首页 > 最新文献

Science Translational Medicine最新文献

英文 中文
Reduction of prolonged excitatory neuron swelling after spinal cord injury improves locomotor recovery in mice 减少脊髓损伤后兴奋神经元的长期肿胀可改善小鼠的运动恢复
IF 15.8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-25 DOI: 10.1126/scitranslmed.adn7095
Qiang Li, Alfredo Sandoval, John Moth, Junkui Shang, Jia Yi Liew, Tiffany Dunn, Zhiyun Yang, Junfeng Su, Melissa Henwood, Philip Williams, Bo Chen
Spinal cord injury (SCI) results in acute damage and triggers secondary injury responses with sustained neuronal loss and dysfunction. However, the underlying mechanisms for these delayed neuronal pathologies are not entirely understood. SCI results in the swelling of spinal neurons, but the contribution of cell swelling to neuronal loss and functional deficits after SCI has not been systematically characterized. In this study, we devised a three-dimensional image analysis pipeline to evaluate spinal neurons, examining their types, quantities, volumes, and spatial distribution in a double-lateral hemisection SCI mouse model. We found that both excitatory and inhibitory neurons swell and are lost, albeit with distinct temporal patterns. Inhibitory neurons demonstrated marked swelling and decline in number on day 2 after SCI, which resolved by day 14. In contrast, excitatory neurons maintained persistent swelling and continued cell loss for at least 35 days after SCI in mice. Excitatory neurons exhibited sustained expression of the Na+-K+-Cl cotransporter 1 (NKCC1), whereas inhibitory neurons down-regulated the protein by day 14 after SCI. Treatment with a Food and Drug Administration–approved NKCC1 inhibitor, bumetanide, mitigated swelling of excitatory neurons and reduced their loss in the secondary injury phase after SCI. The administration of bumetanide after SCI in mouse improved locomotor recovery, with functional benefits persisting for at least 4 weeks after treatment cessation. This study advances our understanding of SCI-related pathology and introduces bumetanide as a potential treatment to mitigate sustained neuronal swelling and enhance recovery after SCI.
脊髓损伤(SCI)会导致急性损伤,并引发继发性损伤反应,造成持续的神经元损失和功能障碍。然而,这些迟发性神经元病变的内在机制尚未完全明了。脊髓损伤会导致脊髓神经元肿胀,但细胞肿胀对脊髓损伤后神经元丢失和功能障碍的影响尚未得到系统描述。在这项研究中,我们设计了一个三维图像分析管道来评估脊髓神经元,在双侧半切 SCI 小鼠模型中检查它们的类型、数量、体积和空间分布。我们发现,兴奋性神经元和抑制性神经元都会肿胀和丢失,但时间模式不同。抑制性神经元在脊髓损伤后第 2 天出现明显肿胀和数量下降,到第 14 天症状消失。相比之下,兴奋性神经元在小鼠脊髓损伤后至少 35 天内保持持续肿胀和细胞持续丢失。兴奋性神经元表现出Na+-K+-Cl-共转运体1(NKCC1)的持续表达,而抑制性神经元在脊髓损伤后第14天时则出现蛋白下调。使用食品和药物管理局批准的NKCC1抑制剂布美他尼减轻了兴奋性神经元的肿胀,并减少了它们在脊髓损伤后继发性损伤阶段的损失。小鼠在脊髓损伤后服用布美他尼改善了运动功能的恢复,而且在停止治疗后,其功能益处至少还能持续4周。这项研究加深了我们对脊髓损伤相关病理的了解,并将布美他尼作为一种潜在的治疗方法,用于缓解脊髓损伤后神经元的持续肿胀并促进恢复。
{"title":"Reduction of prolonged excitatory neuron swelling after spinal cord injury improves locomotor recovery in mice","authors":"Qiang Li,&nbsp;Alfredo Sandoval,&nbsp;John Moth,&nbsp;Junkui Shang,&nbsp;Jia Yi Liew,&nbsp;Tiffany Dunn,&nbsp;Zhiyun Yang,&nbsp;Junfeng Su,&nbsp;Melissa Henwood,&nbsp;Philip Williams,&nbsp;Bo Chen","doi":"10.1126/scitranslmed.adn7095","DOIUrl":"10.1126/scitranslmed.adn7095","url":null,"abstract":"<div >Spinal cord injury (SCI) results in acute damage and triggers secondary injury responses with sustained neuronal loss and dysfunction. However, the underlying mechanisms for these delayed neuronal pathologies are not entirely understood. SCI results in the swelling of spinal neurons, but the contribution of cell swelling to neuronal loss and functional deficits after SCI has not been systematically characterized. In this study, we devised a three-dimensional image analysis pipeline to evaluate spinal neurons, examining their types, quantities, volumes, and spatial distribution in a double-lateral hemisection SCI mouse model. We found that both excitatory and inhibitory neurons swell and are lost, albeit with distinct temporal patterns. Inhibitory neurons demonstrated marked swelling and decline in number on day 2 after SCI, which resolved by day 14. In contrast, excitatory neurons maintained persistent swelling and continued cell loss for at least 35 days after SCI in mice. Excitatory neurons exhibited sustained expression of the Na<sup>+</sup>-K<sup>+</sup>-Cl<sup>−</sup> cotransporter 1 (NKCC1), whereas inhibitory neurons down-regulated the protein by day 14 after SCI. Treatment with a Food and Drug Administration–approved NKCC1 inhibitor, bumetanide, mitigated swelling of excitatory neurons and reduced their loss in the secondary injury phase after SCI. The administration of bumetanide after SCI in mouse improved locomotor recovery, with functional benefits persisting for at least 4 weeks after treatment cessation. This study advances our understanding of SCI-related pathology and introduces bumetanide as a potential treatment to mitigate sustained neuronal swelling and enhance recovery after SCI.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 766","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spermidine metabolism regulates leukemia stem and progenitor cell function through KAT7 expression in patient-derived mouse models 在患者衍生小鼠模型中,精胺代谢通过 KAT7 的表达调节白血病干细胞和祖细胞的功能
IF 15.8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-25 DOI: 10.1126/scitranslmed.adn1285
Vincent Rondeau, Jacob M. Berman, Tianyi Ling, Cristiana O’Brien, Rachel Culp-Hill, Julie A. Reisz, Mark Wunderlich, Yun Chueh, Karina E. Jiménez-Camacho, Christina Sexton, Katharine M. Carter, Cody Stillwell, Jonathan St-Germain, Duhan Yendi, Aarushi Gupta, Mary Shi, Aleksandra Bourdine, Vikram R. Paralkar, Soheil Jahangiri, Kristin J. Hope, Anastasia N. Tikhonova, Andrea Arruda, Mark D. Minden, Brian Raught, Angelo D’Alessandro, Courtney L. Jones
Acute myeloid leukemia (AML) is a devastating disease initiated and maintained by a rare subset of cells called leukemia stem cells (LSCs). LSCs are responsible for driving disease relapse, making the development of new therapeutic strategies to target LSCs urgently needed. The use of mass spectrometry–based metabolomics profiling has enabled the discovery of unique and targetable metabolic properties in LSCs. However, we do not have a comprehensive understanding of metabolite differences between LSCs and their normal counterparts, hematopoietic stem and progenitor cells (HSPCs). In this study, we used an unbiased mass spectrometry–based metabolomics analysis to define differences in metabolites between primary human LSCs and HSPCs, which revealed that LSCs have a distinct metabolome. Spermidine was the most enriched metabolite in LSCs compared with HSPCs. Pharmacological reduction of spermidine concentrations decreased LSC function but spared normal HSPCs. Polyamine depletion also decreased leukemic burden in patient-derived xenografts. Mechanistically, spermidine depletion induced LSC myeloid differentiation by decreasing eIF5A-dependent protein synthesis, resulting in reduced expression of a select subset of proteins. KAT7, a histone acetyltransferase, was one of the top candidates identified to be down-regulated by spermidine depletion. Overexpression of KAT7 partially rescued polyamine depletion–induced decreased colony-forming ability, demonstrating that loss of KAT7 is an essential part of the mechanism by which spermidine depletion targets AML clonogenic potential. Together, we identified and mechanistically dissected a metabolic vulnerability of LSCs that has the potential to be rapidly translated into clinical trials to improve outcomes for patients with AML.
急性髓性白血病(AML)是一种由称为白血病干细胞(LSCs)的罕见细胞亚群引发并维持的毁灭性疾病。白血病干细胞是导致疾病复发的罪魁祸首,因此迫切需要针对白血病干细胞开发新的治疗策略。基于质谱的代谢组学分析使我们能够发现 LSCs 独特的、可靶向的代谢特性。然而,我们对造血干细胞与其正常对应细胞--造血干细胞和祖细胞(HSPCs)--之间的代谢物差异还没有全面的了解。在这项研究中,我们使用了基于无偏质谱的代谢组学分析来确定原代人类 LSCs 和 HSPCs 之间代谢物的差异,结果发现 LSCs 具有独特的代谢组。与 HSPCs 相比,精胺是 LSCs 中含量最高的代谢物。药物降低精胺的浓度会降低 LSC 的功能,但正常的 HSPC 却不会受到影响。多胺耗竭还能减轻患者异种移植中的白血病负荷。从机理上讲,精胺消耗通过减少依赖于 eIF5A 的蛋白质合成诱导 LSC 髓样分化,从而导致特定亚群蛋白质的表达减少。KAT7是一种组蛋白乙酰转移酶,是被鉴定出会因精胺消耗而下调的最主要候选蛋白之一。KAT7的过表达部分挽救了多胺耗竭引起的集落形成能力下降,这表明KAT7的缺失是精胺耗竭针对急性髓细胞集落形成潜能的机制的重要组成部分。总之,我们发现并从机理上剖析了 LSCs 的代谢脆弱性,这种脆弱性有可能迅速转化为临床试验,以改善急性髓细胞白血病患者的预后。
{"title":"Spermidine metabolism regulates leukemia stem and progenitor cell function through KAT7 expression in patient-derived mouse models","authors":"Vincent Rondeau,&nbsp;Jacob M. Berman,&nbsp;Tianyi Ling,&nbsp;Cristiana O’Brien,&nbsp;Rachel Culp-Hill,&nbsp;Julie A. Reisz,&nbsp;Mark Wunderlich,&nbsp;Yun Chueh,&nbsp;Karina E. Jiménez-Camacho,&nbsp;Christina Sexton,&nbsp;Katharine M. Carter,&nbsp;Cody Stillwell,&nbsp;Jonathan St-Germain,&nbsp;Duhan Yendi,&nbsp;Aarushi Gupta,&nbsp;Mary Shi,&nbsp;Aleksandra Bourdine,&nbsp;Vikram R. Paralkar,&nbsp;Soheil Jahangiri,&nbsp;Kristin J. Hope,&nbsp;Anastasia N. Tikhonova,&nbsp;Andrea Arruda,&nbsp;Mark D. Minden,&nbsp;Brian Raught,&nbsp;Angelo D’Alessandro,&nbsp;Courtney L. Jones","doi":"10.1126/scitranslmed.adn1285","DOIUrl":"10.1126/scitranslmed.adn1285","url":null,"abstract":"<div >Acute myeloid leukemia (AML) is a devastating disease initiated and maintained by a rare subset of cells called leukemia stem cells (LSCs). LSCs are responsible for driving disease relapse, making the development of new therapeutic strategies to target LSCs urgently needed. The use of mass spectrometry–based metabolomics profiling has enabled the discovery of unique and targetable metabolic properties in LSCs. However, we do not have a comprehensive understanding of metabolite differences between LSCs and their normal counterparts, hematopoietic stem and progenitor cells (HSPCs). In this study, we used an unbiased mass spectrometry–based metabolomics analysis to define differences in metabolites between primary human LSCs and HSPCs, which revealed that LSCs have a distinct metabolome. Spermidine was the most enriched metabolite in LSCs compared with HSPCs. Pharmacological reduction of spermidine concentrations decreased LSC function but spared normal HSPCs. Polyamine depletion also decreased leukemic burden in patient-derived xenografts. Mechanistically, spermidine depletion induced LSC myeloid differentiation by decreasing eIF5A-dependent protein synthesis, resulting in reduced expression of a select subset of proteins. KAT7, a histone acetyltransferase, was one of the top candidates identified to be down-regulated by spermidine depletion. Overexpression of KAT7 partially rescued polyamine depletion–induced decreased colony-forming ability, demonstrating that loss of KAT7 is an essential part of the mechanism by which spermidine depletion targets AML clonogenic potential. Together, we identified and mechanistically dissected a metabolic vulnerability of LSCs that has the potential to be rapidly translated into clinical trials to improve outcomes for patients with AML.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 766","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of heme-thiolate monooxygenase CYP1B1 prevents hepatic stellate cell activation and liver fibrosis by accumulating trehalose 抑制血红硫酸酯单加氧酶 CYP1B1 可防止肝星状细胞活化和肝纤维化,因为它积累了三卤糖
IF 15.8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-25 DOI: 10.1126/scitranslmed.adk8446
Hung-Chun Tung, Jong-Won Kim, Junjie Zhu, Sihan Li, Jiong Yan, Qing Liu, Imhoi Koo, Sergei A. Koshkin, Fuhua Hao, Guo Zhong, Meishu Xu, Zehua Wang, Jingyuan Wang, Yixian Huang, Yue Xi, Xinran Cai, Pengfei Xu, Songrong Ren, Takanobu Higashiyama, Frank J. Gonzalez, Song Li, Nina Isoherranen, Da Yang, Xiaochao Ma, Andrew D. Patterson, Wen Xie
Activation of extracellular matrix–producing hepatic stellate cells (HSCs) is a key event in liver fibrogenesis. We showed that the expression of the heme-thiolate monooxygenase cytochrome P450 1B1 (CYP1B1) was elevated in human and mouse fibrotic livers and activated HSCs. Systemic or HSC-specific ablation and pharmacological inhibition of CYP1B1 attenuated HSC activation and protected male but not female mice from thioacetamide (TAA)–, carbon tetrachloride (CCl4)–, or bile duct ligation (BDL)–induced liver fibrosis. Metabolomic analysis revealed an increase in the disaccharide trehalose in CYP1B1-deficient HSCs resulting from intestinal suppression of the trehalose-metabolizing enzyme trehalase, whose gene we found to be a target of RARα. Trehalose or its hydrolysis-resistant derivative lactotrehalose exhibited potent antifibrotic activity in vitro and in vivo by functioning as an HSC-specific autophagy inhibitor, which may account for the antifibrotic effect of CYP1B1 inhibition. Our study thus reveals an endobiotic function of CYP1B1 in liver fibrosis in males, mediated by liver-intestine cross-talk and trehalose. At the translational level, pharmacological inhibition of CYP1B1 or the use of trehalose/lactotrehalose may represent therapeutic strategies for liver fibrosis.
产生细胞外基质的肝星状细胞(HSCs)的活化是肝纤维化的一个关键事件。我们发现,在人和小鼠纤维化肝脏和活化的造血干细胞中,血红硫酸酯单加氧酶细胞色素P450 1B1 (CYP1B1)的表达升高。全身或造血干细胞特异性消融和药物抑制 CYP1B1 可减轻造血干细胞的活化,并保护雄性小鼠而非雌性小鼠免受硫代乙酰胺(TAA)、四氯化碳(CCl4)或胆管结扎(BDL)诱导的肝纤维化的影响。代谢组学分析表明,CYP1B1缺陷的造血干细胞中二糖三卤糖的含量增加,这是由于肠道抑制了三卤糖代谢酶三卤糖酶,而我们发现三卤糖酶的基因是RARα的靶标。通过作为造血干细胞特异性自噬抑制剂,曲哈洛糖或其抗水解衍生物乳曲哈洛糖在体外和体内均表现出强大的抗纤维化活性,这可能是抑制 CYP1B1 的抗纤维化作用的原因。因此,我们的研究揭示了 CYP1B1 在男性肝纤维化中的内生功能,它是由肝肠交叉对话和三卤糖介导的。在转化水平上,药物抑制 CYP1B1 或使用曲哈露糖/乳曲哈露糖可能是治疗肝纤维化的策略。
{"title":"Inhibition of heme-thiolate monooxygenase CYP1B1 prevents hepatic stellate cell activation and liver fibrosis by accumulating trehalose","authors":"Hung-Chun Tung,&nbsp;Jong-Won Kim,&nbsp;Junjie Zhu,&nbsp;Sihan Li,&nbsp;Jiong Yan,&nbsp;Qing Liu,&nbsp;Imhoi Koo,&nbsp;Sergei A. Koshkin,&nbsp;Fuhua Hao,&nbsp;Guo Zhong,&nbsp;Meishu Xu,&nbsp;Zehua Wang,&nbsp;Jingyuan Wang,&nbsp;Yixian Huang,&nbsp;Yue Xi,&nbsp;Xinran Cai,&nbsp;Pengfei Xu,&nbsp;Songrong Ren,&nbsp;Takanobu Higashiyama,&nbsp;Frank J. Gonzalez,&nbsp;Song Li,&nbsp;Nina Isoherranen,&nbsp;Da Yang,&nbsp;Xiaochao Ma,&nbsp;Andrew D. Patterson,&nbsp;Wen Xie","doi":"10.1126/scitranslmed.adk8446","DOIUrl":"10.1126/scitranslmed.adk8446","url":null,"abstract":"<div >Activation of extracellular matrix–producing hepatic stellate cells (HSCs) is a key event in liver fibrogenesis. We showed that the expression of the heme-thiolate monooxygenase cytochrome P450 1B1 (CYP1B1) was elevated in human and mouse fibrotic livers and activated HSCs. Systemic or HSC-specific ablation and pharmacological inhibition of CYP1B1 attenuated HSC activation and protected male but not female mice from thioacetamide (TAA)–, carbon tetrachloride (CCl<sub>4</sub>)–, or bile duct ligation (BDL)–induced liver fibrosis. Metabolomic analysis revealed an increase in the disaccharide trehalose in CYP1B1-deficient HSCs resulting from intestinal suppression of the trehalose-metabolizing enzyme trehalase, whose gene we found to be a target of RARα. Trehalose or its hydrolysis-resistant derivative lactotrehalose exhibited potent antifibrotic activity in vitro and in vivo by functioning as an HSC-specific autophagy inhibitor, which may account for the antifibrotic effect of CYP1B1 inhibition. Our study thus reveals an endobiotic function of CYP1B1 in liver fibrosis in males, mediated by liver-intestine cross-talk and trehalose. At the translational level, pharmacological inhibition of CYP1B1 or the use of trehalose/lactotrehalose may represent therapeutic strategies for liver fibrosis.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 766","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical, mechanistic, and therapeutic landscape of cutaneous fibrosis 皮肤纤维化的临床、机理和治疗现状
IF 15.8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-25 DOI: 10.1126/scitranslmed.adn7871
Dayan J. Li, Charlotte E. Berry, Derrick C. Wan, Michael T. Longaker
When dysregulated, skin fibrosis can lead to a multitude of pathologies. We provide a framework for understanding the wide clinical spectrum, mechanisms, and management of cutaneous fibrosis encompassing a variety of matrix disorders, fibrohistiocytic neoplasms, injury-induced scarring, and autoimmune scleroses. Underlying such entities are common mechanistic pathways that leverage morphogenic signaling, immune activation, and mechanotransduction to modulate fibroblast function. In light of the limited array of available treatments for cutaneous fibrosis, scientific insights have opened new therapeutic and investigative avenues for conditions that still lack effective interventions.
当调节失调时,皮肤纤维化可导致多种病症。我们为了解皮肤纤维化的广泛临床范围、机制和管理提供了一个框架,其中包括各种基质紊乱、纤维组织细胞瘤、损伤引起的瘢痕和自身免疫性硬化症。这些实体的基础是利用形态发生信号、免疫激活和机械传导来调节成纤维细胞功能的共同机理途径。鉴于皮肤纤维化的现有治疗方法有限,科学见解为仍然缺乏有效干预措施的病症开辟了新的治疗和研究途径。
{"title":"Clinical, mechanistic, and therapeutic landscape of cutaneous fibrosis","authors":"Dayan J. Li,&nbsp;Charlotte E. Berry,&nbsp;Derrick C. Wan,&nbsp;Michael T. Longaker","doi":"10.1126/scitranslmed.adn7871","DOIUrl":"10.1126/scitranslmed.adn7871","url":null,"abstract":"<div >When dysregulated, skin fibrosis can lead to a multitude of pathologies. We provide a framework for understanding the wide clinical spectrum, mechanisms, and management of cutaneous fibrosis encompassing a variety of matrix disorders, fibrohistiocytic neoplasms, injury-induced scarring, and autoimmune scleroses. Underlying such entities are common mechanistic pathways that leverage morphogenic signaling, immune activation, and mechanotransduction to modulate fibroblast function. In light of the limited array of available treatments for cutaneous fibrosis, scientific insights have opened new therapeutic and investigative avenues for conditions that still lack effective interventions.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 766","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
B cells drive neuropathic pain–related behaviors in mice through IgG–Fc gamma receptor signaling B 细胞通过 IgG-Fc γ 受体信号驱动小鼠神经性疼痛相关行为
IF 15.8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-25 DOI: 10.1126/scitranslmed.adj1277
Michael J. Lacagnina, Kendal F. Willcox, Nabila Boukelmoune, Alexis Bavencoffe, Ishwarya Sankaranarayanan, Daniel T. Barratt, Younus A. Zuberi, Dorsa Dayani, Melissa V. Chavez, Jonathan T. Lu, Alex Bersellini Farinotti, Stephanie Shiers, Allison M. Barry, Juliet M. Mwirigi, Diana Tavares-Ferreira, Geoffrey A. Funk, Anna M. Cervantes, Camilla I. Svensson, Edgar T. Walters, Mark R. Hutchinson, Cobi J. Heijnen, Theodore J. Price, Nathan T. Fiore, Peter M. Grace
Neuroimmune interactions are essential for the development of neuropathic pain, yet the contributions of distinct immune cell populations have not been fully unraveled. Here, we demonstrate the critical role of B cells in promoting mechanical hypersensitivity (allodynia) after peripheral nerve injury in male and female mice. Depletion of B cells with a single injection of anti-CD20 monoclonal antibody at the time of injury prevented the development of allodynia. B cell–deficient (muMT) mice were similarly spared from allodynia. Nerve injury was associated with increased immunoglobulin G (IgG) accumulation in ipsilateral lumbar dorsal root ganglia (DRGs) and dorsal spinal cords. IgG was colocalized with sensory neurons and macrophages in DRGs and microglia in spinal cords. IgG also accumulated in DRG samples from human donors with chronic pain, colocalizing with a marker for macrophages and satellite glia. RNA sequencing revealed a B cell population in naive mouse and human DRGs. A B cell transcriptional signature was enriched in DRGs from human donors with neuropathic pain. Passive transfer of IgG from injured mice induced allodynia in injured muMT recipient mice. The pronociceptive effects of IgG are likely mediated through immune complexes interacting with Fc gamma receptors (FcγRs) expressed by sensory neurons, microglia, and macrophages, given that both mechanical allodynia and hyperexcitability of dissociated DRG neurons were abolished in nerve-injured FcγR-deficient mice. Consistently, the pronociceptive effects of IgG passive transfer were lost in FcγR-deficient mice. These data reveal that a B cell–IgG–FcγR axis is required for the development of neuropathic pain in mice.
神经免疫相互作用对神经病理性疼痛的发展至关重要,但不同免疫细胞群的贡献尚未完全阐明。在这里,我们证明了 B 细胞在促进雄性和雌性小鼠周围神经损伤后机械过敏(异动症)中的关键作用。在损伤时注射一次抗 CD20 单克隆抗体以消耗 B 细胞,可防止异感症的发生。B细胞缺失(muMT)小鼠同样不会出现异感症。神经损伤与同侧腰椎背根神经节(DRGs)和脊髓背侧的免疫球蛋白 G(IgG)积累增加有关。IgG 与感觉神经元、DRG 中的巨噬细胞和脊髓中的小胶质细胞共定位。在患有慢性疼痛的人类供体的DRG样本中也有IgG聚集,并与巨噬细胞和卫星胶质细胞的标记物共定位。RNA 测序揭示了天真小鼠和人类 DRG 中的 B 细胞群。B细胞转录特征在患有神经性疼痛的人类供体的DRG中富集。受伤小鼠的 IgG 被动转移会诱发受伤的 muMT 受体小鼠的异动症。IgG的代痛觉效应可能是通过免疫复合物与感觉神经元、小胶质细胞和巨噬细胞表达的Fcγ受体(FcγRs)相互作用而介导的,因为在神经损伤的FcγR缺陷小鼠中,机械异感和离体DRG神经元的过度兴奋都被取消了。同样,在 FcγR 缺失的小鼠中,IgG 被动转移的代痛觉效应也消失了。这些数据揭示了小鼠神经病理性疼痛的发生需要B细胞-IgG-FcγR轴。
{"title":"B cells drive neuropathic pain–related behaviors in mice through IgG–Fc gamma receptor signaling","authors":"Michael J. Lacagnina,&nbsp;Kendal F. Willcox,&nbsp;Nabila Boukelmoune,&nbsp;Alexis Bavencoffe,&nbsp;Ishwarya Sankaranarayanan,&nbsp;Daniel T. Barratt,&nbsp;Younus A. Zuberi,&nbsp;Dorsa Dayani,&nbsp;Melissa V. Chavez,&nbsp;Jonathan T. Lu,&nbsp;Alex Bersellini Farinotti,&nbsp;Stephanie Shiers,&nbsp;Allison M. Barry,&nbsp;Juliet M. Mwirigi,&nbsp;Diana Tavares-Ferreira,&nbsp;Geoffrey A. Funk,&nbsp;Anna M. Cervantes,&nbsp;Camilla I. Svensson,&nbsp;Edgar T. Walters,&nbsp;Mark R. Hutchinson,&nbsp;Cobi J. Heijnen,&nbsp;Theodore J. Price,&nbsp;Nathan T. Fiore,&nbsp;Peter M. Grace","doi":"10.1126/scitranslmed.adj1277","DOIUrl":"10.1126/scitranslmed.adj1277","url":null,"abstract":"<div >Neuroimmune interactions are essential for the development of neuropathic pain, yet the contributions of distinct immune cell populations have not been fully unraveled. Here, we demonstrate the critical role of B cells in promoting mechanical hypersensitivity (allodynia) after peripheral nerve injury in male and female mice. Depletion of B cells with a single injection of anti-CD20 monoclonal antibody at the time of injury prevented the development of allodynia. B cell–deficient (muMT) mice were similarly spared from allodynia. Nerve injury was associated with increased immunoglobulin G (IgG) accumulation in ipsilateral lumbar dorsal root ganglia (DRGs) and dorsal spinal cords. IgG was colocalized with sensory neurons and macrophages in DRGs and microglia in spinal cords. IgG also accumulated in DRG samples from human donors with chronic pain, colocalizing with a marker for macrophages and satellite glia. RNA sequencing revealed a B cell population in naive mouse and human DRGs. A B cell transcriptional signature was enriched in DRGs from human donors with neuropathic pain. Passive transfer of IgG from injured mice induced allodynia in injured muMT recipient mice. The pronociceptive effects of IgG are likely mediated through immune complexes interacting with Fc gamma receptors (FcγRs) expressed by sensory neurons, microglia, and macrophages, given that both mechanical allodynia and hyperexcitability of dissociated DRG neurons were abolished in nerve-injured FcγR-deficient mice. Consistently, the pronociceptive effects of IgG passive transfer were lost in FcγR-deficient mice. These data reveal that a B cell–IgG–FcγR axis is required for the development of neuropathic pain in mice.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 766","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scitranslmed.adj1277","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intratumoral radiation dose heterogeneity augments antitumor immunity in mice and primes responses to checkpoint blockade 瘤内辐射剂量异质性可增强小鼠的抗肿瘤免疫力,并激发对检查点阻断剂的反应
IF 15.8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-18 DOI: 10.1126/scitranslmed.adk0642
Justin C. Jagodinsky, Jessica M. Vera, Won Jong Jin, Amanda G. Shea, Paul A. Clark, Raghava N. Sriramaneni, Thomas C. Havighurst, Ishan Chakravarthy, Raad H. Allawi, KyungMann Kim, Paul M. Harari, Paul M. Sondel, Michael A. Newton, Marka R. Crittenden, Michael J. Gough, Jessica R. Miller, Irene M. Ong, Zachary S. Morris
Radiation therapy (RT) activates multiple immunologic effects in the tumor microenvironment (TME), with diverse dose-response relationships observed. We hypothesized that, in contrast with homogeneous RT, a heterogeneous RT dose would simultaneously optimize activation of multiple immunogenic effects in a single TME, resulting in a more effective antitumor immune response. Using high-dose-rate brachytherapy, we treated mice bearing syngeneic tumors with a single fraction of heterogeneous RT at a dose ranging from 2 to 30 gray. When combined with dual immune checkpoint inhibition in murine models, heterogeneous RT generated more potent antitumor responses in distant, nonirradiated tumors compared with any homogeneous dose. The antitumor effect after heterogeneous RT required CD4 and CD8 T cells and low-dose RT to a portion of the tumor. At the 3-day post-RT time point, dose heterogeneity imprinted the targeted TME with spatial differences in immune-related gene expression, antigen presentation, and susceptibility of tumor cells to immune-mediated destruction. At a later 10-day post-RT time point, high-, moderate-, or low-RT-dose regions demonstrated distinct infiltrating immune cell populations. This was associated with an increase in the expression of effector-associated cytokines in circulating CD8 T cells. Consistent with enhanced adaptive immune priming, heterogeneous RT promoted clonal expansion of effector CD8 T cells. These findings illuminate the breadth of dose-dependent effects of RT on the TME and the capacity of heterogeneous RT to promote antitumor immunity when combined with immune checkpoint inhibitors.
放射治疗(RT)会激活肿瘤微环境(TME)中的多种免疫效应,并观察到不同的剂量-反应关系。我们假设,与均质 RT 相比,异质 RT 剂量能同时优化激活单一 TME 中的多种免疫效应,从而产生更有效的抗肿瘤免疫反应。我们利用高剂量率近距离放射疗法,对携带合成肿瘤的小鼠进行单剂量异质RT治疗,剂量范围为2至30灰。当在小鼠模型中结合双重免疫检查点抑制时,与任何均质剂量相比,异质RT能在远处未照射的肿瘤中产生更强的抗肿瘤反应。异质 RT 后的抗肿瘤效果需要 CD4 和 CD8 T 细胞以及对部分肿瘤的低剂量 RT。在RT后3天的时间点,剂量异质性使靶向TME在免疫相关基因表达、抗原呈递和肿瘤细胞对免疫介导的破坏敏感性方面存在空间差异。在 RT 后 10 天的时间点上,高、中、低 RT 剂量区域显示出不同的浸润免疫细胞群。这与循环 CD8 T 细胞中效应相关细胞因子表达的增加有关。与增强的适应性免疫启动相一致,异质性 RT 促进了效应 CD8 T 细胞的克隆扩增。这些发现阐明了RT对TME的剂量依赖性效应的广度,以及异质RT与免疫检查点抑制剂联合使用时促进抗肿瘤免疫的能力。
{"title":"Intratumoral radiation dose heterogeneity augments antitumor immunity in mice and primes responses to checkpoint blockade","authors":"Justin C. Jagodinsky,&nbsp;Jessica M. Vera,&nbsp;Won Jong Jin,&nbsp;Amanda G. Shea,&nbsp;Paul A. Clark,&nbsp;Raghava N. Sriramaneni,&nbsp;Thomas C. Havighurst,&nbsp;Ishan Chakravarthy,&nbsp;Raad H. Allawi,&nbsp;KyungMann Kim,&nbsp;Paul M. Harari,&nbsp;Paul M. Sondel,&nbsp;Michael A. Newton,&nbsp;Marka R. Crittenden,&nbsp;Michael J. Gough,&nbsp;Jessica R. Miller,&nbsp;Irene M. Ong,&nbsp;Zachary S. Morris","doi":"10.1126/scitranslmed.adk0642","DOIUrl":"10.1126/scitranslmed.adk0642","url":null,"abstract":"<div >Radiation therapy (RT) activates multiple immunologic effects in the tumor microenvironment (TME), with diverse dose-response relationships observed. We hypothesized that, in contrast with homogeneous RT, a heterogeneous RT dose would simultaneously optimize activation of multiple immunogenic effects in a single TME, resulting in a more effective antitumor immune response. Using high-dose-rate brachytherapy, we treated mice bearing syngeneic tumors with a single fraction of heterogeneous RT at a dose ranging from 2 to 30 gray. When combined with dual immune checkpoint inhibition in murine models, heterogeneous RT generated more potent antitumor responses in distant, nonirradiated tumors compared with any homogeneous dose. The antitumor effect after heterogeneous RT required CD4 and CD8 T cells and low-dose RT to a portion of the tumor. At the 3-day post-RT time point, dose heterogeneity imprinted the targeted TME with spatial differences in immune-related gene expression, antigen presentation, and susceptibility of tumor cells to immune-mediated destruction. At a later 10-day post-RT time point, high-, moderate-, or low-RT-dose regions demonstrated distinct infiltrating immune cell populations. This was associated with an increase in the expression of effector-associated cytokines in circulating CD8 T cells. Consistent with enhanced adaptive immune priming, heterogeneous RT promoted clonal expansion of effector CD8 T cells. These findings illuminate the breadth of dose-dependent effects of RT on the TME and the capacity of heterogeneous RT to promote antitumor immunity when combined with immune checkpoint inhibitors.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 765","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A deep intronic splice–altering AIRE variant causes APECED syndrome through antisense oligonucleotide-targetable pseudoexon inclusion 深内含子剪接改变的AIRE变体通过反义寡核苷酸靶向伪外显子包涵导致APECED综合征
IF 15.8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-18 DOI: 10.1126/scitranslmed.adk0845
Sebastian Ochoa, Amy P. Hsu, Andrew J. Oler, Dhaneshwar Kumar, Daniel Chauss, Jan Piet van Hamburg, Gustaaf G. van Laar, Vasileios Oikonomou, Sundar Ganesan, Elise M. N. Ferré, Monica M. Schmitt, Tom DiMaggio, Princess Barber, Gregory M. Constantine, Lindsey B. Rosen, Paul G. Auwaerter, Bhumika Gandhi, Jennifer L. Miller, Rachel Eisenberg, Arye Rubinstein, Edith Schussler, Erjola Balliu, Vandana Shashi, Olaf Neth, Peter Olbrich, Kim My Le, Nanni Mamia, Saila Laakso, Pasi I. Nevalainen, Juha Grönholm, Mikko R. J. Seppänen, Louis Boon, Gulbu Uzel, Luis M. Franco, Theo Heller, Karen K. Winer, Rajarshi Ghosh, Bryce A. Seifert, Magdalena Walkiewicz, Luigi D. Notarangelo, Qing Zhou, Ivona Askentijevich, William Gahl, Cliffton L. Dalgard, Lalith Perera, Behdad Afzali, Sander W. Tas, Steven M. Holland, Michail S. Lionakis
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a life-threatening monogenic autoimmune disorder primarily caused by biallelic deleterious variants in the autoimmune regulator (AIRE) gene. We prospectively evaluated 104 patients with clinically diagnosed APECED syndrome and identified 17 patients (16%) from 14 kindreds lacking biallelic AIRE variants in exons or flanking intronic regions; 15 had Puerto Rican ancestry. Through whole-genome sequencing, we identified a deep intronic AIRE variant (c.1504-818 G>A) cosegregating with the disease in all 17 patients. We developed a culture system of AIRE-expressing primary patient monocyte-derived dendric cells and demonstrated that c.1504-818 G>A creates a cryptic splice site and activates inclusion of a 109–base pair frame-shifting pseudoexon. We also found low-level AIRE expression in patient-derived lymphoblastoid cell lines (LCLs) and confirmed pseudoexon inclusion in independent extrathymic AIRE–expressing cell lines. Through protein modeling and transcriptomic analyses of AIRE-transfected human embryonic kidney 293 and thymic epithelial cell 4D6 cells, we showed that this variant alters the carboxyl terminus of the AIRE protein, abrogating its function. Last, we developed an antisense oligonucleotide (ASO) that reversed pseudoexon inclusion and restored the normal AIRE transcript sequence in LCLs. Thus, our findings revealed c.1504-818 G>A as a founder APECED-causing AIRE variant in the Puerto Rican population and uncovered pseudoexon inclusion as an ASO-reversible genetic mechanism underlying APECED.
自身免疫性多内分泌病-念珠菌病-外胚层营养不良症(APECED)是一种危及生命的单基因自身免疫性疾病,主要由自身免疫调节剂(AIRE)基因中的双倍性有害变体引起。我们对 104 名临床诊断为 APECED 综合征的患者进行了前瞻性评估,并从 14 个在外显子或侧翼内含子区缺乏双倍性 AIRE 变异的家族中发现了 17 名患者(16%);其中 15 名患者有波多黎各血统。通过全基因组测序,我们在所有 17 名患者中发现了一个与疾病共存的 AIRE 深度内含子变异(c.1504-818 G>A)。我们建立了一个表达 AIRE 的原发性患者单核细胞衍生树突细胞培养系统,并证明 c.1504-818 G>A 创建了一个隐性剪接位点,并激活了 109 碱基对移帧假外显子的包含。我们还在患者衍生的淋巴母细胞系(LCLs)中发现了低水平的 AIRE 表达,并在独立的外胚层 AIRE 表达细胞系中证实了假外显子的包含。通过对转染 AIRE 的人胚肾 293 细胞和胸腺上皮细胞 4D6 细胞进行蛋白质建模和转录组分析,我们发现该变体改变了 AIRE 蛋白的羧基端,从而削弱了其功能。最后,我们开发了一种反义寡核苷酸(ASO),它能逆转假外显子的包含,并恢复 LCLs 中 AIRE 转录本的正常序列。因此,我们的研究结果显示,c.1504-818 G>A 是波多黎各人群中导致 APECED 的 AIRE 基因变异,并揭示了假外显子包涵是一种 ASO 可逆的 APECED 遗传机制。
{"title":"A deep intronic splice–altering AIRE variant causes APECED syndrome through antisense oligonucleotide-targetable pseudoexon inclusion","authors":"Sebastian Ochoa,&nbsp;Amy P. Hsu,&nbsp;Andrew J. Oler,&nbsp;Dhaneshwar Kumar,&nbsp;Daniel Chauss,&nbsp;Jan Piet van Hamburg,&nbsp;Gustaaf G. van Laar,&nbsp;Vasileios Oikonomou,&nbsp;Sundar Ganesan,&nbsp;Elise M. N. Ferré,&nbsp;Monica M. Schmitt,&nbsp;Tom DiMaggio,&nbsp;Princess Barber,&nbsp;Gregory M. Constantine,&nbsp;Lindsey B. Rosen,&nbsp;Paul G. Auwaerter,&nbsp;Bhumika Gandhi,&nbsp;Jennifer L. Miller,&nbsp;Rachel Eisenberg,&nbsp;Arye Rubinstein,&nbsp;Edith Schussler,&nbsp;Erjola Balliu,&nbsp;Vandana Shashi,&nbsp;Olaf Neth,&nbsp;Peter Olbrich,&nbsp;Kim My Le,&nbsp;Nanni Mamia,&nbsp;Saila Laakso,&nbsp;Pasi I. Nevalainen,&nbsp;Juha Grönholm,&nbsp;Mikko R. J. Seppänen,&nbsp;Louis Boon,&nbsp;Gulbu Uzel,&nbsp;Luis M. Franco,&nbsp;Theo Heller,&nbsp;Karen K. Winer,&nbsp;Rajarshi Ghosh,&nbsp;Bryce A. Seifert,&nbsp;Magdalena Walkiewicz,&nbsp;Luigi D. Notarangelo,&nbsp;Qing Zhou,&nbsp;Ivona Askentijevich,&nbsp;William Gahl,&nbsp;Cliffton L. Dalgard,&nbsp;Lalith Perera,&nbsp;Behdad Afzali,&nbsp;Sander W. Tas,&nbsp;Steven M. Holland,&nbsp;Michail S. Lionakis","doi":"10.1126/scitranslmed.adk0845","DOIUrl":"10.1126/scitranslmed.adk0845","url":null,"abstract":"<div >Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a life-threatening monogenic autoimmune disorder primarily caused by biallelic deleterious variants in the autoimmune regulator (<i>AIRE</i>) gene. We prospectively evaluated 104 patients with clinically diagnosed APECED syndrome and identified 17 patients (16%) from 14 kindreds lacking biallelic <i>AIRE</i> variants in exons or flanking intronic regions; 15 had Puerto Rican ancestry. Through whole-genome sequencing, we identified a deep intronic <i>AIRE</i> variant (c.1504-818 G&gt;A) cosegregating with the disease in all 17 patients. We developed a culture system of <i>AIRE</i>-expressing primary patient monocyte-derived dendric cells and demonstrated that c.1504-818 G&gt;A creates a cryptic splice site and activates inclusion of a 109–base pair frame-shifting pseudoexon. We also found low-level <i>AIRE</i> expression in patient-derived lymphoblastoid cell lines (LCLs) and confirmed pseudoexon inclusion in independent extrathymic <i>AIRE</i>–expressing cell lines. Through protein modeling and transcriptomic analyses of <i>AIRE</i>-transfected human embryonic kidney 293 and thymic epithelial cell 4D6 cells, we showed that this variant alters the carboxyl terminus of the AIRE protein, abrogating its function. Last, we developed an antisense oligonucleotide (ASO) that reversed pseudoexon inclusion and restored the normal <i>AIRE</i> transcript sequence in LCLs. Thus, our findings revealed c.1504-818 G&gt;A as a founder APECED-causing <i>AIRE</i> variant in the Puerto Rican population and uncovered pseudoexon inclusion as an ASO-reversible genetic mechanism underlying APECED.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 765","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perfusion imaging metrics after acute traumatic spinal cord injury are associated with injury severity in rats and humans 大鼠和人类急性创伤性脊髓损伤后的灌注成像指标与损伤严重程度有关
IF 15.8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-18 DOI: 10.1126/scitranslmed.adn4970
Zin Z. Khaing, Jannik Leyendecker, Jennifer N. Harmon, Sananthan Sivakanthan, Lindsay N. Cates, Jeffrey E. Hyde, Melissa Krueger, Robb W. Glenny, Matthew Bruce, Christoph P. Hofstetter
Traumatic spinal cord injury (tSCI) causes an immediate loss of neurological function, and the prediction of recovery is difficult in the acute phase. In this study, we used contrast-enhanced ultrasound imaging to quantify intraspinal vascular disruption acutely after tSCI. In a rodent thoracic tSCI model, contrast-enhanced ultrasound revealed a perfusion area deficit that was positively correlated with injury severity and negatively correlated with hindlimb locomotor function at 8 weeks after injury. The spinal perfusion index was calculated by normalizing the contrast inflow at the injury center to the contrast inflow in the injury periphery. The spinal perfusion index decreased with increasing injury severity and positively correlated with hindlimb locomotor function at 8 weeks after injury. The feasibility of intraoperative contrast-enhanced ultrasound imaging was further tested in a cohort of 27 patients with acute tSCI of varying severity and including both motor-complete and motor-incomplete tSCIs. Both the perfusion area deficit and spinal perfusion index were different between motor-complete and motor-incomplete patients. Moreover, the perfusion area deficit and spinal perfusion index correlated with the injury severity at intake and exhibited a correlation with extent of functional recovery at 6 months. Our data suggest that intraoperative contrast-enhanced, ultrasound-derived metrics are correlated with injury severity and chronic functional outcome after tSCI. Larger clinical studies are required to better assess the reliability of the proposed contrast-enhanced ultrasound biomarkers and their prognostic capacity.
创伤性脊髓损伤(tSCI)会导致神经功能立即丧失,而在急性期很难预测恢复情况。在这项研究中,我们使用对比增强超声成像技术来量化创伤性脊髓损伤后急性期的椎管内血管破坏情况。在啮齿类动物胸椎创伤后脊髓损伤模型中,对比增强超声显示了灌注区的缺损,该缺损与损伤严重程度呈正相关,与损伤后 8 周的后肢运动功能呈负相关。脊髓灌注指数的计算方法是将损伤中心的造影剂流入量与损伤周边的造影剂流入量归一化。脊髓灌注指数随着损伤严重程度的增加而降低,并与损伤后8周的后肢运动功能呈正相关。术中对比增强超声成像的可行性在一组 27 例不同严重程度的急性 tSCI 患者(包括运动完全性和运动不完全性 tSCI)中进行了进一步测试。运动完全性和运动不完全性患者的灌注面积缺失和脊髓灌注指数均不同。此外,灌注面积缺损和脊髓灌注指数与入院时的损伤严重程度相关,并与6个月时的功能恢复程度相关。我们的数据表明,术中对比增强超声衍生指标与创伤后脊髓损伤的严重程度和慢性功能预后相关。需要进行更大规模的临床研究,以更好地评估所提出的对比增强超声生物标志物的可靠性及其预后能力。
{"title":"Perfusion imaging metrics after acute traumatic spinal cord injury are associated with injury severity in rats and humans","authors":"Zin Z. Khaing,&nbsp;Jannik Leyendecker,&nbsp;Jennifer N. Harmon,&nbsp;Sananthan Sivakanthan,&nbsp;Lindsay N. Cates,&nbsp;Jeffrey E. Hyde,&nbsp;Melissa Krueger,&nbsp;Robb W. Glenny,&nbsp;Matthew Bruce,&nbsp;Christoph P. Hofstetter","doi":"10.1126/scitranslmed.adn4970","DOIUrl":"10.1126/scitranslmed.adn4970","url":null,"abstract":"<div >Traumatic spinal cord injury (tSCI) causes an immediate loss of neurological function, and the prediction of recovery is difficult in the acute phase. In this study, we used contrast-enhanced ultrasound imaging to quantify intraspinal vascular disruption acutely after tSCI. In a rodent thoracic tSCI model, contrast-enhanced ultrasound revealed a perfusion area deficit that was positively correlated with injury severity and negatively correlated with hindlimb locomotor function at 8 weeks after injury. The spinal perfusion index was calculated by normalizing the contrast inflow at the injury center to the contrast inflow in the injury periphery. The spinal perfusion index decreased with increasing injury severity and positively correlated with hindlimb locomotor function at 8 weeks after injury. The feasibility of intraoperative contrast-enhanced ultrasound imaging was further tested in a cohort of 27 patients with acute tSCI of varying severity and including both motor-complete and motor-incomplete tSCIs. Both the perfusion area deficit and spinal perfusion index were different between motor-complete and motor-incomplete patients. Moreover, the perfusion area deficit and spinal perfusion index correlated with the injury severity at intake and exhibited a correlation with extent of functional recovery at 6 months. Our data suggest that intraoperative contrast-enhanced, ultrasound-derived metrics are correlated with injury severity and chronic functional outcome after tSCI. Larger clinical studies are required to better assess the reliability of the proposed contrast-enhanced ultrasound biomarkers and their prognostic capacity.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 765","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ARGX-119 is an agonist antibody for human MuSK that reverses disease relapse in a mouse model of congenital myasthenic syndrome ARGX-119 是一种人 MuSK 激动剂抗体,可逆转先天性肌无力综合征小鼠模型的疾病复发
IF 15.8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-18 DOI: 10.1126/scitranslmed.ado7189
Roeland Vanhauwaert, Julien Oury, Bernhardt Vankerckhoven, Christophe Steyaert, Stine Marie Jensen, Dana L. E. Vergoossen, Christa Kneip, Leah Santana, Jamie L. Lim, Jaap J. Plomp, Roy Augustinus, Shohei Koide, Christophe Blanchetot, Peter Ulrichts, Maartje G. Huijbers, Karen Silence, Steven J. Burden
Muscle-specific kinase (MuSK) is essential for the formation, function, and preservation of neuromuscular synapses. Activation of MuSK by a MuSK agonist antibody may stabilize or improve the function of the neuromuscular junction (NMJ) in patients with disorders of the NMJ, such as congenital myasthenia (CM). Here, we generated and characterized ARGX-119, a first-in-class humanized agonist monoclonal antibody specific for MuSK, that is being developed for treatment of patients with neuromuscular diseases. We performed in vitro ligand-binding assays to show that ARGX-119 binds with high affinity to the Frizzled-like domain of human, nonhuman primate, rat, and mouse MuSK, without off-target binding, making it suitable for clinical development. Within the Fc region, ARGX-119 harbors L234A and L235A mutations to diminish potential immune-activating effector functions. Its mode of action is to activate MuSK, without interfering with its natural ligand neural Agrin, and cluster acetylcholine receptors in a dose-dependent manner, thereby stabilizing neuromuscular function. In a mouse model of DOK7 CM, ARGX-119 prevented early postnatal lethality and reversed disease relapse in adult Dok7 CM mice by restoring neuromuscular function and reducing muscle weakness and fatigability in a dose-dependent manner. Pharmacokinetic studies in nonhuman primates, rats, and mice revealed a nonlinear PK behavior of ARGX-119, indicative of target-mediated drug disposition and in vivo target engagement. On the basis of this proof-of-concept study, ARGX-119 has the potential to alleviate neuromuscular diseases hallmarked by impaired neuromuscular synaptic function, warranting further clinical development.
肌肉特异性激酶(MuSK)对神经肌肉突触的形成、功能和保存至关重要。通过 MuSK 激动剂抗体激活 MuSK 可稳定或改善神经肌肉接头(NMJ)功能,如先天性肌萎缩症(CM)患者。在这里,我们生成并鉴定了 ARGX-119,这是一种特异于 MuSK 的首类人源化激动剂单克隆抗体,目前正在开发用于治疗神经肌肉疾病患者。我们进行了体外配体结合试验,结果表明 ARGX-119 能与人类、非人灵长类动物、大鼠和小鼠 MuSK 的 Frizzled 样结构域高亲和力结合,且无脱靶结合,因此适合临床开发。在 Fc 区域,ARGX-119 存在 L234A 和 L235A 突变,从而削弱了潜在的免疫激活效应功能。它的作用模式是激活 MuSK,而不干扰其天然配体 Agrin,并以剂量依赖性方式集聚乙酰胆碱受体,从而稳定神经肌肉功能。在一种 DOK7 CM 小鼠模型中,ARGX-119 通过恢复神经肌肉功能并以剂量依赖性方式减少肌无力和疲劳,防止了出生后早期致死,并逆转了成年 Dok7 CM 小鼠的疾病复发。在非人灵长类动物、大鼠和小鼠体内进行的药代动力学研究显示,ARGX-119 的 PK 行为是非线性的,表明了靶点介导的药物处置和体内靶点参与。在这项概念验证研究的基础上,ARGX-119 有可能缓解以神经肌肉突触功能受损为特征的神经肌肉疾病,值得进一步临床开发。
{"title":"ARGX-119 is an agonist antibody for human MuSK that reverses disease relapse in a mouse model of congenital myasthenic syndrome","authors":"Roeland Vanhauwaert,&nbsp;Julien Oury,&nbsp;Bernhardt Vankerckhoven,&nbsp;Christophe Steyaert,&nbsp;Stine Marie Jensen,&nbsp;Dana L. E. Vergoossen,&nbsp;Christa Kneip,&nbsp;Leah Santana,&nbsp;Jamie L. Lim,&nbsp;Jaap J. Plomp,&nbsp;Roy Augustinus,&nbsp;Shohei Koide,&nbsp;Christophe Blanchetot,&nbsp;Peter Ulrichts,&nbsp;Maartje G. Huijbers,&nbsp;Karen Silence,&nbsp;Steven J. Burden","doi":"10.1126/scitranslmed.ado7189","DOIUrl":"10.1126/scitranslmed.ado7189","url":null,"abstract":"<div >Muscle-specific kinase (MuSK) is essential for the formation, function, and preservation of neuromuscular synapses. Activation of MuSK by a MuSK agonist antibody may stabilize or improve the function of the neuromuscular junction (NMJ) in patients with disorders of the NMJ, such as congenital myasthenia (CM). Here, we generated and characterized ARGX-119, a first-in-class humanized agonist monoclonal antibody specific for MuSK, that is being developed for treatment of patients with neuromuscular diseases. We performed in vitro ligand-binding assays to show that ARGX-119 binds with high affinity to the Frizzled-like domain of human, nonhuman primate, rat, and mouse MuSK, without off-target binding, making it suitable for clinical development. Within the Fc region, ARGX-119 harbors L234A and L235A mutations to diminish potential immune-activating effector functions. Its mode of action is to activate MuSK, without interfering with its natural ligand neural Agrin, and cluster acetylcholine receptors in a dose-dependent manner, thereby stabilizing neuromuscular function. In a mouse model of <i>DOK7</i> CM, ARGX-119 prevented early postnatal lethality and reversed disease relapse in adult <i>Dok7</i> CM mice by restoring neuromuscular function and reducing muscle weakness and fatigability in a dose-dependent manner. Pharmacokinetic studies in nonhuman primates, rats, and mice revealed a nonlinear PK behavior of ARGX-119, indicative of target-mediated drug disposition and in vivo target engagement. On the basis of this proof-of-concept study, ARGX-119 has the potential to alleviate neuromuscular diseases hallmarked by impaired neuromuscular synaptic function, warranting further clinical development.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 765","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scitranslmed.ado7189","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep humoral profiling coupled to interpretable machine learning unveils diagnostic markers and pathophysiology of schistosomiasis 深度体液分析与可解释的机器学习相结合,揭示血吸虫病的诊断标记和病理生理学
IF 15.8 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-09-18 DOI: 10.1126/scitranslmed.adk7832
Anushka Saha, Trirupa Chakraborty, Javad Rahimikollu, Hanxi Xiao, Lorena B. Pereira de Oliveira, Timothy W. Hand, Sukwan Handali, W. Evan Secor, Lucia A. O. Fraga, Jessica K. Fairley, Jishnu Das, Aniruddh Sarkar
Schistosomiasis, a highly prevalent parasitic disease, affects more than 200 million people worldwide. Current diagnostics based on parasite egg detection in stool detect infection only at a late stage, and current antibody-based tests cannot distinguish past from current infection. Here, we developed and used a multiplexed antibody profiling platform to obtain a comprehensive repertoire of antihelminth humoral profiles including isotype, subclass, Fc receptor (FcR) binding, and glycosylation profiles of antigen-specific antibodies. Using Essential Regression (ER) and SLIDE, interpretable machine learning methods, we identified latent factors (context-specific groups) that move beyond biomarkers and provide insights into the pathophysiology of different stages of schistosome infection. By comparing profiles of infected and healthy individuals, we identified modules with unique humoral signatures of active disease, including hallmark signatures of parasitic infection such as elevated immunoglobulin G4 (IgG4). However, we also captured previously uncharacterized humoral responses including elevated FcR binding and specific antibody glycoforms in patients with active infection, helping distinguish them from those without active infection but with equivalent antibody titers. This signature was validated in an independent cohort. Our approach also uncovered two distinct endotypes, nonpatent infection and prior infection, in those who were not actively infected. Higher amounts of IgG1 and FcR1/FcR3A binding were also found to be likely protective of the transition from nonpatent to active infection. Overall, we unveiled markers for antibody-based diagnostics and latent factors underlying the pathogenesis of schistosome infection. Our results suggest that selective antigen targeting could be useful in early detection, thus controlling infection severity.
血吸虫病是一种高度流行的寄生虫病,影响着全球 2 亿多人。目前基于粪便中寄生虫卵检测的诊断方法只能检测到晚期感染,而目前基于抗体的检测方法无法区分过去和现在的感染。在这里,我们开发并使用了一个多重抗体图谱平台,以获得全面的抗蠕虫体液图谱,包括抗原特异性抗体的同型、亚类、Fc受体(FcR)结合和糖基化图谱。利用基本回归(ER)和可解释的机器学习方法 SLIDE,我们确定了超越生物标志物的潜伏因素(特定环境组),并深入了解了血吸虫感染不同阶段的病理生理学。通过比较感染者和健康人的特征,我们确定了具有活动性疾病独特体液特征的模块,包括寄生虫感染的标志性特征,如免疫球蛋白 G4 (IgG4) 升高。不过,我们也捕捉到了以前未曾描述过的体液反应,包括活动性感染患者中升高的 FcR 结合力和特异性抗体糖形,这有助于将他们与没有活动性感染但抗体滴度相当的患者区分开来。这一特征在一个独立的队列中得到了验证。我们的方法还在非活动性感染者中发现了两种不同的内型,即非专利感染和既往感染。我们还发现,较高的 IgG1 和 FcR1/FcR3A 结合量可能对从非专利感染到活动性感染的转变具有保护作用。总之,我们揭示了基于抗体的诊断标记和血吸虫感染发病机制的潜在因素。我们的研究结果表明,选择性抗原靶向可用于早期检测,从而控制感染的严重程度。
{"title":"Deep humoral profiling coupled to interpretable machine learning unveils diagnostic markers and pathophysiology of schistosomiasis","authors":"Anushka Saha,&nbsp;Trirupa Chakraborty,&nbsp;Javad Rahimikollu,&nbsp;Hanxi Xiao,&nbsp;Lorena B. Pereira de Oliveira,&nbsp;Timothy W. Hand,&nbsp;Sukwan Handali,&nbsp;W. Evan Secor,&nbsp;Lucia A. O. Fraga,&nbsp;Jessica K. Fairley,&nbsp;Jishnu Das,&nbsp;Aniruddh Sarkar","doi":"10.1126/scitranslmed.adk7832","DOIUrl":"10.1126/scitranslmed.adk7832","url":null,"abstract":"<div >Schistosomiasis, a highly prevalent parasitic disease, affects more than 200 million people worldwide. Current diagnostics based on parasite egg detection in stool detect infection only at a late stage, and current antibody-based tests cannot distinguish past from current infection. Here, we developed and used a multiplexed antibody profiling platform to obtain a comprehensive repertoire of antihelminth humoral profiles including isotype, subclass, Fc receptor (FcR) binding, and glycosylation profiles of antigen-specific antibodies. Using Essential Regression (ER) and SLIDE, interpretable machine learning methods, we identified latent factors (context-specific groups) that move beyond biomarkers and provide insights into the pathophysiology of different stages of schistosome infection. By comparing profiles of infected and healthy individuals, we identified modules with unique humoral signatures of active disease, including hallmark signatures of parasitic infection such as elevated immunoglobulin G4 (IgG4). However, we also captured previously uncharacterized humoral responses including elevated FcR binding and specific antibody glycoforms in patients with active infection, helping distinguish them from those without active infection but with equivalent antibody titers. This signature was validated in an independent cohort. Our approach also uncovered two distinct endotypes, nonpatent infection and prior infection, in those who were not actively infected. Higher amounts of IgG1 and FcR1/FcR3A binding were also found to be likely protective of the transition from nonpatent to active infection. Overall, we unveiled markers for antibody-based diagnostics and latent factors underlying the pathogenesis of schistosome infection. Our results suggest that selective antigen targeting could be useful in early detection, thus controlling infection severity.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"16 765","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Science Translational Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1