首页 > 最新文献

RSC medicinal chemistry最新文献

英文 中文
Anti-Schistosomal activity and ADMET properties of 1,2,5-oxadiazinane-containing compound synthesized by visible-light photoredox catalysis. 利用可见光光氧化催化合成的含 1,2,5-恶二嗪化合物的抗血吸虫活性和 ADMET 特性。
IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-26 DOI: 10.1039/d4md00599f
Kennosuke Itoh, Hiroki Nakahara, Atsushi Takashino, Aya Hara, Akiho Katsuno, Yuriko Abe, Takaaki Mizuguchi, Fumika Karaki, Shigeto Hirayama, Kenichiro Nagai, Reiko Seki, Noriko Sato, Kazuki Okuyama, Masashi Hashimoto, Ken Tokunaga, Hitoshi Ishida, Fusako Mikami, Kofi Dadzie Kwofie, Hayato Kawada, Bangzhong Lin, Kazuto Nunomura, Toshio Kanai, Takeshi Hatta, Naotoshi Tsuji, Junichi Haruta, Hideaki Fujii

The incorporation of saturated nitrogen-containing heterocycle 1,2,5-oxadiazinane into small molecules represents a compelling avenue in drug discovery due to its unexplored behavior within biological systems and incomplete protocols for synthesis. In this study, we present 1,2,5-oxadiazinane, an innovative heterocyclic bioisostere of piperizin-2-one and novel chemotype of the anti-schistosomal drug praziquantel (PZQ), which has been the only clinical drug available for three decades. PZQ is associated with significant drawbacks, including poor solubility, a bitter taste, and low metabolic stability. Therefore, the discovery of a new class of anti-schistosomal agents is imperative. To address this challenge, we introduce a pioneering method for the synthesis of 1,2,5-oxadiazinane derivatives through the cycloaddition of nitrones with N,N,N',N'-tetraalkyldiaminomethane in the presence of an IrIII complex photosensitizer. This transformative reaction offers a streamlined route to various kinds of 1,2,5-oxadiazinanes that is characterized by mild reaction conditions and broad substrate scope. Mechanistic investigations suggest that the photoredox pathway underlies the [3 + 3] photocycloaddition process. Thus, based on bioisosteric replacement, we identified a remarkable molecule as a new chemotype of a potent anti-schistosomal compound that not only exhibits superior solubility, but also retains the potent biological activity inherent to PZQ.

由于饱和含氮杂环 1,2,5-恶二嗪烷在生物系统中的行为尚未得到探索,且合成方案不完整,因此将其掺入小分子中是药物发现中一个引人注目的途径。在本研究中,我们介绍了 1,2,5-恶二嗪烷,它是哌嗪-2-酮的一种创新杂环生物异构体,也是抗血吸虫病药物吡喹酮 (PZQ) 的新型化学类型。PZQ 具有溶解性差、味道苦涩、代谢稳定性低等显著缺点。因此,发现一类新的抗血吸虫病药物势在必行。为了应对这一挑战,我们介绍了一种开创性的方法,即在 IrIII 复合物光敏剂存在下,通过亚硝基与 N,N,N',N'-四烷基二氨基甲烷的环加成反应合成 1,2,5-噁二嗪衍生物。这一转化反应为制备各种 1,2,5-恶二嗪类化合物提供了一条简便的途径,其特点是反应条件温和,底物范围广泛。机理研究表明,光氧化途径是 [3 + 3] 光环加成反应过程的基础。因此,基于生物异构替换,我们发现了一个非凡的分子,它是一种新型的强效抗血吸虫化合物,不仅具有优异的溶解性,还保留了 PZQ 固有的强效生物活性。
{"title":"<i>Anti</i>-Schistosomal activity and ADMET properties of 1,2,5-oxadiazinane-containing compound synthesized by visible-light photoredox catalysis.","authors":"Kennosuke Itoh, Hiroki Nakahara, Atsushi Takashino, Aya Hara, Akiho Katsuno, Yuriko Abe, Takaaki Mizuguchi, Fumika Karaki, Shigeto Hirayama, Kenichiro Nagai, Reiko Seki, Noriko Sato, Kazuki Okuyama, Masashi Hashimoto, Ken Tokunaga, Hitoshi Ishida, Fusako Mikami, Kofi Dadzie Kwofie, Hayato Kawada, Bangzhong Lin, Kazuto Nunomura, Toshio Kanai, Takeshi Hatta, Naotoshi Tsuji, Junichi Haruta, Hideaki Fujii","doi":"10.1039/d4md00599f","DOIUrl":"10.1039/d4md00599f","url":null,"abstract":"<p><p>The incorporation of saturated nitrogen-containing heterocycle 1,2,5-oxadiazinane into small molecules represents a compelling avenue in drug discovery due to its unexplored behavior within biological systems and incomplete protocols for synthesis. In this study, we present 1,2,5-oxadiazinane, an innovative heterocyclic bioisostere of piperizin-2-one and novel chemotype of the <i>anti</i>-schistosomal drug praziquantel (PZQ), which has been the only clinical drug available for three decades. PZQ is associated with significant drawbacks, including poor solubility, a bitter taste, and low metabolic stability. Therefore, the discovery of a new class of <i>anti</i>-schistosomal agents is imperative. To address this challenge, we introduce a pioneering method for the synthesis of 1,2,5-oxadiazinane derivatives through the cycloaddition of nitrones with <i>N</i>,<i>N</i>,<i>N'</i>,<i>N'</i>-tetraalkyldiaminomethane in the presence of an Ir<sup>III</sup> complex photosensitizer. This transformative reaction offers a streamlined route to various kinds of 1,2,5-oxadiazinanes that is characterized by mild reaction conditions and broad substrate scope. Mechanistic investigations suggest that the photoredox pathway underlies the [3 + 3] photocycloaddition process. Thus, based on bioisosteric replacement, we identified a remarkable molecule as a new chemotype of a potent <i>anti</i>-schistosomal compound that not only exhibits superior solubility, but also retains the potent biological activity inherent to PZQ.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrophobic CPP/HDO conjugates: a new frontier in oligonucleotide-warheaded PROTAC delivery† 疏水性 CPP/HDO 共轭物:寡核苷酸主导的 PROTAC 输送新领域。
IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-26 DOI: 10.1039/D4MD00546E
Miyako Naganuma, Nobumichi Ohoka, Motoharu Hirano, Daishi Watanabe, Genichiro Tsuji, Takao Inoue and Yosuke Demizu

Proteolysis-targeting chimeras (PROTACs) have emerged as a potent strategy for inducing targeted degradation of proteins, offering promising therapeutic potential to treat diseases such as cancer. However, oligonucleotide-based PROTACs face significant delivery challenges because of their anionic nature and chemical instability. To address these issues, we developed a novel hydrophobic cell-penetrating peptide (CPP) and heteroduplex oligonucleotide (HDO)-conjugated PROTAC, CPP/HDO-PROTAC, to enhance intracellular delivery and degradation efficiency. CPP/HDO-PROTAC was designed to enter the cell through the activity of the conjugated hydrophobic CPP and release decoy oligonucleotide-based PROTACs by RNase H-mediated RNA strand breaks. Our findings demonstrated that CPP/HDO-PROTAC binds to the estrogen receptor α (ERα) with higher affinity than previous constructs, significantly degrades ERα in MCF-7 human breast cancer cells and inhibits cell proliferation at 10 μM. This research highlights the potential of CPP/HDO-PROTAC as a viable method for delivering and activating decoy oligonucleotide-based PROTACs within cells, overcoming the limitations of traditional transfection methods and paving the way for their clinical application.

蛋白质分解靶向嵌合体(PROTACs)已成为一种诱导蛋白质靶向降解的有效策略,为治疗癌症等疾病提供了巨大的治疗潜力。然而,基于寡核苷酸的 PROTAC 因其阴离子性质和化学不稳定性而面临着巨大的递送挑战。为了解决这些问题,我们开发了一种新型疏水性细胞穿透肽(CPP)和杂双寡核苷酸(HDO)共轭的 PROTAC(CPP/HDO-PROTAC),以提高细胞内递送和降解效率。CPP/HDO-PROTAC 的设计目的是通过共轭疏水性 CPP 的活性进入细胞,并通过 RNase H 介导的 RNA 链断裂释放基于诱饵寡核苷酸的 PROTAC。我们的研究结果表明,CPP/HDO-PROTAC 与雌激素受体 α(ERα)的结合亲和力高于以往的构建物,能显著降解 MCF-7 人类乳腺癌细胞中的ERα,并在 10 μM 的浓度下抑制细胞增殖。这项研究强调了 CPP/HDO-PROTAC 作为一种可行的方法在细胞内递送和激活基于诱饵寡核苷酸的 PROTAC 的潜力,克服了传统转染方法的局限性,为其临床应用铺平了道路。
{"title":"Hydrophobic CPP/HDO conjugates: a new frontier in oligonucleotide-warheaded PROTAC delivery†","authors":"Miyako Naganuma, Nobumichi Ohoka, Motoharu Hirano, Daishi Watanabe, Genichiro Tsuji, Takao Inoue and Yosuke Demizu","doi":"10.1039/D4MD00546E","DOIUrl":"10.1039/D4MD00546E","url":null,"abstract":"<p >Proteolysis-targeting chimeras (PROTACs) have emerged as a potent strategy for inducing targeted degradation of proteins, offering promising therapeutic potential to treat diseases such as cancer. However, oligonucleotide-based PROTACs face significant delivery challenges because of their anionic nature and chemical instability. To address these issues, we developed a novel hydrophobic cell-penetrating peptide (CPP) and heteroduplex oligonucleotide (HDO)-conjugated PROTAC, <strong>CPP/HDO-PROTAC</strong>, to enhance intracellular delivery and degradation efficiency. <strong>CPP/HDO-PROTAC</strong> was designed to enter the cell through the activity of the conjugated hydrophobic CPP and release decoy oligonucleotide-based PROTACs by RNase H-mediated RNA strand breaks. Our findings demonstrated that <strong>CPP/HDO-PROTAC</strong> binds to the estrogen receptor α (ERα) with higher affinity than previous constructs, significantly degrades ERα in MCF-7 human breast cancer cells and inhibits cell proliferation at 10 μM. This research highlights the potential of <strong>CPP/HDO-PROTAC</strong> as a viable method for delivering and activating decoy oligonucleotide-based PROTACs within cells, overcoming the limitations of traditional transfection methods and paving the way for their clinical application.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" 11","pages":" 3695-3703"},"PeriodicalIF":4.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and structure-activity study of the antimicrobial lipopeptide brevibacillin. 抗菌脂肽 brevibacillin 的合成和结构活性研究。
IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-25 DOI: 10.1039/d4md00612g
Omar Fliss, Louis-David Guay, Ismail Fliss, Éric Biron

The antimicrobial lipopeptide brevibacillin is a non-ribosomally synthesized peptide produced by Brevibacillus laterosporus with inhibitory activity against several clinically relevant Gram-positive pathogenic bacteria such as Staphylococcus aureus, Listeria monocytogenes, and Clostridium difficile. In this study, we report the total synthesis of brevibacillin and analogues thereof as well as structure-activity relationship and cytotoxicity studies. Several novel synthetic analogues exhibited high inhibitory activities with minimal inhibitory concentration values in the low micromolar range against several bacteria including Gram-positive L. monocytogenes, S. aureus, Enterococcus faecalis, and Clostridium perfringens as well as Gram-negative Campylobacter coli and Pseudomonas aeruginosa. Of particular interest, four analogues showed a broad spectrum of action and greater antimicrobial activity versus cytotoxicity ratios than native brevibacillin. With a more accessible and efficient production process and improved pharmacological properties, these synthetic analogues are promising candidates to prevent and control the proliferation of various pathogens in the food industry as well as veterinary and human medicine.

抗菌脂肽brevibacillin是由Brevibacillus laterosporus产生的一种非核糖体合成的多肽,对多种临床相关的革兰氏阳性致病菌(如金黄色葡萄球菌、单核细胞增生李斯特菌和艰难梭菌)具有抑制活性。本研究报告了布雷西林及其类似物的全合成、结构-活性关系和细胞毒性研究。几种新型合成类似物对多种细菌(包括革兰氏阳性单核细胞增多症、金黄色葡萄球菌、粪肠球菌、产气荚膜梭菌以及革兰氏阴性大肠弯曲杆菌和铜绿假单胞菌)具有很高的抑制活性,最小抑制浓度值在低微摩尔范围内。尤其值得注意的是,四种类似物的作用谱很广,抗菌活性与细胞毒性之比高于原生的布来西林。这些合成类似物的生产工艺更简便、更高效,药理特性也得到了改善,有望成为食品工业、兽医和人类医学领域预防和控制各种病原体扩散的候选药物。
{"title":"Synthesis and structure-activity study of the antimicrobial lipopeptide brevibacillin.","authors":"Omar Fliss, Louis-David Guay, Ismail Fliss, Éric Biron","doi":"10.1039/d4md00612g","DOIUrl":"10.1039/d4md00612g","url":null,"abstract":"<p><p>The antimicrobial lipopeptide brevibacillin is a non-ribosomally synthesized peptide produced by <i>Brevibacillus laterosporus</i> with inhibitory activity against several clinically relevant Gram-positive pathogenic bacteria such as <i>Staphylococcus aureus</i>, <i>Listeria monocytogenes</i>, and <i>Clostridium difficile</i>. In this study, we report the total synthesis of brevibacillin and analogues thereof as well as structure-activity relationship and cytotoxicity studies. Several novel synthetic analogues exhibited high inhibitory activities with minimal inhibitory concentration values in the low micromolar range against several bacteria including Gram-positive <i>L. monocytogenes</i>, <i>S. aureus</i>, <i>Enterococcus faecalis</i>, and <i>Clostridium perfringens</i> as well as Gram-negative <i>Campylobacter coli</i> and <i>Pseudomonas aeruginosa</i>. Of particular interest, four analogues showed a broad spectrum of action and greater antimicrobial activity <i>versus</i> cytotoxicity ratios than native brevibacillin. With a more accessible and efficient production process and improved pharmacological properties, these synthetic analogues are promising candidates to prevent and control the proliferation of various pathogens in the food industry as well as veterinary and human medicine.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mannich reaction mediated derivatization of chromones and their biological evaluations as putative multipotent ligands for the treatment of Alzheimer's disease. 曼尼希反应介导的色酮衍生化及其作为治疗阿尔茨海默病的潜在多能配体的生物学评价。
IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-24 DOI: 10.1039/d4md00550c
Naveen Kumar, Kailash Jangid, Vinay Kumar, Bharti Devi, Tania Arora, Jayapriya Mishra, Vijay Kumar, Ashish Ranjan Dwivedi, Jyoti Parkash, Jasvinder Singh Bhatti, Vinod Kumar

Alzheimer's disease (AD) is a complex neurological disorder and multiple pathways are associated with its pathology. Currently available single-targeting drugs are found to be ineffective for the treatment of AD, and most of these drugs provide symptomatic relief. The multi-target directed ligand strategy is proposed as an effective approach for the treatment of AD. Herein, we report the design and synthesis of a series of 2-phenyl substituted chromone derivatives and their evaluation against AChE, MAO-B, and β amyloid self-aggregation inhibition. In the series, NS-4 and NS-13 were identified as the potent leads against all the specified targets. NS-4 and NS-13 exhibited balanced multipotent activities against AChE with IC50 values of 3.09 μM, and 0.625 μM and against MAO-B with IC50 values of 19.64 μM and 12.31 μM, respectively. These compounds also displayed 28.5% and 32.2% self-aggregation inhibition potential against Aβ1-42, respectively. All the compounds were found to be selective for AChE over BuChE. Additionally, NS-4 also exhibited potent BuChE inhibition with an IC50 value of 1.95 μM. Moreover, NS-4 and NS-13 reduced intracellular ROS levels up to 65% against SH-SY5Y cells at 25 μM concentration. The lead compounds were found to be neuroprotective and exhibited no cytotoxicity even at 25 μM concentration. In enzyme kinetic inhibition studies, these compounds showed mixed-type inhibition to AChE. In the computational studies, binding interactions, and orientations of the ligands at the active site of the enzymes were analyzed and these lead compounds were found to be thermodynamically stable inside the active cavity for up to 100 ns.

阿尔茨海默病(AD)是一种复杂的神经系统疾病,其病理变化与多种途径有关。目前可用的单一靶向药物对治疗阿尔茨海默病效果不佳,而且这些药物大多只能缓解症状。多靶点定向配体策略被认为是治疗AD的有效方法。在此,我们报告了一系列 2-苯基取代的铬酮衍生物的设计、合成及其对 AChE、MAO-B 和 β 淀粉样蛋白自聚集抑制作用的评估。在该系列中,NS-4 和 NS-13 被确定为对所有特定靶标具有强效的先导化合物。NS-4 和 NS-13 对 AChE 的 IC50 值分别为 3.09 μM 和 0.625 μM,对 MAO-B 的 IC50 值分别为 19.64 μM 和 12.31 μM,表现出平衡的多效活性。这些化合物对 Aβ1-42 的自我聚集抑制潜力也分别为 28.5% 和 32.2%。所有化合物对 AChE 的选择性均高于对 BuChE 的选择性。此外,NS-4 对 BuChE 也有很强的抑制作用,其 IC50 值为 1.95 μM。此外,在 25 μM 浓度下,NS-4 和 NS-13 对 SH-SY5Y 细胞的细胞内 ROS 水平的抑制率高达 65%。研究发现,这些先导化合物具有神经保护作用,即使在 25 μM 浓度下也没有细胞毒性。在酶动力学抑制研究中,这些化合物表现出对 AChE 的混合型抑制。在计算研究中,对配体在酶活性位点的结合相互作用和取向进行了分析,发现这些先导化合物在活性空腔内的热力学稳定性可达 100 ns。
{"title":"Mannich reaction mediated derivatization of chromones and their biological evaluations as putative multipotent ligands for the treatment of Alzheimer's disease.","authors":"Naveen Kumar, Kailash Jangid, Vinay Kumar, Bharti Devi, Tania Arora, Jayapriya Mishra, Vijay Kumar, Ashish Ranjan Dwivedi, Jyoti Parkash, Jasvinder Singh Bhatti, Vinod Kumar","doi":"10.1039/d4md00550c","DOIUrl":"https://doi.org/10.1039/d4md00550c","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a complex neurological disorder and multiple pathways are associated with its pathology. Currently available single-targeting drugs are found to be ineffective for the treatment of AD, and most of these drugs provide symptomatic relief. The multi-target directed ligand strategy is proposed as an effective approach for the treatment of AD. Herein, we report the design and synthesis of a series of 2-phenyl substituted chromone derivatives and their evaluation against AChE, MAO-B, and β amyloid self-aggregation inhibition. In the series, <b>NS-</b>4 and <b>NS-</b>13 were identified as the potent leads against all the specified targets. <b>NS-</b>4 and <b>NS-</b>13 exhibited balanced multipotent activities against AChE with IC<sub>50</sub> values of 3.09 μM, and 0.625 μM and against MAO-B with IC<sub>50</sub> values of 19.64 μM and 12.31 μM, respectively. These compounds also displayed 28.5% and 32.2% self-aggregation inhibition potential against Aβ<sub>1-42</sub>, respectively. All the compounds were found to be selective for AChE over BuChE. Additionally, <b>NS-</b>4 also exhibited potent BuChE inhibition with an IC<sub>50</sub> value of 1.95 μM. Moreover, <b>NS-</b>4 and <b>NS-</b>13 reduced intracellular ROS levels up to 65% against SH-SY5Y cells at 25 μM concentration. The lead compounds were found to be neuroprotective and exhibited no cytotoxicity even at 25 μM concentration. In enzyme kinetic inhibition studies, these compounds showed mixed-type inhibition to AChE. In the computational studies, binding interactions, and orientations of the ligands at the active site of the enzymes were analyzed and these lead compounds were found to be thermodynamically stable inside the active cavity for up to 100 ns.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the anticancer potential of plumbagin: targeting pyruvate kinase M2 to induce oxidative stress and apoptosis in hepatoma cells. 揭示 plumbagin 的抗癌潜力:以丙酮酸激酶 M2 为靶点,诱导肝癌细胞氧化应激和凋亡。
IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-20 DOI: 10.1039/d4md00519h
Jun Wu, Zhenjiang Ding, Jingwen Tu, Alsiddig Osama, Qiuying Nie, Wenqing Cai, Baoxin Zhang

Pyruvate kinase M2 (PKM2), a crucial enzyme in the glycolysis pathway, is commonly documented as being overexpressed in cancer cells. Inhibiting PKM2, a strategy to mitigate cancer cell-dependent glycolysis, has demonstrated efficacy in anticancer treatment. In this study, plumbagin, which was originally extracted from the plant Plumbago zeylanica L., was discovered as a novel PKM2 inhibitor and it could bind to PKM2 to inhibit the enzymatic activity. Treatment with plumbagin in HepG2 cells resulted in the decrease of PKM2 expression, which in turn reduced the protein kinase function. The mRNA levels of its downstream genes, such as LDHA and MYC, were suppressed. Additionally, plumbagin downregulated the expression of intracellular antioxidant proteins, which induced oxidative stress and mitochondrial damage, ultimately triggering apoptosis. Moreover, plumbagin also reduced the migration and proliferation of HepG2 cells. This study offered valuable insights into the molecular mechanism of plumbagin and advocated for the exploration of PKM2 inhibitors as viable possibilities for anticancer therapeutics.

丙酮酸激酶 M2 (PKM2)是糖酵解途径中的一种重要酶,有文献记载,它在癌细胞中普遍过度表达。抑制 PKM2 是一种减轻癌细胞依赖性糖酵解的策略,在抗癌治疗中已被证明具有疗效。本研究发现了一种新型 PKM2 抑制剂--Plumbagin,它最初是从植物 Plumbago zeylanica L. 中提取的,能与 PKM2 结合,抑制其酶活性。用 Plumbagin 处理 HepG2 细胞可降低 PKM2 的表达,进而降低蛋白激酶的功能。其下游基因(如 LDHA 和 MYC)的 mRNA 水平也受到抑制。此外,Plumbagin 下调了细胞内抗氧化蛋白的表达,从而诱导氧化应激和线粒体损伤,最终引发细胞凋亡。此外,Plumbagin 还能减少 HepG2 细胞的迁移和增殖。这项研究为了解 plumbagin 的分子机制提供了宝贵的见解,并为探索 PKM2 抑制剂作为抗癌疗法的可行可能性提供了倡导。
{"title":"Unveiling the anticancer potential of plumbagin: targeting pyruvate kinase M2 to induce oxidative stress and apoptosis in hepatoma cells.","authors":"Jun Wu, Zhenjiang Ding, Jingwen Tu, Alsiddig Osama, Qiuying Nie, Wenqing Cai, Baoxin Zhang","doi":"10.1039/d4md00519h","DOIUrl":"10.1039/d4md00519h","url":null,"abstract":"<p><p>Pyruvate kinase M2 (PKM2), a crucial enzyme in the glycolysis pathway, is commonly documented as being overexpressed in cancer cells. Inhibiting PKM2, a strategy to mitigate cancer cell-dependent glycolysis, has demonstrated efficacy in anticancer treatment. In this study, plumbagin, which was originally extracted from the plant <i>Plumbago zeylanica</i> L., was discovered as a novel PKM2 inhibitor and it could bind to PKM2 to inhibit the enzymatic activity. Treatment with plumbagin in HepG2 cells resulted in the decrease of PKM2 expression, which in turn reduced the protein kinase function. The mRNA levels of its downstream genes, such as <i>LDHA</i> and <i>MYC</i>, were suppressed. Additionally, plumbagin downregulated the expression of intracellular antioxidant proteins, which induced oxidative stress and mitochondrial damage, ultimately triggering apoptosis. Moreover, plumbagin also reduced the migration and proliferation of HepG2 cells. This study offered valuable insights into the molecular mechanism of plumbagin and advocated for the exploration of PKM2 inhibitors as viable possibilities for anticancer therapeutics.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the mechanisms of antimicrobial resistance and potential therapeutic approaches against the Gram-negative pathogen Acinetobacter baumannii. 了解革兰氏阴性病原体鲍曼不动杆菌的抗菌药耐药性机制和潜在治疗方法。
IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-19 DOI: 10.1039/d4md00449c
Vishwani Jamwal, Tashi Palmo, Kuljit Singh

Globally, the emergence of anti-microbial resistance in pathogens has become a serious threat to human health and well-being. Infections caused by drug-resistant microorganisms in hospitals are associated with increased morbidity, mortality, and healthcare costs. Acinetobacter baumannii is a Gram-negative bacterium belonging to the ESKAPE group and is widely associated with nosocomial infections. It persists in hospitals and survives antibiotic treatment, prompting acute infections such as urinary tract infections, pneumonia, bacteremia, meningitis, and wound-related infections. An innovation void in drug discovery and the lack of new therapeutic measures against A. baumannii continue to afflict infection control against the rising drug-resistant cases. The emergence of drug-resistant A. baumannii strains has also led to the incessant collapse of newly discovered antibiotics. Therefore exploring novel strategies is requisite to give impetus to A. baumannii drug discovery. The present review discusses the bacterial research community's efforts in the field of A. baumannii, focusing on the strategies adapted to identify potent scaffolds and novel targets to bolster and diversify the chemical space available for drug discovery. Firstly, we have discussed existing chemotherapy and various anti-microbial resistance mechanisms in A. baumannii bacterial strains. Next, we elaborate on multidisciplinary approaches and strategies that may be the way forward to combat the current menace caused by the drug-resistant A. baumannii strains. The review highlights the recent advances in drug discovery, including combinational therapy, high-throughput screening, drug repurposing, nanotechnology, and anti-microbial peptides, which are imperative tools to fight bacterial pathogens in the future.

在全球范围内,病原体抗微生物耐药性的出现已严重威胁到人类的健康和福祉。医院中由耐药微生物引起的感染与发病率、死亡率和医疗成本的增加有关。鲍曼不动杆菌(Acinetobacter baumannii)是一种革兰氏阴性细菌,属于 ESKAPE 菌群,广泛与医院内感染有关。它在医院中顽固存在,经抗生素治疗后仍能存活,引发急性感染,如尿路感染、肺炎、菌血症、脑膜炎和伤口相关感染。药物发现方面的创新空白以及缺乏针对鲍曼尼氏菌的新治疗措施,继续困扰着感染控制部门应对不断上升的耐药病例。耐药鲍曼尼氏菌菌株的出现也导致新发现的抗生素不断失效。因此,探索新策略是推动鲍曼不动杆菌药物研发的必要条件。本综述讨论了细菌研究界在鲍曼不动杆菌领域所做的努力,重点关注为确定有效支架和新靶点而采取的策略,以加强和丰富药物发现的化学空间。首先,我们讨论了现有的化疗方法和鲍曼不动杆菌菌株的各种抗微生物耐药机制。接下来,我们阐述了多学科方法和策略,这些方法和策略可能是应对当前耐药鲍曼不动杆菌菌株造成的威胁的出路。综述重点介绍了药物发现领域的最新进展,包括组合疗法、高通量筛选、药物再利用、纳米技术和抗微生物肽,这些都是未来对抗细菌病原体的必要工具。
{"title":"Understanding the mechanisms of antimicrobial resistance and potential therapeutic approaches against the Gram-negative pathogen <i>Acinetobacter baumannii</i>.","authors":"Vishwani Jamwal, Tashi Palmo, Kuljit Singh","doi":"10.1039/d4md00449c","DOIUrl":"10.1039/d4md00449c","url":null,"abstract":"<p><p>Globally, the emergence of anti-microbial resistance in pathogens has become a serious threat to human health and well-being. Infections caused by drug-resistant microorganisms in hospitals are associated with increased morbidity, mortality, and healthcare costs. <i>Acinetobacter baumannii</i> is a Gram-negative bacterium belonging to the ESKAPE group and is widely associated with nosocomial infections. It persists in hospitals and survives antibiotic treatment, prompting acute infections such as urinary tract infections, pneumonia, bacteremia, meningitis, and wound-related infections. An innovation void in drug discovery and the lack of new therapeutic measures against <i>A. baumannii</i> continue to afflict infection control against the rising drug-resistant cases. The emergence of drug-resistant <i>A. baumannii</i> strains has also led to the incessant collapse of newly discovered antibiotics. Therefore exploring novel strategies is requisite to give impetus to <i>A. baumannii</i> drug discovery. The present review discusses the bacterial research community's efforts in the field of <i>A. baumannii</i>, focusing on the strategies adapted to identify potent scaffolds and novel targets to bolster and diversify the chemical space available for drug discovery. Firstly, we have discussed existing chemotherapy and various anti-microbial resistance mechanisms in <i>A. baumannii</i> bacterial strains. Next, we elaborate on multidisciplinary approaches and strategies that may be the way forward to combat the current menace caused by the drug-resistant <i>A. baumannii</i> strains. The review highlights the recent advances in drug discovery, including combinational therapy, high-throughput screening, drug repurposing, nanotechnology, and anti-microbial peptides, which are imperative tools to fight bacterial pathogens in the future.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of SARS-CoV-2 3CLpro by chemically modified tyrosinase from Agaricus bisporus. 双孢蘑菇中的化学修饰酪氨酸酶对 SARS-CoV-2 3CLpro 的抑制作用。
IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-16 DOI: 10.1039/d4md00289j
David Aguilera-Rodriguez, David Ortega-Alarcon, Angela Vazquez-Calvo, Veronica Ricci, Olga Abian, Adrian Velazquez-Campoy, Antonio Alcami, Jose M Palomo

Antiviral compounds are crucial to controlling the SARS-CoV-2 pandemic. Approved drugs have been tested for their efficacy against COVID-19, and new pharmaceuticals are being developed as a complementary tool to vaccines. In this work, a cheap and fast purification method for natural tyrosinase from Agaricus bisporus (AbTyr) fresh mushrooms was developed to evaluate the potential of this enzyme as a therapeutic protein via the inhibition of SARS-CoV-2 3CLpro protease activity in vitro. AbTyr showed a mild inhibition of 3CLpro. Thus, different variants of this protein were synthesized through chemical modifications, covalently binding different tailor-made glycans and peptides to the amino terminal groups of the protein. These new tyrosinase conjugates were purified and characterized through circular dichroism and fluorescence spectroscopy analyses, and their stability was evaluated under different conditions. Subsequently, all these tyrosinase conjugates were tested for 3CLpro protease inhibition. From them, the conjugate between tyrosinase and a dextran-aspartic acid (6 kDa) polymer showed the highest inhibition, with an IC50 of 2.5 μg ml-1 and IC90 of 5 μg ml-1, with no cytotoxicity activity by polymer insertion. Finally, SARS-CoV-2 virus infection was studied. It was found that this new AbTyr-Dext6000 protein showed an 80% decrease in viral load. These results show the capacity of these tyrosinase bioconjugates as potential therapeutic proteins, opening the possibility of extension and applicability against other different viruses.

抗病毒化合物对控制 SARS-CoV-2 大流行至关重要。已批准的药物对 COVID-19 的疗效进行了测试,新的药物正在开发中,作为疫苗的补充工具。在这项工作中,开发了一种从双孢蘑菇(AbTyr)中提取天然酪氨酸酶的廉价而快速的纯化方法,通过在体外抑制 SARS-CoV-2 3CLpro 蛋白酶的活性来评估这种酶作为治疗蛋白的潜力。AbTyr 对 3CLpro 有轻微的抑制作用。因此,通过化学修饰合成了这种蛋白质的不同变体,将不同的定制聚糖和肽共价结合到蛋白质的氨基末端基团上。通过圆二色性和荧光光谱分析,对这些新的酪氨酸酶共轭物进行了纯化和表征,并评估了它们在不同条件下的稳定性。随后,对所有这些酪氨酸酶共轭物进行了 3CLpro 蛋白酶抑制测试。其中,酪氨酸酶与葡聚糖-天冬氨酸(6 kDa)聚合物的共轭物显示出最高的抑制作用,IC50 为 2.5 μg ml-1,IC90 为 5 μg ml-1,聚合物插入后没有细胞毒性活性。最后,对 SARS-CoV-2 病毒感染进行了研究。结果发现,这种新的 AbTyr-Dext6000 蛋白使病毒载量减少了 80%。这些结果表明,这些酪氨酸酶生物缀合物具有作为潜在治疗蛋白的能力,并有可能扩展和应用于其他不同的病毒。
{"title":"Inhibition of SARS-CoV-2 3CLpro by chemically modified tyrosinase from <i>Agaricus bisporus</i>.","authors":"David Aguilera-Rodriguez, David Ortega-Alarcon, Angela Vazquez-Calvo, Veronica Ricci, Olga Abian, Adrian Velazquez-Campoy, Antonio Alcami, Jose M Palomo","doi":"10.1039/d4md00289j","DOIUrl":"10.1039/d4md00289j","url":null,"abstract":"<p><p>Antiviral compounds are crucial to controlling the SARS-CoV-2 pandemic. Approved drugs have been tested for their efficacy against COVID-19, and new pharmaceuticals are being developed as a complementary tool to vaccines. In this work, a cheap and fast purification method for natural tyrosinase from <i>Agaricus bisporus</i> (AbTyr) fresh mushrooms was developed to evaluate the potential of this enzyme as a therapeutic protein <i>via</i> the inhibition of SARS-CoV-2 3CLpro protease activity <i>in vitro</i>. AbTyr showed a mild inhibition of 3CLpro. Thus, different variants of this protein were synthesized through chemical modifications, covalently binding different tailor-made glycans and peptides to the amino terminal groups of the protein. These new tyrosinase conjugates were purified and characterized through circular dichroism and fluorescence spectroscopy analyses, and their stability was evaluated under different conditions. Subsequently, all these tyrosinase conjugates were tested for 3CLpro protease inhibition. From them, the conjugate between tyrosinase and a dextran-aspartic acid (6 kDa) polymer showed the highest inhibition, with an IC<sub>50</sub> of 2.5 μg ml<sup>-1</sup> and IC<sub>90</sub> of 5 μg ml<sup>-1</sup>, with no cytotoxicity activity by polymer insertion. Finally, SARS-CoV-2 virus infection was studied. It was found that this new AbTyr-Dext6000 protein showed an 80% decrease in viral load. These results show the capacity of these tyrosinase bioconjugates as potential therapeutic proteins, opening the possibility of extension and applicability against other different viruses.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of NT-PSMA heterobivalent probes for prostate cancer theranostics. 合理设计用于前列腺癌治疗的 NT-PSMA 异价探针。
IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-16 DOI: 10.1039/d4md00491d
Santo Previti, Sacha Bodin, Emmanuelle Rémond, Delphine Vimont, Elif Hindié, Clément Morgat, Florine Cavelier

Targeting the prostate-specific membrane antigen (PSMA) with radiopharmaceuticals for imaging and/or therapy has demonstrated significant advancement in the management of prostate cancer patients. However, PSMA targeting remains unsuccessful in prostate cancers with low expression of PSMA, which account for 15% of cases. The neurotensin receptor-1 (NTS1) has been highlighted as a suitable oncotarget for imaging and therapy of PSMA-negative prostate cancer lesions. Therefore, heterobivalent probes targeting both PSMA and NTS1 could improve the prostate cancer management. Herein, we report the development of a branched hybrid probe (JMV 7489) designed to target PSMA and/or NTS1 bearing relevant pharmacophores and DOTA as the chelating agent. The new ligand was synthesized with a hybrid approach, which includes both syntheses in batch and in the solid phase. Saturation binding experiments were next performed on HT-29 and PC3-PIP cells to derive K d and B max values. On the PC3-PIP cells, [68Ga]Ga-JMV 7489 displayed good affinity towards PSMA (K d = 53 ± 17 nM; B max = 1393 ± 29 fmol/106 cells) in the same range as the corresponding reference monomer. A lower affinity value towards NTS1 was depicted (K d = 157 ± 71 nM; B max = 241 ± 42 fmol/106 cells on PC3-PIP cells; K d = 246 ± 1 nM; B max = 151 ± 44 fmol/106 cells on HT-29 cells) and, surprisingly, it was also the case for the corresponding monomer [68Ga]Ga-JMV 7089. These results indicate that the DOTA macrocycle and the linker are critical elements to design heterobivalent probes targeting PSMA and NTS1 with high affinity towards NTS1.

利用放射性药物靶向前列腺特异性膜抗原(PSMA)进行成像和/或治疗,在前列腺癌患者的治疗方面取得了重大进展。然而,PSMA靶向治疗在PSMA低表达的前列腺癌中仍不成功,而这一比例仅为15%。神经营养素受体-1(NTS1)被认为是 PSMA 阴性前列腺癌病灶成像和治疗的合适靶点。因此,同时靶向 PSMA 和 NTS1 的异价探针可以改善前列腺癌的治疗。在此,我们报告了针对 PSMA 和/或 NTS1 的支化杂交探针(JMV 7489)的开发情况,该探针带有相关的药效团,并以 DOTA 作为螯合剂。新配体采用混合方法合成,包括批量和固相合成。接下来在 HT-29 和 PC3-PIP 细胞上进行了饱和结合实验,以得出 K d 和 B max 值。在 PC3-PIP 细胞上,[68Ga]Ga-JMV 7489 对 PSMA 显示出良好的亲和力(K d = 53 ± 17 nM;B max = 1393 ± 29 fmol/106个细胞),与相应的参比单体范围相同。对 NTS1 的亲和值较低(在 PC3-PIP 细胞上,K d = 157 ± 71 nM;B max = 241 ± 42 fmol/106 cells;在 HT-29 细胞上,K d = 246 ± 1 nM;B max = 151 ± 44 fmol/106 cells),令人惊讶的是,相应的单体 [68Ga]Ga-JMV 7089 也是如此。这些结果表明,DOTA 大环和连接体是设计对 NTS1 具有高亲和力的 PSMA 和 NTS1 靶向异源探针的关键元素。
{"title":"Rational design of NT-PSMA heterobivalent probes for prostate cancer theranostics.","authors":"Santo Previti, Sacha Bodin, Emmanuelle Rémond, Delphine Vimont, Elif Hindié, Clément Morgat, Florine Cavelier","doi":"10.1039/d4md00491d","DOIUrl":"10.1039/d4md00491d","url":null,"abstract":"<p><p>Targeting the prostate-specific membrane antigen (PSMA) with radiopharmaceuticals for imaging and/or therapy has demonstrated significant advancement in the management of prostate cancer patients. However, PSMA targeting remains unsuccessful in prostate cancers with low expression of PSMA, which account for 15% of cases. The neurotensin receptor-1 (NTS<sub>1</sub>) has been highlighted as a suitable oncotarget for imaging and therapy of PSMA-negative prostate cancer lesions. Therefore, heterobivalent probes targeting both PSMA and NTS<sub>1</sub> could improve the prostate cancer management. Herein, we report the development of a branched hybrid probe (<b>JMV 7489</b>) designed to target PSMA and/or NTS<sub>1</sub> bearing relevant pharmacophores and DOTA as the chelating agent. The new ligand was synthesized with a hybrid approach, which includes both syntheses in batch and in the solid phase. Saturation binding experiments were next performed on HT-29 and PC3-PIP cells to derive <i>K</i> <sub>d</sub> and <i>B</i> <sub>max</sub> values. On the PC3-PIP cells, [<sup>68</sup>Ga]Ga-<b>JMV 7489</b> displayed good affinity towards PSMA (<i>K</i> <sub>d</sub> = 53 ± 17 nM; <i>B</i> <sub>max</sub> = 1393 ± 29 fmol/10<sup>6</sup> cells) in the same range as the corresponding reference monomer. A lower affinity value towards NTS<sub>1</sub> was depicted (<i>K</i> <sub>d</sub> = 157 ± 71 nM; <i>B</i> <sub>max</sub> = 241 ± 42 fmol/10<sup>6</sup> cells on PC3-PIP cells; <i>K</i> <sub>d</sub> = 246 ± 1 nM; <i>B</i> <sub>max</sub> = 151 ± 44 fmol/10<sup>6</sup> cells on HT-29 cells) and, surprisingly, it was also the case for the corresponding monomer [<sup>68</sup>Ga]Ga-<b>JMV 7089</b>. These results indicate that the DOTA macrocycle and the linker are critical elements to design heterobivalent probes targeting PSMA and NTS<sub>1</sub> with high affinity towards NTS<sub>1</sub>.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repurposing of USFDA-approved drugs to identify leads for inhibition of acetylcholinesterase enzyme: a plausible utility as an anti-Alzheimer agent. 对美国食品与药物管理局批准的药物进行再利用,以确定抑制乙酰胆碱酯酶的线索:作为抗阿尔茨海默氏症药物的合理用途。
IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-16 DOI: 10.1039/d4md00461b
Kapil Kumar Goel, Sandhya Chahal, Devendra Kumar, Shivani Jaiswal, Nidhi Nainwal, Rahul Singh, Shriya Mahajan, Pramod Rawat, Savita Yadav, Prachi Fartyal, Gazanfar Ahmad, Vibhu Jha, Ashish Ranjan Dwivedi

In the quest to identify new anti-Alzheimer agents, we employed drug repositioning or drug repositioning techniques on approved USFDA small molecules. Herein, we report the structure-based virtual screening (SBVS) of 1880 USFDA-approved drugs. The in silico-based identification was followed by calculating Prime MMGB-SA binding energy and molecular dynamics simulation studies. The cumulative analysis led to identifying domperidone as an identified hit. Domperidone was further corroborated in vitro using anticholinesterase-based assessment, keeping donepezil as a positive control. The analysis revealed that the identified lead (domperidone) could induce an inhibitory effect on AChE in a dose-dependent manner with an IC50 of 3.67 μM as compared to donepezil, which exhibited an IC50 of 1.37 μM. However, as domperidone is known to have poor BBB permeability, we rationally proposed new analogues utilizing the principles of bioisosterism. The bioisostere-clubbed analogues were found to have better BBB permeability, affinity, and stability within the catalytic domain of AChE via molecular docking and dynamics studies. The proposed bioisosteres may be synthesized in the future. They may plausibly be explored for their implication in the developmental progress of new anti-Alzheimer agent achieved via repurposing techniques in future.

在寻找新的抗老年痴呆药物的过程中,我们对已获美国食品药物管理局批准的小分子药物采用了药物重新定位或药物重新定位技术。在此,我们报告了对1880种USFDA批准药物进行的基于结构的虚拟筛选(SBVS)。在进行基于硅的鉴定之后,我们还计算了Prime MMGB-SA结合能,并进行了分子动力学模拟研究。通过累积分析,确定了多潘立酮为已鉴定的命中药物。以多奈哌齐为阳性对照,使用基于抗胆碱酯酶的评估对多潘立酮进行了体外进一步确证。分析表明,与多奈哌齐的 IC50 值为 1.37 μM 相比,多潘立酮能以剂量依赖的方式对 AChE 产生抑制作用,其 IC50 值为 3.67 μM。然而,众所周知多潘立酮的 BBB 渗透性较差,因此我们利用生物异构原理合理地提出了新的类似物。通过分子对接和动力学研究发现,生物异构类似物在 AChE 催化结构域内具有更好的 BBB 渗透性、亲和力和稳定性。未来可能会合成所提出的生物异构体。今后还可能通过再利用技术探索它们对新型抗阿尔茨海默氏症药物开发进展的影响。
{"title":"Repurposing of USFDA-approved drugs to identify leads for inhibition of acetylcholinesterase enzyme: a plausible utility as an anti-Alzheimer agent.","authors":"Kapil Kumar Goel, Sandhya Chahal, Devendra Kumar, Shivani Jaiswal, Nidhi Nainwal, Rahul Singh, Shriya Mahajan, Pramod Rawat, Savita Yadav, Prachi Fartyal, Gazanfar Ahmad, Vibhu Jha, Ashish Ranjan Dwivedi","doi":"10.1039/d4md00461b","DOIUrl":"10.1039/d4md00461b","url":null,"abstract":"<p><p>In the quest to identify new anti-Alzheimer agents, we employed drug repositioning or drug repositioning techniques on approved USFDA small molecules. Herein, we report the structure-based virtual screening (SBVS) of 1880 USFDA-approved drugs. The <i>in silico</i>-based identification was followed by calculating Prime MMGB-SA binding energy and molecular dynamics simulation studies. The cumulative analysis led to identifying domperidone as an identified hit. Domperidone was further corroborated <i>in vitro</i> using anticholinesterase-based assessment, keeping donepezil as a positive control. The analysis revealed that the identified lead (domperidone) could induce an inhibitory effect on AChE in a dose-dependent manner with an IC<sub>50</sub> of 3.67 μM as compared to donepezil, which exhibited an IC<sub>50</sub> of 1.37 μM. However, as domperidone is known to have poor BBB permeability, we rationally proposed new analogues utilizing the principles of bioisosterism. The bioisostere-clubbed analogues were found to have better BBB permeability, affinity, and stability within the catalytic domain of AChE <i>via</i> molecular docking and dynamics studies. The proposed bioisosteres may be synthesized in the future. They may plausibly be explored for their implication in the developmental progress of new anti-Alzheimer agent achieved <i>via</i> repurposing techniques in future.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of selective LATS inhibitors via scaffold hopping: enhancing drug-likeness and kinase selectivity for potential applications in regenerative medicine. 通过支架跳跃发现选择性 LATS 抑制剂:增强药物相似性和激酶选择性,从而在再生医学中实现潜在应用。
IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-14 DOI: 10.1039/d4md00492b
Guldana Issabayeva, On-Yu Kang, Seong Yun Choi, Ji Young Hyun, Seong Jun Park, Hei-Cheul Jeung, Hwan Jung Lim

Due to its essential roles in cell proliferation and apoptosis, the precise regulation of the Hippo pathway through LATS presents a viable biological target for developing new drugs for cancer and regenerative diseases. However, currently available probes for selective and highly drug-like inhibition of LATS require further improvement in terms of both activity, selectivity and drug-like properties. Through scaffold hopping aided by docking studies and AI-assisted prediction of metabolic stabilities, we successfully identified an advanced LATS inhibitor demonstrating potent kinase activity, exceptional selectivity against other kinases, and superior oral pharmacokinetic profiles.

由于 LATS 在细胞增殖和凋亡中的重要作用,通过 LATS 对 Hippo 通路进行精确调控为开发治疗癌症和再生性疾病的新药提供了一个可行的生物靶点。然而,目前可用于选择性和高度类药物抑制 LATS 的探针在活性、选择性和类药物特性方面都需要进一步改进。在对接研究和人工智能辅助预测代谢稳定性的帮助下,我们通过支架跳转成功鉴定出了一种先进的 LATS 抑制剂,它具有强效激酶活性、对其他激酶的特殊选择性以及优异的口服药物动力学特征。
{"title":"Discovery of selective LATS inhibitors <i>via</i> scaffold hopping: enhancing drug-likeness and kinase selectivity for potential applications in regenerative medicine.","authors":"Guldana Issabayeva, On-Yu Kang, Seong Yun Choi, Ji Young Hyun, Seong Jun Park, Hei-Cheul Jeung, Hwan Jung Lim","doi":"10.1039/d4md00492b","DOIUrl":"https://doi.org/10.1039/d4md00492b","url":null,"abstract":"<p><p>Due to its essential roles in cell proliferation and apoptosis, the precise regulation of the Hippo pathway through LATS presents a viable biological target for developing new drugs for cancer and regenerative diseases. However, currently available probes for selective and highly drug-like inhibition of LATS require further improvement in terms of both activity, selectivity and drug-like properties. Through scaffold hopping aided by docking studies and AI-assisted prediction of metabolic stabilities, we successfully identified an advanced LATS inhibitor demonstrating potent kinase activity, exceptional selectivity against other kinases, and superior oral pharmacokinetic profiles.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142353065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
RSC medicinal chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1