-independent manner. Together, these results show a new regulatory mechanism by which ERα regulates mRNA processing and gene expression post-transcriptionally, highlighting its contribution to unique transcriptomic profiles and breast cancer progression.

雌激素信号通路是高度动态的,主要由雌激素受体(ER)介导,通过转录调节靶基因的表达。虽然雌激素受体的转录功能已被广泛研究,但它们在 RNA 生物学中的作用尚未得到广泛探讨。在这里,我们揭示了ERα(ERα)在乳腺癌细胞中mRNA 3'末端处理中的新生物学作用,为转录后水平的基因表达调控提供了另一种机制。我们利用体外实验表明,ERα 能激活多聚(A)特异性核糖核酸酶(PARN)脱醛酶,而肿瘤抑制因子 p53(参与 mRNA 处理的因子)能进一步增强这种激活作用。与此相一致,我们在ERα和p53表达不同的MCF7和T47D乳腺癌细胞样本中证实了ERα介导的PARN激活核去氨酶的作用。我们进一步证明,ERα能与PARN和p53形成复合物。最后,我们发现并验证了ERα和PARN的共同mRNA靶标的表达,已知这些靶标参与了细胞侵袭、转移和血管生成,支持了这些因子在以不依赖于转录激活的方式调控基因表达方面的功能重叠。总之,这些结果显示了一种新的调控机制,ERα通过这种机制调控转录后的mRNA加工和基因表达,突显了它对独特的转录组图谱和乳腺癌进展的贡献。
{"title":"Estrogen receptor alpha (ERα) regulates PARN-mediated nuclear deadenylation and gene expression in breast cancer cells.","authors":"Sophia Varriano, Amy Yu, Yu Qing Xu, Devorah M Natelson, Anthony Ramadei, Frida E Kleiman","doi":"10.1080/15476286.2024.2413821","DOIUrl":"10.1080/15476286.2024.2413821","url":null,"abstract":"<p><p>The estrogen signalling pathway is highly dynamic and primarily mediated by estrogen receptors (ERs) that transcriptionally regulate the expression of target genes. While transcriptional functions of ERs have been widely studied, their roles in RNA biology have not been extensively explored. Here, we reveal a novel biological role of ER alpha (ERα) in mRNA 3' end processing in breast cancer cells, providing an alternative mechanism in regulating gene expression at the post-transcriptional level. We show that ERα activates poly(A) specific ribonuclease (PARN) deadenylase using <i>in vitro</i> assays, and that this activation is further increased by tumour suppressor p53, a factor involved in mRNA processing. Consistent with this, we confirm ERα-mediated activation of nuclear deadenylation by PARN in samples from MCF7 and T47D breast cancer cells that vary in expression of ERα and p53. We further show that ERα can form complex(es) with PARN and p53. Lastly, we identify and validate expression of common mRNA targets of ERα and PARN known to be involved in cell invasion, metastasis and angiogenesis, supporting the functional overlap of these factors in regulating gene expression in a transactivation-independent manner. Together, these results show a new regulatory mechanism by which ERα regulates mRNA processing and gene expression post-transcriptionally, highlighting its contribution to unique transcriptomic profiles and breast cancer progression.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"14-23"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized chemical labeling method for isolation of 8-oxoG-modified RNA, ChLoRox-Seq, identifies mRNAs enriched in oxidation and transcriptome-wide distribution biases of oxidation events post environmental stress. 用于分离 8-oxoG 修饰 RNA 的优化化学标记方法 ChLoRox-Seq,可识别富集在氧化过程中的 mRNA 以及环境胁迫后氧化事件在整个转录组的分布偏差。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-11-19 DOI: 10.1080/15476286.2024.2427903
Matthew R Burroughs, Philip J Sweet, Lydia M Contreras

Bulk increases in nucleobase oxidation, most commonly manifesting as the guanine (G) nucleobase modification 8-oxo-7,8-dihydroguanine (8-oxoG), have been linked to several disease pathologies. Elucidating the effects of RNA oxidation on cellular homoeostasis is limited by a lack of effective tools for detecting specific regions modified with 8-oxoG. Building on a previously published method for studying 8-oxoG in DNA, we developed ChLoRox-Seq, which works by covalently functionalizing 8-oxoG sites in RNA with biotin. Importantly, this method enables antibody-free enrichment of 8-oxoG-containing RNA fragments for Next Generation Sequencing-based detection of modified regions transcriptome-wide. We demonstrate the high specificity of ChLoRox-Seq for functionalizing 8-oxoG over unmodified nucleobases in RNA and benchmark this specificity to a commonly used antibody-based approach. Key advantages of ChLoRox-Seq include: (1) heightened resolution of RNA oxidation regions (e.g. exon-level) and (2) lower experimental costs. By applying ChLoRox-Seq to mRNA extracted from human lung epithelial cells (BEAS-2B) after exposure to environmentally relevant stress, we observe that 8-oxoG modifications tend to cluster in regions that are G-rich and within mRNA transcripts possessing longer 5' UTR and CDS regions. These findings provide new insight into the complex mechanisms that bias the accumulation of RNA oxidation across the transcriptome. Notably, our analysis suggests the possibility that most mRNA oxidation events are probabilistically driven and that mRNAs that possess more favourable intrinsic properties are prone to incur oxidation events at elevated rates. ChLoRox-Seq can be readily applied in future studies to identify regions of elevated RNA oxidation in any cellular model of interest.

核碱基氧化的大量增加(最常见的表现为鸟嘌呤(G)核碱基修饰 8-氧代-7,8-二氢鸟嘌呤(8-oxoG))与多种疾病相关。由于缺乏检测 8-oxoG 修饰的特定区域的有效工具,阐明 RNA 氧化对细胞稳态的影响受到了限制。基于之前发表的研究 DNA 中 8-oxoG 的方法,我们开发了 ChLoRox-Seq,它通过生物素共价官能化 RNA 中的 8-oxoG 位点。重要的是,这种方法可以无抗体富集含 8-oxoG 的 RNA 片段,用于基于下一代测序技术的全转录组修饰区域检测。我们证明了 ChLoRox-Seq 在对 RNA 中未修饰的核碱基进行 8-oxoG 功能化时的高度特异性,并将这种特异性与常用的基于抗体的方法进行了比较。ChLoRox-Seq 的主要优势包括(1) 提高 RNA 氧化区(如外显子级)的分辨率;(2) 降低实验成本。通过将 ChLoRox-Seq 应用于暴露于环境相关应激后从人肺上皮细胞(BEAS-2B)中提取的 mRNA,我们观察到 8-oxoG 修饰倾向于聚集在 G 丰富的区域以及具有较长 5' UTR 和 CDS 区域的 mRNA 转录本中。这些发现让我们对转录组中 RNA 氧化积累的复杂机制有了新的认识。值得注意的是,我们的分析表明,大多数 mRNA 氧化事件都是由概率驱动的,而具有更有利内在特性的 mRNA 容易以更高的速率发生氧化事件。ChLoRox-Seq 可随时应用于未来的研究,以确定任何感兴趣的细胞模型中 RNA 氧化程度升高的区域。
{"title":"Optimized chemical labeling method for isolation of 8-oxoG-modified RNA, ChLoRox-Seq, identifies mRNAs enriched in oxidation and transcriptome-wide distribution biases of oxidation events post environmental stress.","authors":"Matthew R Burroughs, Philip J Sweet, Lydia M Contreras","doi":"10.1080/15476286.2024.2427903","DOIUrl":"10.1080/15476286.2024.2427903","url":null,"abstract":"<p><p>Bulk increases in nucleobase oxidation, most commonly manifesting as the guanine (G) nucleobase modification 8-oxo-7,8-dihydroguanine (8-oxoG), have been linked to several disease pathologies. Elucidating the effects of RNA oxidation on cellular homoeostasis is limited by a lack of effective tools for detecting specific regions modified with 8-oxoG. Building on a previously published method for studying 8-oxoG in DNA, we developed ChLoRox-Seq, which works by covalently functionalizing 8-oxoG sites in RNA with biotin. Importantly, this method enables antibody-free enrichment of 8-oxoG-containing RNA fragments for Next Generation Sequencing-based detection of modified regions transcriptome-wide. We demonstrate the high specificity of ChLoRox-Seq for functionalizing 8-oxoG over unmodified nucleobases in RNA and benchmark this specificity to a commonly used antibody-based approach. Key advantages of ChLoRox-Seq include: (1) heightened resolution of RNA oxidation regions (e.g. exon-level) and (2) lower experimental costs. By applying ChLoRox-Seq to mRNA extracted from human lung epithelial cells (BEAS-2B) after exposure to environmentally relevant stress, we observe that 8-oxoG modifications tend to cluster in regions that are G-rich and within mRNA transcripts possessing longer 5' UTR and CDS regions. These findings provide new insight into the complex mechanisms that bias the accumulation of RNA oxidation across the transcriptome. Notably, our analysis suggests the possibility that most mRNA oxidation events are probabilistically driven and that mRNAs that possess more favourable intrinsic properties are prone to incur oxidation events at elevated rates. ChLoRox-Seq can be readily applied in future studies to identify regions of elevated RNA oxidation in any cellular model of interest.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"132-148"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581162/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico and experimental approaches for validating RNA editing events in transcriptomes. 验证转录组中 RNA 编辑事件的硅学和实验方法。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-11-24 DOI: 10.1080/15476286.2024.2432729
Lai Wei

As a typical RNA virus, SARS-CoV-2 is subjected to RNA editing in host cells. While some researchers believe that a traditional variant calling pipeline retrieves all true-positive RNA editing events from the transcriptome, others argue that conventional methods identify many false-positive sites. Here, I describe several additional in silico and experimental approaches to validate the authenticity of RNA editing in SARS-CoV-2. These approaches include requiring strand-specific sequencing, analysis of hyperedited reads, linkage analysis, orthogonal methods like mass spectrometry, and the use of ADAR-deficient host cells. These findings may improve future analyses on the identification of RNA editing, especially in RNA viruses.

作为一种典型的 RNA 病毒,SARS-CoV-2 在宿主细胞中受到 RNA 编辑。一些研究人员认为,传统的变异调用管道能从转录组中检索到所有真正阳性的 RNA 编辑事件,而另一些研究人员则认为,传统方法能识别出许多假阳性位点。在这里,我介绍了几种验证 SARS-CoV-2 中 RNA 编辑真实性的其他硅学和实验方法。这些方法包括:要求链特异性测序、分析hyperedited reads、关联分析、质谱分析等正交方法以及使用ADAR缺陷宿主细胞。这些发现可能会改善未来的 RNA 编辑鉴定分析,尤其是在 RNA 病毒中。
{"title":"<i>In silico</i> and experimental approaches for validating RNA editing events in transcriptomes.","authors":"Lai Wei","doi":"10.1080/15476286.2024.2432729","DOIUrl":"10.1080/15476286.2024.2432729","url":null,"abstract":"<p><p>As a typical RNA virus, SARS-CoV-2 is subjected to RNA editing in host cells. While some researchers believe that a traditional variant calling pipeline retrieves all true-positive RNA editing events from the transcriptome, others argue that conventional methods identify many false-positive sites. Here, I describe several additional <i>in silico</i> and experimental approaches to validate the authenticity of RNA editing in SARS-CoV-2. These approaches include requiring strand-specific sequencing, analysis of hyperedited reads, linkage analysis, orthogonal methods like mass spectrometry, and the use of ADAR-deficient host cells. These findings may improve future analyses on the identification of RNA editing, especially in RNA viruses.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"31-36"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The myriad roles of RNA structure in the flavivirus life cycle. RNA 结构在黄病毒生命周期中的多重作用。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-05-26 DOI: 10.1080/15476286.2024.2357857
Quinn H Abram, Breanna N Landry, Alex B Wang, Ronja F Kothe, Hannah C H Hauch, Selena M Sagan

As positive-sense RNA viruses, the genomes of flaviviruses serve as the template for all stages of the viral life cycle, including translation, replication, and infectious particle production. Yet, they encode just 10 proteins, suggesting that the structure and dynamics of the viral RNA itself helps shepherd the viral genome through these stages. Herein, we highlight advances in our understanding of flavivirus RNA structural elements through the lens of their impact on the viral life cycle. We highlight how RNA structures impact translation, the switch from translation to replication, negative- and positive-strand RNA synthesis, and virion assembly. Consequently, we describe three major themes regarding the roles of RNA structure in flavivirus infections: 1) providing a layer of specificity; 2) increasing the functional capacity; and 3) providing a mechanism to support genome compaction. While the interactions described herein are specific to flaviviruses, these themes appear to extend more broadly across RNA viruses.

作为正义 RNA 病毒,黄病毒的基因组是病毒生命周期所有阶段的模板,包括翻译、复制和产生传染性粒子。然而,它们只编码 10 种蛋白质,这表明病毒 RNA 本身的结构和动态有助于引导病毒基因组完成这些阶段。在本文中,我们将从黄病毒RNA结构元素对病毒生命周期的影响这一角度,重点介绍我们在了解黄病毒RNA结构元素方面取得的进展。我们强调了 RNA 结构如何影响翻译、从翻译到复制的转换、负链和正链 RNA 合成以及病毒组装。因此,我们描述了 RNA 结构在黄病毒感染中的三大作用:1)提供一层特异性;2)提高功能能力;3)提供支持基因组压实的机制。虽然本文所述的相互作用是黄病毒特有的,但这些主题似乎可以更广泛地扩展到所有 RNA 病毒。
{"title":"The myriad roles of RNA structure in the flavivirus life cycle.","authors":"Quinn H Abram, Breanna N Landry, Alex B Wang, Ronja F Kothe, Hannah C H Hauch, Selena M Sagan","doi":"10.1080/15476286.2024.2357857","DOIUrl":"10.1080/15476286.2024.2357857","url":null,"abstract":"<p><p>As positive-sense RNA viruses, the genomes of flaviviruses serve as the template for all stages of the viral life cycle, including translation, replication, and infectious particle production. Yet, they encode just 10 proteins, suggesting that the structure and dynamics of the viral RNA itself helps shepherd the viral genome through these stages. Herein, we highlight advances in our understanding of flavivirus RNA structural elements through the lens of their impact on the viral life cycle. We highlight how RNA structures impact translation, the switch from translation to replication, negative- and positive-strand RNA synthesis, and virion assembly. Consequently, we describe three major themes regarding the roles of RNA structure in flavivirus infections: 1) providing a layer of specificity; 2) increasing the functional capacity; and 3) providing a mechanism to support genome compaction. While the interactions described herein are specific to flaviviruses, these themes appear to extend more broadly across RNA viruses.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"14-30"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 修正。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-12-12 DOI: 10.1080/15476286.2024.2437203
{"title":"Correction.","authors":"","doi":"10.1080/15476286.2024.2437203","DOIUrl":"10.1080/15476286.2024.2437203","url":null,"abstract":"","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"iv"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA-dependent proteome solubility maintenance in Escherichia coli lysates analysed by quantitative mass spectrometry: Proteomic characterization in terms of isoelectric point, structural disorder, functional hub, and chaperone network. 通过定量质谱分析大肠杆菌裂解物中依赖于 RNA 的蛋白质组溶解度维持:等电点、结构紊乱、功能枢纽和伴侣网络方面的蛋白质组特征。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-02-15 DOI: 10.1080/15476286.2024.2315383
Chan Park, Bitnara Han, Yura Choi, Yoontae Jin, Kwang Pyo Kim, Seong Il Choi, Baik L Seong

Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from Escherichia coli lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the Escherichia coli proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility in vivo, where proteins associate with a variety of RNAs, either stably or transiently.

蛋白质聚集是错误折叠和蛋白质稳态受损的结果,可导致细胞功能失调,如各种蛋白质病。保护蛋白质在复杂细胞环境中不发生聚集的机制已被研究了很长时间,通常是从以蛋白质为中心的观点出发的。然而,我们的研究让人们深入了解了一个至关重要但却被忽视的角色:RNA。我们发现,耗尽大肠杆菌裂解液中的 RNA 会诱发全局性蛋白质聚集。我们的定量质谱分析从大肠杆菌蛋白质组中发现了 900 多种具有统计学意义的蛋白质,它们的溶解度取决于 RNA。整个蛋白质组的表征显示,RNA依赖性在酸性蛋白质、内在无序蛋白和结构枢纽蛋白中特别富集。此外,我们还观察到依赖 RNA 的酸性蛋白和碱性蛋白在 RNA 结合模式和基因本体论类别上存在明显差异。值得注意的是,关键分子伴侣(触发因子、DnaJ 和 GroES)的溶解度在很大程度上依赖于 RNA,这表明 RNA 型伴侣(称为 chaperna)和蛋白质型伴侣之间存在一种有待探索的层次关系,两者构成了整个伴侣网络。在体内,蛋白质与各种 RNA 稳定或瞬时地结合在一起,这些发现为以 RNA 为中心的维持健康蛋白质组溶解度的作用提供了新的见解。
{"title":"RNA-dependent proteome solubility maintenance in <i>Escherichia coli</i> lysates analysed by quantitative mass spectrometry: Proteomic characterization in terms of isoelectric point, structural disorder, functional hub, and chaperone network.","authors":"Chan Park, Bitnara Han, Yura Choi, Yoontae Jin, Kwang Pyo Kim, Seong Il Choi, Baik L Seong","doi":"10.1080/15476286.2024.2315383","DOIUrl":"10.1080/15476286.2024.2315383","url":null,"abstract":"<p><p>Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from <i>Escherichia coli</i> lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the <i>Escherichia coli</i> proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility <i>in vivo</i>, where proteins associate with a variety of RNAs, either stably or transiently.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-18"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139741894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skin treatment with non-thermal plasma modulates the immune system through miR-223-3p and its target genes. 用非热等离子体进行皮肤治疗可通过 miR-223-3p 及其靶基因调节免疫系统。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-06-03 DOI: 10.1080/15476286.2024.2361571
Annika Engel, Nicole Ludwig, Friederike Grandke, Viktoria Wagner, Fabian Kern, Tobias Fehlmann, Georges P Schmartz, Ernesto Aparicio-Puerta, Dominic Henn, Barbara Walch-Rückheim, Matthias Hannig, Stefan Rupf, Eckart Meese, Matthias W Laschke, Andreas Keller

Non-thermal plasma, a partially ionized gas, holds significant potential for clinical applications, including wound-healing support, oral therapies, and anti-tumour treatments. While its applications showed promising outcomes, the underlying molecular mechanisms remain incompletely understood. We thus apply non-thermal plasma to mouse auricular skin and conducted non-coding RNA sequencing, as well as single-cell blood sequencing. In a time-series analysis (five timepoints spanning 2 hours), we compare the expression of microRNAs in the plasma-treated left ears to the unexposed right ears of the same mice as well as to the ears of unexposed control mice. Our findings indicate specific effects in the treated ears for a set of five miRNAs: mmu-miR-144-5p, mmu-miR-144-3p, mmu-miR-142a-5p, mmu-miR-223-3p, and mmu-miR-451a. Interestingly, mmu-miR-223-3p also exhibits an increase over time in the right non-treated ear of the exposed mice, suggesting systemic effects. Notably, this miRNA, along with mmu-miR-142a-5p and mmu-miR-144-3p, regulates genes and pathways associated with wound healing and tissue regeneration (namely ErbB, FoxO, Hippo, and PI3K-Akt signalling). This co-regulation is particularly remarkable considering the significant seed dissimilarities among the miRNAs. Finally, single-cell sequencing of PBMCs reveals the downregulation of 12 from 15 target genes in B-cells, Cd4+ and Cd8+ T-cells. Collectively, our data provide evidence for a systemic effect of non-thermal plasma.

非热等离子体是一种部分电离的气体,在伤口愈合支持、口腔治疗和抗肿瘤治疗等临床应用方面具有巨大潜力。虽然非热等离子体的应用显示出良好的效果,但人们对其潜在的分子机制仍不甚了解。因此,我们将非热等离子体应用于小鼠耳廓皮肤,并进行了非编码 RNA 测序和单细胞血液测序。通过时间序列分析(5 个时间点,时间跨度为 2 小时),我们比较了经血浆处理的小鼠左耳与未接触血浆的小鼠右耳以及未接触血浆的对照组小鼠耳朵中 microRNA 的表达情况。我们的研究结果表明,经处理的小鼠耳朵中的五种 miRNA 具有特异性影响:mmu-miR-144-5p、mmu-miR-144-3p、mmu-miR-142a-5p、mmu-miR-223-3p 和 mmu-miR-451a。有趣的是,随着时间的推移,暴露小鼠未接受治疗的右耳中的 mmu-miR-223-3p 也会增加,这表明会产生系统性影响。值得注意的是,这种 miRNA 与 mmu-miR-142a-5p 和 mmu-miR-144-3p 一起调节与伤口愈合和组织再生相关的基因和通路(即 ErbB、FoxO、Hippo 和 PI3K-Akt 信号)。考虑到 miRNA 之间存在显著的种子差异,这种共同调控尤其引人注目。最后,PBMCs 的单细胞测序显示,在 B 细胞、Cd4+ 和 Cd8+ T 细胞中,15 个目标基因中有 12 个被下调。总之,我们的数据为非热等离子体的系统效应提供了证据。
{"title":"Skin treatment with non-thermal plasma modulates the immune system through miR-223-3p and its target genes.","authors":"Annika Engel, Nicole Ludwig, Friederike Grandke, Viktoria Wagner, Fabian Kern, Tobias Fehlmann, Georges P Schmartz, Ernesto Aparicio-Puerta, Dominic Henn, Barbara Walch-Rückheim, Matthias Hannig, Stefan Rupf, Eckart Meese, Matthias W Laschke, Andreas Keller","doi":"10.1080/15476286.2024.2361571","DOIUrl":"10.1080/15476286.2024.2361571","url":null,"abstract":"<p><p>Non-thermal plasma, a partially ionized gas, holds significant potential for clinical applications, including wound-healing support, oral therapies, and anti-tumour treatments. While its applications showed promising outcomes, the underlying molecular mechanisms remain incompletely understood. We thus apply non-thermal plasma to mouse auricular skin and conducted non-coding RNA sequencing, as well as single-cell blood sequencing. In a time-series analysis (five timepoints spanning 2 hours), we compare the expression of microRNAs in the plasma-treated left ears to the unexposed right ears of the same mice as well as to the ears of unexposed control mice. Our findings indicate specific effects in the treated ears for a set of five miRNAs: mmu-miR-144-5p, mmu-miR-144-3p, mmu-miR-142a-5p, mmu-miR-223-3p, and mmu-miR-451a. Interestingly, mmu-miR-223-3p also exhibits an increase over time in the right non-treated ear of the exposed mice, suggesting systemic effects. Notably, this miRNA, along with mmu-miR-142a-5p and mmu-miR-144-3p, regulates genes and pathways associated with wound healing and tissue regeneration (namely ErbB, FoxO, Hippo, and PI3K-Akt signalling). This co-regulation is particularly remarkable considering the significant seed dissimilarities among the miRNAs. Finally, single-cell sequencing of PBMCs reveals the downregulation of 12 from 15 target genes in B-cells, Cd4+ and Cd8+ T-cells. Collectively, our data provide evidence for a systemic effect of non-thermal plasma.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"31-44"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Significance of VLPs in Vlp-circRNA vaccines: a vaccine candidate or delivery vehicle? VLPs在Vlp-circRNA疫苗中的意义:候选疫苗还是输送载体?
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-09-06 DOI: 10.1080/15476286.2024.2399307
Reeshu Gupta, Kajal Arora, Nupur Mehrotra Arora, Prabuddha Kundu

Circular RNAs (circRNAs) are a class of single-stranded RNAs with a closed loop lacking 5' and 3' ends. These circRNAs are translatable and, therefore, have a potential in developing vaccine. CircRNA vaccines have been shown to be more stable, safe, easy to manufacture and scale-up production when compared to mRNA vaccines. However, these vaccines also suffer from several drawbacks such as low circularization efficiency for longer RNA precursor and usage of lipid nano particles (LNPs) in their delivery. LNPs have been shown to require large amounts of RNA due to their indirect delivery from endosome to cytosol. Besides, individual components of LNPs provide reactogenicity. Usage of virus like particles (VLPs) can improve the increased production and targeted delivery of circRNA vaccines and show no reactogenicity. Moreover, VLPs has also been used to produce vaccines against several diseases such as hepatitis C virus (HCV) etc. In this article, we will discuss about the methods used to enhance synthesis or circularization efficiency of circRNA. Moreover, we will also discuss about the significance of VLPs as the delivery vehicle for circRNA and their possible usage as the dual vaccine.

环状 RNA(circRNA)是一类单链 RNA,具有一个缺少 5' 和 3' 末端的闭环。这些 circRNA 可翻译,因此具有开发疫苗的潜力。与 mRNA 疫苗相比,circRNA 疫苗更稳定、更安全、更易于制造和规模化生产。然而,这些疫苗也存在一些缺点,例如长 RNA 前体的环化效率较低,以及使用脂质纳米颗粒(LNPs)进行递送。研究表明,LNPs 需要大量 RNA,因为它们是从内质体间接传递到细胞膜的。此外,LNPs 的单个成分会引起反应。使用类病毒颗粒(VLPs)可以提高 circRNA 疫苗的产量和定向递送能力,而且不会产生反应。此外,VLPs 还被用于生产丙型肝炎病毒(HCV)等多种疾病的疫苗。本文将讨论用于提高 circRNA 合成或环化效率的方法。此外,我们还将讨论 VLPs 作为 circRNA 运送载体的意义及其作为双重疫苗的可能用途。
{"title":"Significance of VLPs in Vlp-circRNA vaccines: a vaccine candidate or delivery vehicle?","authors":"Reeshu Gupta, Kajal Arora, Nupur Mehrotra Arora, Prabuddha Kundu","doi":"10.1080/15476286.2024.2399307","DOIUrl":"10.1080/15476286.2024.2399307","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are a class of single-stranded RNAs with a closed loop lacking 5' and 3' ends. These circRNAs are translatable and, therefore, have a potential in developing vaccine. CircRNA vaccines have been shown to be more stable, safe, easy to manufacture and scale-up production when compared to mRNA vaccines. However, these vaccines also suffer from several drawbacks such as low circularization efficiency for longer RNA precursor and usage of lipid nano particles (LNPs) in their delivery. LNPs have been shown to require large amounts of RNA due to their indirect delivery from endosome to cytosol. Besides, individual components of LNPs provide reactogenicity. Usage of virus like particles (VLPs) can improve the increased production and targeted delivery of circRNA vaccines and show no reactogenicity. Moreover, VLPs has also been used to produce vaccines against several diseases such as hepatitis C virus (HCV) etc. In this article, we will discuss about the methods used to enhance synthesis or circularization efficiency of circRNA. Moreover, we will also discuss about the significance of VLPs as the delivery vehicle for circRNA and their possible usage as the dual vaccine.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"17-28"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation and mechanisms of action of RNA helicases. RNA 螺旋酶的调控和作用机制。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-10-22 DOI: 10.1080/15476286.2024.2415801
Nina Lang, Pravin Kumar Ankush Jagtap, Janosch Hennig

RNA helicases are an evolutionary conserved class of nucleoside triphosphate dependent enzymes found in all kingdoms of life. Their cellular functions range from transcription regulation up to maintaining genomic stability and viral defence. As dysregulation of RNA helicases has been shown to be involved in several cancers and various diseases, RNA helicases are potential therapeutic targets. However, for selective targeting of a specific RNA helicase, it is crucial to develop a detailed understanding about its dynamics and regulation on a molecular and structural level. Deciphering unique features of specific RNA helicases is of fundamental importance not only for future drug development but also to deepen our understanding of RNA helicase regulation and function in cellular processes. In this review, we discuss recent insights into regulation mechanisms of RNA helicases and highlight models which demonstrate the interplay between helicase structure and their functions.

RNA 螺旋酶是一类依赖于三磷酸核苷的进化保守酶,存在于所有生命体中。它们的细胞功能包括转录调控、维持基因组稳定性和病毒防御。由于 RNA 螺旋酶的失调已被证明与多种癌症和各种疾病有关,因此 RNA 螺旋酶是潜在的治疗靶标。然而,要选择性地靶向特定的 RNA 螺旋酶,就必须详细了解其在分子和结构水平上的动态和调控。破译特定 RNA 螺旋酶的独特特征不仅对未来的药物开发至关重要,而且还能加深我们对 RNA 螺旋酶在细胞过程中的调控和功能的理解。在这篇综述中,我们将讨论对 RNA 螺旋酶调控机制的最新见解,并重点介绍展示螺旋酶结构与其功能之间相互作用的模型。
{"title":"Regulation and mechanisms of action of RNA helicases.","authors":"Nina Lang, Pravin Kumar Ankush Jagtap, Janosch Hennig","doi":"10.1080/15476286.2024.2415801","DOIUrl":"10.1080/15476286.2024.2415801","url":null,"abstract":"<p><p>RNA helicases are an evolutionary conserved class of nucleoside triphosphate dependent enzymes found in all kingdoms of life. Their cellular functions range from transcription regulation up to maintaining genomic stability and viral defence. As dysregulation of RNA helicases has been shown to be involved in several cancers and various diseases, RNA helicases are potential therapeutic targets. However, for selective targeting of a specific RNA helicase, it is crucial to develop a detailed understanding about its dynamics and regulation on a molecular and structural level. Deciphering unique features of specific RNA helicases is of fundamental importance not only for future drug development but also to deepen our understanding of RNA helicase regulation and function in cellular processes. In this review, we discuss recent insights into regulation mechanisms of RNA helicases and highlight models which demonstrate the interplay between helicase structure and their functions.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"24-38"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11498004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissue-specific silencing of integrated transgenes achieved through endogenous RNA interference in Caenorhabditis elegans. 在秀丽隐杆线虫体内通过内源性 RNA 干扰实现整合转基因的组织特异性沉默。
IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 Epub Date: 2024-03-26 DOI: 10.1080/15476286.2024.2332856
Siyu Chen, Weihong Liu, Lei Xiong, Zhiju Tao, Di Zhao

Transgene silencing is a common phenomenon observed in Caenorhabditis elegans, particularly in the germline, but the precise mechanisms underlying this process remain elusive. Through an analysis of the transcription factors profile of C. elegans, we discovered that the expression of several transgenic reporter lines exhibited tissue-specific silencing, specifically in the intestine of C. elegans. Notably, this silencing could be reversed in mutants defective in endogenous RNA interference (RNAi). Further investigation using knock-in strains revealed that these intestine-silent genes were indeed expressed in vivo, indicating that the organism itself regulates the intestine-specific silencing. This tissue-specific silencing appears to be mediated through the endo-RNAi pathway, with the main factors of this pathway, mut-2 and mut-16, are significantly enriched in the intestine. Additionally, histone modification factors, such as met-2, are involved in this silencing mechanism. Given the crucial role of the intestine in reproduction alongside the germline, the transgene silencing observed in the intestine reflects the self-protective mechanisms employed by the organisms. In summary, our study proposed that compared to other tissues, the transgenic silencing of intestine is specifically regulated by the endo-RNAi pathway.

转基因沉默是在秀丽隐杆线虫(Caenorhabditis elegans)中观察到的一种常见现象,尤其是在种系中。通过分析秀丽隐杆线虫的转录因子谱,我们发现几种转基因报告基因株的表达表现出组织特异性沉默,尤其是在秀丽隐杆线虫的肠道中。值得注意的是,这种沉默在内源性 RNA 干扰(RNAi)缺陷突变体中可以逆转。利用基因敲入菌株进行的进一步研究发现,这些肠道沉默基因确实在体内表达,这表明生物体本身调节着肠道特异性沉默。这种组织特异性沉默似乎是通过内RNAi途径介导的,该途径的主要因子mut-2和mut-16在肠道中明显富集。此外,组蛋白修饰因子(如 met-2)也参与了这种沉默机制。鉴于肠道在生殖过程中与生殖系一起发挥着至关重要的作用,在肠道中观察到的转基因沉默反映了生物体所采用的自我保护机制。总之,我们的研究提出,与其他组织相比,肠道的转基因沉默是由内RNAi途径特异性调控的。
{"title":"Tissue-specific silencing of integrated transgenes achieved through endogenous RNA interference in <i>Caenorhabditis elegans</i>.","authors":"Siyu Chen, Weihong Liu, Lei Xiong, Zhiju Tao, Di Zhao","doi":"10.1080/15476286.2024.2332856","DOIUrl":"10.1080/15476286.2024.2332856","url":null,"abstract":"<p><p>Transgene silencing is a common phenomenon observed in <i>Caenorhabditis elegans</i>, particularly in the germline, but the precise mechanisms underlying this process remain elusive. Through an analysis of the transcription factors profile of <i>C. elegans</i>, we discovered that the expression of several transgenic reporter lines exhibited tissue-specific silencing, specifically in the intestine of <i>C. elegans</i>. Notably, this silencing could be reversed in mutants defective in endogenous RNA interference (RNAi). Further investigation using knock-in strains revealed that these intestine-silent genes were indeed expressed <i>in vivo</i>, indicating that the organism itself regulates the intestine-specific silencing. This tissue-specific silencing appears to be mediated through the endo-RNAi pathway, with the main factors of this pathway, <i>mut-2</i> and <i>mut-16</i>, are significantly enriched in the intestine. Additionally, histone modification factors, such as <i>met-2</i>, are involved in this silencing mechanism. Given the crucial role of the intestine in reproduction alongside the germline, the transgene silencing observed in the intestine reflects the self-protective mechanisms employed by the organisms. In summary, our study proposed that compared to other tissues, the transgenic silencing of intestine is specifically regulated by the endo-RNAi pathway.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-10"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140294387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
RNA Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1