Pub Date : 2023-07-08DOI: 10.24200/sci.2023.59961.6523
S. Keiyinci, O. Baş, Mustafa Atakan Akar
In automotive aerodynamics, it is not common to focus on a specific vehicle due to restricted access to the CAD geometries, their short life span, and limited validation data. For this reason, researchers prefer generic bodies that look like automobiles such as Ahmed Body in their investigations. However, the absence of moving ground and rotating wheels makes these generic bodies unrealistic for aerodynamic studies. In this context, including wheels in CFD simulations, varying ground, and wheel boundary conditions, and comparing their qualitative and quantitative flow parameters with the original Ahmed Body experiment is the main objective of this paper. Results have shown that changing stationary ground and wheel boundaries into moving and rotating boundaries do have minor effects on wake characteristics and drag coefficients. However, just the presence of wheels on the model increases force coefficients significantly (increment in drag and lift coefficients by 27.32% and 188.5 counts, respectively.) even though these boundaries are stationary. As a result, the absence of moving ground and rotating wheels can be tolerated to some extent (especially for experimental studies in which inclusion of moving and rotating boundaries may have difficulties). However, a study cannot be evaluated exactly with a model without wheels.
{"title":"Investigation on Flow Characteristics of Generic Car Body with Different Boundary Conditions","authors":"S. Keiyinci, O. Baş, Mustafa Atakan Akar","doi":"10.24200/sci.2023.59961.6523","DOIUrl":"https://doi.org/10.24200/sci.2023.59961.6523","url":null,"abstract":"In automotive aerodynamics, it is not common to focus on a specific vehicle due to restricted access to the CAD geometries, their short life span, and limited validation data. For this reason, researchers prefer generic bodies that look like automobiles such as Ahmed Body in their investigations. However, the absence of moving ground and rotating wheels makes these generic bodies unrealistic for aerodynamic studies. In this context, including wheels in CFD simulations, varying ground, and wheel boundary conditions, and comparing their qualitative and quantitative flow parameters with the original Ahmed Body experiment is the main objective of this paper. Results have shown that changing stationary ground and wheel boundaries into moving and rotating boundaries do have minor effects on wake characteristics and drag coefficients. However, just the presence of wheels on the model increases force coefficients significantly (increment in drag and lift coefficients by 27.32% and 188.5 counts, respectively.) even though these boundaries are stationary. As a result, the absence of moving ground and rotating wheels can be tolerated to some extent (especially for experimental studies in which inclusion of moving and rotating boundaries may have difficulties). However, a study cannot be evaluated exactly with a model without wheels.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"16 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74631247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-28DOI: 10.24200/sci.2023.61871.7532
Hadi Mohammadian KhalafAnsar, J. Keighobadi
Offshore floating wind turbines (FWT) decrease climate change adversial effects without occupying significant land and harvesting fields. Owing to the earth planet unexpected climate, online adaptive feedback control of FWTs will be effective in the sense of optimal and uniform energy capture. In this paper, a deep reinforcement learning (DRL)-based control system is proposed to offset both the disturbance and noise effects. Large variations of wind and water waves generate enormous information give rise to convergent learning of deep neural networks model of the wind turbine. As a result of the disturbance and wind sudden variations, an adaptive inverse control equipped with DRL could easily cope with the inherent drawback of DRL i.e., tracking error. Furthermore, received rewards in the DRL algorithm are passed through the newly designed training algorithm to predict control actions such that the loss function is decreased. The attenuation of disturbance and noise on the tracking performance of closed-loop FWT is clarified through software implementation tests while the weight’s convergency and update rules are proved by the direct Lyapunov theorem.
{"title":"Adaptive Inverse Deep Reinforcement Lyapunov learning control for a floating wind turbine","authors":"Hadi Mohammadian KhalafAnsar, J. Keighobadi","doi":"10.24200/sci.2023.61871.7532","DOIUrl":"https://doi.org/10.24200/sci.2023.61871.7532","url":null,"abstract":"Offshore floating wind turbines (FWT) decrease climate change adversial effects without occupying significant land and harvesting fields. Owing to the earth planet unexpected climate, online adaptive feedback control of FWTs will be effective in the sense of optimal and uniform energy capture. In this paper, a deep reinforcement learning (DRL)-based control system is proposed to offset both the disturbance and noise effects. Large variations of wind and water waves generate enormous information give rise to convergent learning of deep neural networks model of the wind turbine. As a result of the disturbance and wind sudden variations, an adaptive inverse control equipped with DRL could easily cope with the inherent drawback of DRL i.e., tracking error. Furthermore, received rewards in the DRL algorithm are passed through the newly designed training algorithm to predict control actions such that the loss function is decreased. The attenuation of disturbance and noise on the tracking performance of closed-loop FWT is clarified through software implementation tests while the weight’s convergency and update rules are proved by the direct Lyapunov theorem.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"69 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77152144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-28DOI: 10.24200/sci.2023.60823.7005
Pezhman Khalouie, Payam Alemi, Mojtaba Beiraghi
The high penetration of renewable Distributed Generators (DGs) in the Active Distribution Network (ADN) in addition to its advantages brings great challenges for the ADN, due to their intermittent and uncertain generations. Increasing network flexibility using Soft Open Points (SOPs) is an effective solution to overcome these challenges. However, an SOP-based ADN may contain various renewable or Controllable DGs (CDGs), and autonomous interconnected Microgrids (MGs). Accordingly, the uncertainty of load and renewable generation makes its scheduling more complex. In this paper, a novel optimal scenario-based framework is proposed to schedule an SOP-included ADN with multi-interconnected microgrids, based on the forecasted scenarios of demand and renewable DGs generation. In the proposed framework, all technical constraints, such as AC load flow equations, SOP's operational limitations, and DG's production range, are modeled in a Second-Order Cone (SOC) programming format. The energy transaction between the ADN and the other agents, i.e., MGs, and Upstream Network (UN) is also considered. This model can be optimally solved in an acceptable time. To show the effectiveness of the proposed method, it is implemented on the IEEE 33-bus distribution network. The simulation results confirm its high accuracy and speed.
{"title":"An Optimal Scenario-Based Scheduling Method for an SOP-included Active Distribution Network Considering Uncertainty of Load and Renewable Generations","authors":"Pezhman Khalouie, Payam Alemi, Mojtaba Beiraghi","doi":"10.24200/sci.2023.60823.7005","DOIUrl":"https://doi.org/10.24200/sci.2023.60823.7005","url":null,"abstract":"The high penetration of renewable Distributed Generators (DGs) in the Active Distribution Network (ADN) in addition to its advantages brings great challenges for the ADN, due to their intermittent and uncertain generations. Increasing network flexibility using Soft Open Points (SOPs) is an effective solution to overcome these challenges. However, an SOP-based ADN may contain various renewable or Controllable DGs (CDGs), and autonomous interconnected Microgrids (MGs). Accordingly, the uncertainty of load and renewable generation makes its scheduling more complex. In this paper, a novel optimal scenario-based framework is proposed to schedule an SOP-included ADN with multi-interconnected microgrids, based on the forecasted scenarios of demand and renewable DGs generation. In the proposed framework, all technical constraints, such as AC load flow equations, SOP's operational limitations, and DG's production range, are modeled in a Second-Order Cone (SOC) programming format. The energy transaction between the ADN and the other agents, i.e., MGs, and Upstream Network (UN) is also considered. This model can be optimally solved in an acceptable time. To show the effectiveness of the proposed method, it is implemented on the IEEE 33-bus distribution network. The simulation results confirm its high accuracy and speed.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135354069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-26DOI: 10.24200/sci.2023.58474.5742
M. Saghafian, Hossein Seyedzadeh, Abolfazl Moradmand
7 Pumping fluid is one of the crucial parts of any microfluidic system. Using electric and 8 magnetic fields as a substitute for moving parts can have many advantages. In this study 9 hydrodynamic and heat transfer characteristics of electroosmotic flow under influence of lateral 10 electric and transverse magnetic field, are studied numerically. Results indicate that the 11 dimensionless parameters such as Hartmann number, intensity of the lateral electric field, 12 pressure gradient parameter and aspect ratio have an important role in controlling flow. It can be 13 implied that the enhancement of pressure gradient leads to the decrease of critical Hartmann 14 number, and this dependency can be reduced from 44% to 7% for S = 0.5 to S = 50 in two 15 pressure gradients of Ω = 1 and Ω = 20. In addition, the reduction of aspect ratio of microchannel 16 section leads to the increment of critical Hartmann number in a specified lateral electric field. At 17 the end, thermal analysis is being done by consideration of the effects of magnetic and electric 18 fields on the Nusselt number. 19
{"title":"Numerical simulation of electroosmotic flow in a rectangular microchannel with use of magnetic and electric fields","authors":"M. Saghafian, Hossein Seyedzadeh, Abolfazl Moradmand","doi":"10.24200/sci.2023.58474.5742","DOIUrl":"https://doi.org/10.24200/sci.2023.58474.5742","url":null,"abstract":"7 Pumping fluid is one of the crucial parts of any microfluidic system. Using electric and 8 magnetic fields as a substitute for moving parts can have many advantages. In this study 9 hydrodynamic and heat transfer characteristics of electroosmotic flow under influence of lateral 10 electric and transverse magnetic field, are studied numerically. Results indicate that the 11 dimensionless parameters such as Hartmann number, intensity of the lateral electric field, 12 pressure gradient parameter and aspect ratio have an important role in controlling flow. It can be 13 implied that the enhancement of pressure gradient leads to the decrease of critical Hartmann 14 number, and this dependency can be reduced from 44% to 7% for S = 0.5 to S = 50 in two 15 pressure gradients of Ω = 1 and Ω = 20. In addition, the reduction of aspect ratio of microchannel 16 section leads to the increment of critical Hartmann number in a specified lateral electric field. At 17 the end, thermal analysis is being done by consideration of the effects of magnetic and electric 18 fields on the Nusselt number. 19","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"129 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79825311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-26DOI: 10.24200/sci.2023.60327.6739
Gulnaz Topcu, U. Ercetin, Cisil Timuralp
In this study, a computer model of the Zalman ZM-WB3 Gold heat exchanger which is one of the liquid-cooled computer processors in the market has been generated and the model has been confirmed by the previous researchers’ models and experimental data. Then, the fin thickness and heights of the same heat exchanger and the type of liquid fluid in which the heat exchanger operates have been changed. The CFD analyzes of the new models were performed by using Ansys Fluent 17.1 program. Following that, nano heat removal (cooling) performances were investigated with models using rectangular fin fluid heat exchangers with different fin heights of 5 mm, 5.5 mm and 5.7 mm, and different fin thicknesses of 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm and 2 mm, and different fluids as water, copper oxide-water (CuO-H 2 O) nanofluids with volume ratios of 2.25% and 0.86%, and graphene oxide (GO-H 2 O) nanofluid with the volume ratio of 0.01%. It was concluded that the best CPU cooler performance could be achieved by using CuO - H 2 O as nanofluid with a volumetric ratio of 2.25% with a heat exchanger that has a 5.5 mm fin height and 2.0 mm fin thickness.
{"title":"CFD Analysis of Liquid-Cooled Heatsink Using Nanofluids in Computer Processors","authors":"Gulnaz Topcu, U. Ercetin, Cisil Timuralp","doi":"10.24200/sci.2023.60327.6739","DOIUrl":"https://doi.org/10.24200/sci.2023.60327.6739","url":null,"abstract":"In this study, a computer model of the Zalman ZM-WB3 Gold heat exchanger which is one of the liquid-cooled computer processors in the market has been generated and the model has been confirmed by the previous researchers’ models and experimental data. Then, the fin thickness and heights of the same heat exchanger and the type of liquid fluid in which the heat exchanger operates have been changed. The CFD analyzes of the new models were performed by using Ansys Fluent 17.1 program. Following that, nano heat removal (cooling) performances were investigated with models using rectangular fin fluid heat exchangers with different fin heights of 5 mm, 5.5 mm and 5.7 mm, and different fin thicknesses of 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm and 2 mm, and different fluids as water, copper oxide-water (CuO-H 2 O) nanofluids with volume ratios of 2.25% and 0.86%, and graphene oxide (GO-H 2 O) nanofluid with the volume ratio of 0.01%. It was concluded that the best CPU cooler performance could be achieved by using CuO - H 2 O as nanofluid with a volumetric ratio of 2.25% with a heat exchanger that has a 5.5 mm fin height and 2.0 mm fin thickness.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"14 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85427794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-26DOI: 10.24200/sci.2023.57864.5448
M. Mehri
- In this paper, a stochastic analysis method is proposed for extraction and evaluation of power distribution map (PDM) in system printed circuit board (PCB). This is conducted based on some high level data including placement and routing geometry, power distribution network (PDN), component package parasitic, and voltage regulator module (VRM). A simple model for supply current of two constituent blocks of electronic systems is analytically extracted. The worst-case simultaneous operation of all consumers are considered for PDM extraction. The approach is applied to a specific designed and fabricated mixed signal board. PDM is beneficial in the placement process of decoupling capacitance or noisy components in an optimum and right location. Also, the proposed approach can be considered as a verification step of PCB design flow and be applicable before routing only based on the placement data of components of the system. This enables the designer to predict the upcoming problems in layout and hastens the process of design verification.
{"title":"Comprehensive Stochastic Analysis Method for Tree-Type PDNs and Ground Pollution on Mixed-Signal PCBs","authors":"M. Mehri","doi":"10.24200/sci.2023.57864.5448","DOIUrl":"https://doi.org/10.24200/sci.2023.57864.5448","url":null,"abstract":"- In this paper, a stochastic analysis method is proposed for extraction and evaluation of power distribution map (PDM) in system printed circuit board (PCB). This is conducted based on some high level data including placement and routing geometry, power distribution network (PDN), component package parasitic, and voltage regulator module (VRM). A simple model for supply current of two constituent blocks of electronic systems is analytically extracted. The worst-case simultaneous operation of all consumers are considered for PDM extraction. The approach is applied to a specific designed and fabricated mixed signal board. PDM is beneficial in the placement process of decoupling capacitance or noisy components in an optimum and right location. Also, the proposed approach can be considered as a verification step of PCB design flow and be applicable before routing only based on the placement data of components of the system. This enables the designer to predict the upcoming problems in layout and hastens the process of design verification.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91061792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-26DOI: 10.24200/sci.2023.59375.6205
H. Hojabri
Conventional multi–stage AC/DC/DC, AC/DC/AC, DC/DC/DC, and DC/DC/AC converters are two ports converters used to connect a resource or load to an AC or DC grid. To connect several loads or resources to a grid, these converters can easily be extended to a multi– port converter through a common DC–link, with simplified control and a reduced number of active switches. However, DC–link huge energy storage component increases the converter volume and cost and reduces its lifetime and reliability. On the other hand, most of the resources with these types of converters have fault ride–through problems and the DC–link voltage increases during the grid–side faults. The indirect matrix converter is a two–port high–frequency AC–link (HFAC) converter without any intermediate energy storage component, which can be used to connect just a single source or load to a grid. In this paper, a generalized extension of a two–port indirect matrix converter (and the other HFAC converters) to a multi–port converter is proposed. The modulation method, voltage and current gains, and the reactive power limitation of the proposed structure are also presented. Performances of the proposed structure and its modulation strategy are verified through simulation in MATLAB/SIMULINK environment.
{"title":"Multi–Port High–Frequency AC–Link and Indirect Matrix Converters: A Generalized Structure","authors":"H. Hojabri","doi":"10.24200/sci.2023.59375.6205","DOIUrl":"https://doi.org/10.24200/sci.2023.59375.6205","url":null,"abstract":"Conventional multi–stage AC/DC/DC, AC/DC/AC, DC/DC/DC, and DC/DC/AC converters are two ports converters used to connect a resource or load to an AC or DC grid. To connect several loads or resources to a grid, these converters can easily be extended to a multi– port converter through a common DC–link, with simplified control and a reduced number of active switches. However, DC–link huge energy storage component increases the converter volume and cost and reduces its lifetime and reliability. On the other hand, most of the resources with these types of converters have fault ride–through problems and the DC–link voltage increases during the grid–side faults. The indirect matrix converter is a two–port high–frequency AC–link (HFAC) converter without any intermediate energy storage component, which can be used to connect just a single source or load to a grid. In this paper, a generalized extension of a two–port indirect matrix converter (and the other HFAC converters) to a multi–port converter is proposed. The modulation method, voltage and current gains, and the reactive power limitation of the proposed structure are also presented. Performances of the proposed structure and its modulation strategy are verified through simulation in MATLAB/SIMULINK environment.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"63 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78826819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-26DOI: 10.24200/sci.2023.59391.6213
Iman Farzin, Mohammadhossein Abbasi, A. Mahpour
ABSTRACT
摘要
{"title":"How does the environmental concerns affect the satisfaction of BRT and Metro users? A moderator analysis","authors":"Iman Farzin, Mohammadhossein Abbasi, A. Mahpour","doi":"10.24200/sci.2023.59391.6213","DOIUrl":"https://doi.org/10.24200/sci.2023.59391.6213","url":null,"abstract":"ABSTRACT","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"54 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72827117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-20DOI: 10.24200/sci.2023.60237.6682
M. Dehghan, A. Moosaie, Mohammad Zamani Nejad
In this article, a novel spectral method based on the integral transform and finite element (FE) method is introduced for nonlinear thermal analysis of a hollow cylinder under asymmetric boundary excitations. The material properties are temperature-dependent and vary in terms of spatial coordinates. This dependency makes the problem to be nonlinear. The intended nonlinear heat conduction equation is discretized using finite elements in the radial direction. Fast Fourier transform (FFT) technique with the uniform distribution of the harmonics in the circumferential direction, is used to discretize the periodic domain and boundary conditions. The use of the FFT algorithm is accompanied by a significant save in computational times and efforts. In such problems, the Pseudo-spectral technique, as an evolved model of the spectral method, is utilized whenever the material properties vary in terms of the periodic variables or there exists a nonlinear term. The convolution sum technique is appropriately used to transform the nonlinear terms in the Fourier space. Thermal boundary conditions at the inner surface of the cylinder are considered in asymmetrical form. In compliance with the other analytical and numerical solutions, the present mixed-method benefits from the fast rate of convergence and high accuracy.
{"title":"A Mixed Pseudo-spectral FFT-FE Method for Asymmetric Nonlinear Heat Transfer of a Functionally Graded Hollow Cylinder","authors":"M. Dehghan, A. Moosaie, Mohammad Zamani Nejad","doi":"10.24200/sci.2023.60237.6682","DOIUrl":"https://doi.org/10.24200/sci.2023.60237.6682","url":null,"abstract":"In this article, a novel spectral method based on the integral transform and finite element (FE) method is introduced for nonlinear thermal analysis of a hollow cylinder under asymmetric boundary excitations. The material properties are temperature-dependent and vary in terms of spatial coordinates. This dependency makes the problem to be nonlinear. The intended nonlinear heat conduction equation is discretized using finite elements in the radial direction. Fast Fourier transform (FFT) technique with the uniform distribution of the harmonics in the circumferential direction, is used to discretize the periodic domain and boundary conditions. The use of the FFT algorithm is accompanied by a significant save in computational times and efforts. In such problems, the Pseudo-spectral technique, as an evolved model of the spectral method, is utilized whenever the material properties vary in terms of the periodic variables or there exists a nonlinear term. The convolution sum technique is appropriately used to transform the nonlinear terms in the Fourier space. Thermal boundary conditions at the inner surface of the cylinder are considered in asymmetrical form. In compliance with the other analytical and numerical solutions, the present mixed-method benefits from the fast rate of convergence and high accuracy.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"50 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78265354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}