首页 > 最新文献

Science and Technology for the Built Environment最新文献

英文 中文
Code Generation for Embedded Predictive Control of Gas Water Heaters 嵌入式燃气热水器预测控制的代码生成
IF 1.9 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-11-21 DOI: 10.1080/23744731.2023.2286195
André Quintã, Cheila Conceição, Nelson Martins, Jorge Ferreira
Conventional control strategies usually employed in tankless gas water heaters present difficulty in controlling the hot water temperature when subjected to sudden changes in water flow rate. Inade...
在无热式燃气热水器中,当水流突然变化时,采用的传统控制策略难以控制热水温度。Inade……
{"title":"Code Generation for Embedded Predictive Control of Gas Water Heaters","authors":"André Quintã, Cheila Conceição, Nelson Martins, Jorge Ferreira","doi":"10.1080/23744731.2023.2286195","DOIUrl":"https://doi.org/10.1080/23744731.2023.2286195","url":null,"abstract":"Conventional control strategies usually employed in tankless gas water heaters present difficulty in controlling the hot water temperature when subjected to sudden changes in water flow rate. Inade...","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"189 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variable refrigerant flow heat pump model with estimated parameters and emulated controller based on manufacturer data 变量制冷剂流量热泵模型与估计参数和仿真控制器基于制造商的数据
4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-11-12 DOI: 10.1080/23744731.2023.2279469
Aziz Mbaye, Massimo Cimmino
AbstractA new physics-based and modular variable refrigerant flow (VRF) heat pump model aimed towards multi-year simulations is presented. The model allows the simulation of any number of indoor units (IU), outdoor units (OU) and compressors. A parameter-estimation procedure and a control strategy both using available manufacturer data is proposed. The model is validated against data collected from a VRF system that services the first floor of the former ASHRAE Headquarters Building in Atlanta (USA), comprised of 22 indoor units, 2 outdoor units and 8 compressors. Results show that the model accurately predicts the total energy consumption over a 2-month cooling period, with a relative error, normalized mean bias error (NMBE), and coefficient of variation of the root mean square error (CVRMSE) of 1%, 1.6%, and 16.7%, respectively.Keywords: variable refrigerant flowheat pumpmodel calibrationcontroller emulationDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
摘要提出了一种新的基于物理的模块化变制冷剂流量(VRF)热泵模型,旨在实现多年模拟。该模型允许模拟任意数量的室内机(IU)、室外机(OU)和压缩机。提出了一种基于制造商数据的参数估计方法和控制策略。该模型是根据从VRF系统收集的数据进行验证的,该系统服务于亚特兰大(美国)前ASHRAE总部大楼的一楼,由22个室内单元,2个室外单元和8个压缩机组成。结果表明,该模型准确预测了2个月制冷期的总能耗,相对误差为1%,归一化平均偏差误差(NMBE)为1.6%,均方根误差变异系数(CVRMSE)为16.7%。关键词:可变制冷剂流量泵模型校准控制器仿真免责声明作为对作者和研究人员的服务,我们提供此版本的接受手稿(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。
{"title":"Variable refrigerant flow heat pump model with estimated parameters and emulated controller based on manufacturer data","authors":"Aziz Mbaye, Massimo Cimmino","doi":"10.1080/23744731.2023.2279469","DOIUrl":"https://doi.org/10.1080/23744731.2023.2279469","url":null,"abstract":"AbstractA new physics-based and modular variable refrigerant flow (VRF) heat pump model aimed towards multi-year simulations is presented. The model allows the simulation of any number of indoor units (IU), outdoor units (OU) and compressors. A parameter-estimation procedure and a control strategy both using available manufacturer data is proposed. The model is validated against data collected from a VRF system that services the first floor of the former ASHRAE Headquarters Building in Atlanta (USA), comprised of 22 indoor units, 2 outdoor units and 8 compressors. Results show that the model accurately predicts the total energy consumption over a 2-month cooling period, with a relative error, normalized mean bias error (NMBE), and coefficient of variation of the root mean square error (CVRMSE) of 1%, 1.6%, and 16.7%, respectively.Keywords: variable refrigerant flowheat pumpmodel calibrationcontroller emulationDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"32 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135037599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-scenario Extreme Weather Simulator Application to Heat Waves: Ko’olauloa Community Resilience Hub 多场景极端天气模拟器在热浪中的应用:Ko 'olauloa社区恢复中心
4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-11-09 DOI: 10.1080/23744731.2023.2279467
Daniel L. Villa, Sang Hoon Lee, Carlo Bianchi, Juan Pablo Carvallo, Illya Azaroff, Andrea Mammoli, Tyler Schostek
Heat waves are increasing in severity, duration, and frequency. The multi-scenario extreme weather simulator (MEWS) models this using historical data, climate model outputs, and heat wave multipliers. In this study, MEWS is applied for planning of a community resilience hub in Hau’ula, Hawaii. The hub will have normal operations and resilience operations modes. Both these modes were modelled using EnergyPlus. The resilience operations mode includes cutting off air-conditioning for many spaces to decrease power requirements during emergencies. Results were simulated for 300 future weather files generated by MEWS for 2020, 2040, 2060, and 2080. Shared socioeconomic pathways 2-4.5, 3-7.0 and 5-8.5 were used. The resilience operations mode results show two to six times increase of hours of exceedance beyond 32.2 °C from present conditions depending on climate scenario and future year. The resulting decrease in thermal resilience enables an average decrease of energy use intensity of 26% with little sensitivity to climate change. The decreased thermal resilience predicted in the future is undesirable, but was not severe enough to require a more energy intensive resilience mode. Instead, planning is needed to assure vulnerable individuals are given prioritized access to conditioned parts of the hub if worst case heat waves occur.
热浪的严重程度、持续时间和频率都在增加。多情景极端天气模拟器(MEWS)利用历史数据、气候模式输出和热浪乘数对其进行模拟。在本研究中,MEWS应用于夏威夷Hau 'ula的社区恢复力中心的规划。枢纽将有正常运行和弹性运行两种模式。这两种模式都是使用EnergyPlus建模的。弹性运行模式包括切断许多空间的空调,以减少紧急情况下的电力需求。对MEWS生成的300个未来天气文件进行了2020、2040、2060和2080年的模拟。采用共享社会经济路径2-4.5、3-7.0和5-8.5。弹性运行模式结果显示,根据气候情景和未来年份,超过32.2°C的小时数比当前条件增加2至6倍。由此导致的热弹性降低使能源使用强度平均降低26%,对气候变化几乎不敏感。未来预测的热回弹性下降是不可取的,但还没有严重到需要更耗能的回弹性模式。相反,需要制定计划,以确保在最坏的热浪发生时,弱势群体能够优先进入中心的条件部分。
{"title":"Multi-scenario Extreme Weather Simulator Application to Heat Waves: Ko’olauloa Community Resilience Hub","authors":"Daniel L. Villa, Sang Hoon Lee, Carlo Bianchi, Juan Pablo Carvallo, Illya Azaroff, Andrea Mammoli, Tyler Schostek","doi":"10.1080/23744731.2023.2279467","DOIUrl":"https://doi.org/10.1080/23744731.2023.2279467","url":null,"abstract":"Heat waves are increasing in severity, duration, and frequency. The multi-scenario extreme weather simulator (MEWS) models this using historical data, climate model outputs, and heat wave multipliers. In this study, MEWS is applied for planning of a community resilience hub in Hau’ula, Hawaii. The hub will have normal operations and resilience operations modes. Both these modes were modelled using EnergyPlus. The resilience operations mode includes cutting off air-conditioning for many spaces to decrease power requirements during emergencies. Results were simulated for 300 future weather files generated by MEWS for 2020, 2040, 2060, and 2080. Shared socioeconomic pathways 2-4.5, 3-7.0 and 5-8.5 were used. The resilience operations mode results show two to six times increase of hours of exceedance beyond 32.2 °C from present conditions depending on climate scenario and future year. The resulting decrease in thermal resilience enables an average decrease of energy use intensity of 26% with little sensitivity to climate change. The decreased thermal resilience predicted in the future is undesirable, but was not severe enough to require a more energy intensive resilience mode. Instead, planning is needed to assure vulnerable individuals are given prioritized access to conditioned parts of the hub if worst case heat waves occur.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":" 22","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135243150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a standardized categorization system for energy efficiency measures (1836-RP) 制定能源效率措施的标准化分类系统(1836-RP)
4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-11-08 DOI: 10.1080/23744731.2023.2279466
Amanda L. Webb, Apoorv Khanuja
AbstractThe growth of legislation to reduce energy use in existing buildings is producing a rich new trove of data about energy efficiency measures (EEMs), which has the potential to unlock new insights into the built environment. However, the lack of standardized EEM naming conventions and categorization methods is currently a major barrier to aggregating and analyzing this data. The goal of this study was to develop and test a novel standardized system for categorizing EEMs. The system consists of two components: a three-level building element-based categorization hierarchy, and a set of measure name tags, which are used to label an EEM and categorize it on the hierarchy. A demonstration and testing process was developed and applied to two sample datasets to evaluate the ability of the system to categorize a variety of EEMs. The results show that most EEMs can easily be categorized manually according to the new system, and highlight several challenges for automated categorization, including EEM names that are missing an element, contain a term not in the tag list, or contain synonyms or abbreviations. These results provide a replicable and systematic framework for the translation, aggregation, and analysis of EEM datasets from different sources.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
【摘要】减少现有建筑能源使用的立法正在产生丰富的关于能源效率措施(EEMs)的新数据,这些数据有可能开启对建筑环境的新见解。然而,缺乏标准化的EEM命名约定和分类方法是目前聚合和分析这些数据的主要障碍。本研究的目的是开发和测试一种新的标准化系统来分类eem。该系统由两个组件组成:一个基于三层构建元素的分类层次结构,以及一组度量名称标签,这些标签用于标记EEM并在层次结构上对其进行分类。开发了一个演示和测试过程,并将其应用于两个样本数据集,以评估系统对各种eem进行分类的能力。结果表明,大多数EEM可以很容易地根据新系统手动分类,并突出了自动分类的几个挑战,包括EEM名称缺少元素,包含不在标记列表中的术语,或包含同义词或缩写。这些结果为来自不同来源的EEM数据集的翻译、聚合和分析提供了一个可复制的系统框架。免责声明作为对作者和研究人员的服务,我们提供了这个版本的已接受的手稿(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。
{"title":"Developing a standardized categorization system for energy efficiency measures (1836-RP)","authors":"Amanda L. Webb, Apoorv Khanuja","doi":"10.1080/23744731.2023.2279466","DOIUrl":"https://doi.org/10.1080/23744731.2023.2279466","url":null,"abstract":"AbstractThe growth of legislation to reduce energy use in existing buildings is producing a rich new trove of data about energy efficiency measures (EEMs), which has the potential to unlock new insights into the built environment. However, the lack of standardized EEM naming conventions and categorization methods is currently a major barrier to aggregating and analyzing this data. The goal of this study was to develop and test a novel standardized system for categorizing EEMs. The system consists of two components: a three-level building element-based categorization hierarchy, and a set of measure name tags, which are used to label an EEM and categorize it on the hierarchy. A demonstration and testing process was developed and applied to two sample datasets to evaluate the ability of the system to categorize a variety of EEMs. The results show that most EEMs can easily be categorized manually according to the new system, and highlight several challenges for automated categorization, including EEM names that are missing an element, contain a term not in the tag list, or contain synonyms or abbreviations. These results provide a replicable and systematic framework for the translation, aggregation, and analysis of EEM datasets from different sources.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"127 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135342031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
New formulations and experimental validation of non-stationary convolutions for the fast simulation of time-variant flowrates in ground heat exchangers 非平稳卷积快速模拟地埋管时变流量的新公式及实验验证
4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-11-06 DOI: 10.1080/23744731.2023.2279468
Gabrielle Beaudry, Philippe Pasquier, Alain Nguyen
AbstractFlowrate control can have a significant positive impact on the thermal performance and economic profitability of ground-source heat pump systems. Including dynamic advective processes in the design phase, however, remains a challenging task, as few computationally efficient modeling tools allow for their adequate and accurate representation. The present work addresses this issue by presenting new formulations of non-stationary convolutions, an efficient simulation algorithm that relies on the theory of linear time-variant systems for predicting the thermal response of a ground heat exchanger to both dynamic heat loads and flow rates. First, the new original formulations are presented, which include 1) a simple time-domain expression and 2) a fast frequency-domain expression. Then, the efficiency and validity of the new formulations are verified using experimental multi-flowrate thermal response tests involving dynamic circulation, pumping and bleed flow rates in closed-loop and standing column well ground heat exchangers. Results show that the new formulations can reproduce the outlet fluid temperature of both experimental test cases with good accuracy ( MAE=0.06∘C and 0.26∘C, respectively). At last, the high efficiency of the new frequency-domain expression is demonstrated, with the computing times (0.04 s and 0.01 s) being 100 and 8 times faster than the original formulation in both scenarios.Keywords: Ground-source heat pump systemtime-variant flowratessimulation of ground heat exchangernon-stationary convolutionDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
摘要流量控制对地源热泵系统的热性能和经济效益有显著的积极影响。然而,在设计阶段包括动态平流过程仍然是一项具有挑战性的任务,因为很少有计算效率高的建模工具允许它们充分和准确地表示。目前的工作通过提出非平稳卷积的新公式来解决这个问题,非平稳卷积是一种有效的模拟算法,它依赖于线性时变系统理论来预测地面热交换器对动态热负荷和流量的热响应。首先,提出了新的原始公式,包括1)一个简单的时域表达式和2)一个快速的频域表达式。然后,通过多流量热响应实验验证了新公式的有效性和有效性,包括闭环和立柱井地热交换器的动态循环、泵送流量和排流量。结果表明,新配方能较好地再现两种试验用例的出口流体温度(MAE分别=0.06°C和0.26°C)。最后,证明了新频域表达式的高效率,在两种情况下,计算时间(0.04 s和0.01 s)分别比原公式快100倍和8倍。关键词:地源热泵系统时变流量地下热交换器模拟非平稳卷积免责声明作为对作者和研究人员的服务,我们提供此版本的已接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。
{"title":"New formulations and experimental validation of non-stationary convolutions for the fast simulation of time-variant flowrates in ground heat exchangers","authors":"Gabrielle Beaudry, Philippe Pasquier, Alain Nguyen","doi":"10.1080/23744731.2023.2279468","DOIUrl":"https://doi.org/10.1080/23744731.2023.2279468","url":null,"abstract":"AbstractFlowrate control can have a significant positive impact on the thermal performance and economic profitability of ground-source heat pump systems. Including dynamic advective processes in the design phase, however, remains a challenging task, as few computationally efficient modeling tools allow for their adequate and accurate representation. The present work addresses this issue by presenting new formulations of non-stationary convolutions, an efficient simulation algorithm that relies on the theory of linear time-variant systems for predicting the thermal response of a ground heat exchanger to both dynamic heat loads and flow rates. First, the new original formulations are presented, which include 1) a simple time-domain expression and 2) a fast frequency-domain expression. Then, the efficiency and validity of the new formulations are verified using experimental multi-flowrate thermal response tests involving dynamic circulation, pumping and bleed flow rates in closed-loop and standing column well ground heat exchangers. Results show that the new formulations can reproduce the outlet fluid temperature of both experimental test cases with good accuracy ( MAE=0.06∘C and 0.26∘C, respectively). At last, the high efficiency of the new frequency-domain expression is demonstrated, with the computing times (0.04 s and 0.01 s) being 100 and 8 times faster than the original formulation in both scenarios.Keywords: Ground-source heat pump systemtime-variant flowratessimulation of ground heat exchangernon-stationary convolutionDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"82 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135678779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-based Data Center Cooling Controls Comparative Co-design 基于模型的数据中心冷却控制比较协同设计
4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-11-03 DOI: 10.1080/23744731.2023.2276011
Milica Grahovac, Paul Ehrlich, Jianjun Hu, Michael Wetter
ABSTRACTThe paper presents a comparative simulation-based control logic design process. It uses the Control Description Language (CDL) and the ASHRAE Guideline 36 high-performing building control sequences with the Modelica Buildings Library (MBL) to demonstrate a comparative analysis of two control designs for a data center chilled water plant.Details include a description of the closed-loop plant and control design methodology, including sizing and parameterization, base and alternative (Guideline 36) control logic with software implementation structure, and outline the simulation experimentation process. The selected control designs are paired with comparable chilled water plant configurations. The models include a chiller, a water-side economizer, and an evaporative cooling tower. The plant provides cooling at 27°C zone supply air temperature to a data center in Sacramento, CA, USA.The comparative simulation results examined the impacts of a selected control logic detail, and present an example model-based design application. Overall, the simulation results showed a 25% annual and a 18% summer energy use reduction for alternative controls.This shows that simulation-based control logic design performance evaluation can improve energy efficiency and resilience aspects of system controls at large.Units and additional abbreviations are provided directly in the text where needed.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
摘要本文提出了一种基于比较仿真的控制逻辑设计过程。它使用控制描述语言(CDL)和ASHRAE指南36高性能建筑控制序列以及Modelica建筑库(MBL)来演示数据中心冷冻水厂的两种控制设计的比较分析。详细内容包括对闭环装置和控制设计方法的描述,包括尺寸和参数化,基础和替代(指南36)控制逻辑与软件实现结构,并概述仿真实验过程。选定的控制设计与可比的冷冻水厂配置配对。这些模型包括一个冷水机、一个水侧省煤器和一个蒸发冷却塔。该工厂为美国加利福尼亚州萨克拉门托的一个数据中心提供27°C区域送风温度的冷却。对比仿真结果检验了所选控制逻辑细节的影响,并给出了一个基于模型的设计应用实例。总体而言,模拟结果显示,替代控制每年减少25%的能源使用,夏季减少18%的能源使用。这表明基于仿真的控制逻辑设计性能评估可以在很大程度上提高系统控制的能源效率和弹性。在需要的地方,在文本中直接提供了单位和额外的缩写。免责声明作为对作者和研究人员的服务,我们提供了这个版本的已接受的手稿(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。
{"title":"Model-based Data Center Cooling Controls Comparative Co-design","authors":"Milica Grahovac, Paul Ehrlich, Jianjun Hu, Michael Wetter","doi":"10.1080/23744731.2023.2276011","DOIUrl":"https://doi.org/10.1080/23744731.2023.2276011","url":null,"abstract":"ABSTRACTThe paper presents a comparative simulation-based control logic design process. It uses the Control Description Language (CDL) and the ASHRAE Guideline 36 high-performing building control sequences with the Modelica Buildings Library (MBL) to demonstrate a comparative analysis of two control designs for a data center chilled water plant.Details include a description of the closed-loop plant and control design methodology, including sizing and parameterization, base and alternative (Guideline 36) control logic with software implementation structure, and outline the simulation experimentation process. The selected control designs are paired with comparable chilled water plant configurations. The models include a chiller, a water-side economizer, and an evaporative cooling tower. The plant provides cooling at 27°C zone supply air temperature to a data center in Sacramento, CA, USA.The comparative simulation results examined the impacts of a selected control logic detail, and present an example model-based design application. Overall, the simulation results showed a 25% annual and a 18% summer energy use reduction for alternative controls.This shows that simulation-based control logic design performance evaluation can improve energy efficiency and resilience aspects of system controls at large.Units and additional abbreviations are provided directly in the text where needed.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"54 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135868038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatio-temporal electrical grid emission factors effects on calculated GHG emissions of buildings in mixed-grid environments 混合网格环境下电网排放因子对建筑物温室气体排放计算的影响
4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-10-30 DOI: 10.1080/23744731.2023.2276012
Max St-Jacques, Scott Bucking, William O'Brien, Iain MacDonald
{"title":"Spatio-temporal electrical grid emission factors effects on calculated GHG emissions of buildings in mixed-grid environments","authors":"Max St-Jacques, Scott Bucking, William O'Brien, Iain MacDonald","doi":"10.1080/23744731.2023.2276012","DOIUrl":"https://doi.org/10.1080/23744731.2023.2276012","url":null,"abstract":"","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"93 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topology optimization of geothermal bore fields using the method of moving asymptotes 采用移动渐近线方法的地热井田拓扑优化
4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-10-30 DOI: 10.1080/23744731.2023.2277113
None Alexandre Noël, Massimo Cimmino
{"title":"Topology optimization of geothermal bore fields using the method of moving asymptotes","authors":"None Alexandre Noël, Massimo Cimmino","doi":"10.1080/23744731.2023.2277113","DOIUrl":"https://doi.org/10.1080/23744731.2023.2277113","url":null,"abstract":"","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"9 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136104100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tube Bundle Evaporators with LGWP Refrigerant R1234ze(E) LGWP制冷剂R1234ze(E)管束式蒸发器
4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-10-26 DOI: 10.1080/23744731.2023.2276010
Joshua Rothe, Jerin Robins Ebanesar, Lorenzo Cremaschi
AbstractWith new low-GWP HFO refrigerants, the heat transfer performances and methods for decreasing system refrigerant inventory are receiving increasing interest. In shell-and-tube heat exchangers, refrigerant distribution via pressurized liquid spray has the potential for high heat transfer performance while reducing refrigerant charge. However, no published studies have investigated LGWP refrigerants with spray evaporation on tube bundles. A test apparatus was constructed to measure the shell-side heat transfer coefficients of R1234ze(E) on bundles of tubes with two different enhanced-surface types and in two different bundle geometries at various refrigerant saturation temperatures. The results showed strong dependence on refrigerant properties, tube heat flux, enhanced-surface type, bundle geometry, and refrigerant inlet subcooling. The bundle heat transfer coefficients of R1234ze(E) were similar to that of R134a in the same test setup, usually within ±15% for similar conditions. In both cases, they first increased with the heat flux until a local maximum value was achieved. A localized dryout of the tubes at the bottom of the bundle penalized the overall bundle heat transfer coefficient at very high heat flux. For the condensing surface, bundle heat transfer coefficients rarely exceeded 10 kW/m2-K, whereas values in excess of 30 kW/m2-K were sometimes seen for the evaporating surface.Keywords: LGWP refrigerantsspray evaporationenhanced surfacestube bundlesSubject classification codes: include these here if the journal requires themDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
摘要随着新型低gwp HFO制冷剂的出现,系统制冷剂的传热性能和减少系统制冷剂库存的方法受到越来越多的关注。在管壳式换热器中,制冷剂通过加压液体喷雾分布,在减少制冷剂充注量的同时具有较高的传热性能。然而,目前还没有发表的关于液冷潜能值制冷剂在管束上喷雾蒸发的研究。搭建了R1234ze(E)在不同制冷剂饱和温度下两种不同强化表面类型和两种不同管束几何形状的管束上的壳侧换热系数测试装置。结果表明,制冷剂性能、管热流密度、强化表面类型、束状几何形状和制冷剂进口过冷程度都有很强的依赖性。在相同的试验装置下,R1234ze(E)的束传热系数与R134a相似,在相同的条件下通常在±15%以内。在这两种情况下,它们首先随热通量增加,直到达到局部最大值。在非常高的热流密度下,管束底部的管的局部干燥对整个管束的传热系数不利。对于冷凝面,束传热系数很少超过10 kW/m2-K,而蒸发面有时会超过30 kW/m2-K。关键词:LGWP制冷剂;喷雾蒸发;增强表面;管束;主题分类代码:如果期刊需要,在这里包括它们免责声明作为对作者和研究人员的服务,我们提供这个版本的已接受手稿(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。
{"title":"Tube Bundle Evaporators with LGWP Refrigerant R1234ze(E)","authors":"Joshua Rothe, Jerin Robins Ebanesar, Lorenzo Cremaschi","doi":"10.1080/23744731.2023.2276010","DOIUrl":"https://doi.org/10.1080/23744731.2023.2276010","url":null,"abstract":"AbstractWith new low-GWP HFO refrigerants, the heat transfer performances and methods for decreasing system refrigerant inventory are receiving increasing interest. In shell-and-tube heat exchangers, refrigerant distribution via pressurized liquid spray has the potential for high heat transfer performance while reducing refrigerant charge. However, no published studies have investigated LGWP refrigerants with spray evaporation on tube bundles. A test apparatus was constructed to measure the shell-side heat transfer coefficients of R1234ze(E) on bundles of tubes with two different enhanced-surface types and in two different bundle geometries at various refrigerant saturation temperatures. The results showed strong dependence on refrigerant properties, tube heat flux, enhanced-surface type, bundle geometry, and refrigerant inlet subcooling. The bundle heat transfer coefficients of R1234ze(E) were similar to that of R134a in the same test setup, usually within ±15% for similar conditions. In both cases, they first increased with the heat flux until a local maximum value was achieved. A localized dryout of the tubes at the bottom of the bundle penalized the overall bundle heat transfer coefficient at very high heat flux. For the condensing surface, bundle heat transfer coefficients rarely exceeded 10 kW/m2-K, whereas values in excess of 30 kW/m2-K were sometimes seen for the evaporating surface.Keywords: LGWP refrigerantsspray evaporationenhanced surfacestube bundlesSubject classification codes: include these here if the journal requires themDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"88 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136376667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broadening participation in ASHRAE conferences: Innovative research in the built environment presented at the 2022 ASHRAE Annual Conference 扩大对ASHRAE会议的参与:在2022 ASHRAE年会上介绍了建筑环境的创新研究
4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-10-21 DOI: 10.1080/23744731.2023.2273660
Kristen Cetin, Brian M. Fronk
{"title":"Broadening participation in ASHRAE conferences: Innovative research in the built environment presented at the 2022 ASHRAE Annual Conference","authors":"Kristen Cetin, Brian M. Fronk","doi":"10.1080/23744731.2023.2273660","DOIUrl":"https://doi.org/10.1080/23744731.2023.2273660","url":null,"abstract":"","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"38 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135513875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Science and Technology for the Built Environment
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1