首页 > 最新文献

Sensors最新文献

英文 中文
Action Recognition in Basketball with Inertial Measurement Unit-Supported Vest.
IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-19 DOI: 10.3390/s25020563
Hamza Sonalcan, Enes Bilen, Bahar Ateş, Ahmet Çağdaş Seçkin

In this study, an action recognition system was developed to identify fundamental basketball movements using a single Inertial Measurement Unit (IMU) sensor embedded in a wearable vest. This study aims to enhance basketball training by providing a high-performance, low-cost solution that minimizes discomfort for athletes. Data were collected from 21 collegiate basketball players, and movements such as dribbling, passing, shooting, layup, and standing still were recorded. The collected IMU data underwent preprocessing and feature extraction, followed by the application of machine learning algorithms including KNN, decision tree, Random Forest, AdaBoost, and XGBoost. Among these, the XGBoost algorithm with a window size of 250 and a 75% overlap yielded the highest accuracy of 96.6%. The system demonstrated superior performance compared to other single-sensor systems, achieving an overall classification accuracy of 96.9%. This research contributes to the field by presenting a new dataset of basketball movements, comparing the effectiveness of various feature extraction and machine learning methods, and offering a scalable, efficient, and accurate action recognition system for basketball.

{"title":"Action Recognition in Basketball with Inertial Measurement Unit-Supported Vest.","authors":"Hamza Sonalcan, Enes Bilen, Bahar Ateş, Ahmet Çağdaş Seçkin","doi":"10.3390/s25020563","DOIUrl":"10.3390/s25020563","url":null,"abstract":"<p><p>In this study, an action recognition system was developed to identify fundamental basketball movements using a single Inertial Measurement Unit (IMU) sensor embedded in a wearable vest. This study aims to enhance basketball training by providing a high-performance, low-cost solution that minimizes discomfort for athletes. Data were collected from 21 collegiate basketball players, and movements such as dribbling, passing, shooting, layup, and standing still were recorded. The collected IMU data underwent preprocessing and feature extraction, followed by the application of machine learning algorithms including KNN, decision tree, Random Forest, AdaBoost, and XGBoost. Among these, the XGBoost algorithm with a window size of 250 and a 75% overlap yielded the highest accuracy of 96.6%. The system demonstrated superior performance compared to other single-sensor systems, achieving an overall classification accuracy of 96.9%. This research contributes to the field by presenting a new dataset of basketball movements, comparing the effectiveness of various feature extraction and machine learning methods, and offering a scalable, efficient, and accurate action recognition system for basketball.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Depression Recognition Using Daily Wearable-Derived Physiological Data.
IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-19 DOI: 10.3390/s25020567
Xinyu Shui, Hao Xu, Shuping Tan, Dan Zhang

The objective identification of depression using physiological data has emerged as a significant research focus within the field of psychiatry. The advancement of wearable physiological measurement devices has opened new avenues for the identification of individuals with depression in everyday-life contexts. Compared to other objective measurement methods, wearables offer the potential for continuous, unobtrusive monitoring, which can capture subtle physiological changes indicative of depressive states. The present study leverages multimodal wristband devices to collect data from fifty-eight participants clinically diagnosed with depression during their normal daytime activities over six hours. Data collected include pulse wave, skin conductance, and triaxial acceleration. For comparison, we also utilized data from fifty-eight matched healthy controls from a publicly available dataset, collected using the same devices over equivalent durations. Our aim was to identify depressive individuals through the analysis of multimodal physiological measurements derived from wearable devices in daily life scenarios. We extracted static features such as the mean, variance, skewness, and kurtosis of physiological indicators like heart rate, skin conductance, and acceleration, as well as autoregressive coefficients of these signals reflecting the temporal dynamics. Utilizing a Random Forest algorithm, we distinguished depressive and non-depressive individuals with varying classification accuracies on data aggregated over 6 h, 2 h, 30 min, and 5 min segments, as 90.0%, 84.7%, 80.1%, and 76.0%, respectively. Our results demonstrate the feasibility of using daily wearable-derived physiological data for depression recognition. The achieved classification accuracies suggest that this approach could be integrated into clinical settings for the early detection and monitoring of depressive symptoms. Future work will explore the potential of these methods for personalized interventions and real-time monitoring, offering a promising avenue for enhancing mental health care through the integration of wearable technology.

{"title":"Depression Recognition Using Daily Wearable-Derived Physiological Data.","authors":"Xinyu Shui, Hao Xu, Shuping Tan, Dan Zhang","doi":"10.3390/s25020567","DOIUrl":"10.3390/s25020567","url":null,"abstract":"<p><p>The objective identification of depression using physiological data has emerged as a significant research focus within the field of psychiatry. The advancement of wearable physiological measurement devices has opened new avenues for the identification of individuals with depression in everyday-life contexts. Compared to other objective measurement methods, wearables offer the potential for continuous, unobtrusive monitoring, which can capture subtle physiological changes indicative of depressive states. The present study leverages multimodal wristband devices to collect data from fifty-eight participants clinically diagnosed with depression during their normal daytime activities over six hours. Data collected include pulse wave, skin conductance, and triaxial acceleration. For comparison, we also utilized data from fifty-eight matched healthy controls from a publicly available dataset, collected using the same devices over equivalent durations. Our aim was to identify depressive individuals through the analysis of multimodal physiological measurements derived from wearable devices in daily life scenarios. We extracted static features such as the mean, variance, skewness, and kurtosis of physiological indicators like heart rate, skin conductance, and acceleration, as well as autoregressive coefficients of these signals reflecting the temporal dynamics. Utilizing a Random Forest algorithm, we distinguished depressive and non-depressive individuals with varying classification accuracies on data aggregated over 6 h, 2 h, 30 min, and 5 min segments, as 90.0%, 84.7%, 80.1%, and 76.0%, respectively. Our results demonstrate the feasibility of using daily wearable-derived physiological data for depression recognition. The achieved classification accuracies suggest that this approach could be integrated into clinical settings for the early detection and monitoring of depressive symptoms. Future work will explore the potential of these methods for personalized interventions and real-time monitoring, offering a promising avenue for enhancing mental health care through the integration of wearable technology.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768625/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Key Fundamentals and Examples of Sensors for Human Health: Wearable, Non-Continuous, and Non-Contact Monitoring Devices.
IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-19 DOI: 10.3390/s25020556
Sara Guarducci, Sara Jayousi, Stefano Caputo, Lorenzo Mucchi

The increasing demand for personalized healthcare, particularly among individuals requiring continuous health monitoring, has driven significant advancements in sensor technology. Wearable, non-continuous monitoring, and non-contact sensors are leading this innovation, providing novel methods for monitoring vital signs and physiological data in both clinical and home settings. However, there is a lack of comprehensive comparative studies assessing the overall functionality of these technologies. This paper aims to address this gap by presenting a detailed comparative analysis of selected wearable, non-continuous monitoring, and non-contact sensors used for health monitoring. To achieve this, we conducted a comprehensive evaluation of various sensors available on the market, utilizing key indicators such as sensor performance, usability, associated platforms functionality, data management, battery efficiency, and cost-effectiveness. Our findings highlight the strengths and limitations of each sensor type, thus offering valuable insights for the selection of the most appropriate technology based on specific healthcare needs. This study has the potential to serve as a valuable resource for researchers, healthcare providers, and policymakers, contributing to a deeper understanding of existing user-centered health monitoring solutions.

{"title":"Key Fundamentals and Examples of Sensors for Human Health: Wearable, Non-Continuous, and Non-Contact Monitoring Devices.","authors":"Sara Guarducci, Sara Jayousi, Stefano Caputo, Lorenzo Mucchi","doi":"10.3390/s25020556","DOIUrl":"10.3390/s25020556","url":null,"abstract":"<p><p>The increasing demand for personalized healthcare, particularly among individuals requiring continuous health monitoring, has driven significant advancements in sensor technology. Wearable, non-continuous monitoring, and non-contact sensors are leading this innovation, providing novel methods for monitoring vital signs and physiological data in both clinical and home settings. However, there is a lack of comprehensive comparative studies assessing the overall functionality of these technologies. This paper aims to address this gap by presenting a detailed comparative analysis of selected wearable, non-continuous monitoring, and non-contact sensors used for health monitoring. To achieve this, we conducted a comprehensive evaluation of various sensors available on the market, utilizing key indicators such as sensor performance, usability, associated platforms functionality, data management, battery efficiency, and cost-effectiveness. Our findings highlight the strengths and limitations of each sensor type, thus offering valuable insights for the selection of the most appropriate technology based on specific healthcare needs. This study has the potential to serve as a valuable resource for researchers, healthcare providers, and policymakers, contributing to a deeper understanding of existing user-centered health monitoring solutions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Deep Learning Approach for Mental Fatigue State Assessment.
IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-19 DOI: 10.3390/s25020555
Jiaxing Fan, Lin Dong, Gang Sun, Zhize Zhou

This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.29% in identifying fatigue from original ECG data, 2D spectral characteristics and physiological information of subjects. In comparison to traditional methods, such as Support Vector Machines (SVMs) and Random Forests (RFs), as well as other deep learning methods, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), the proposed approach demonstrates significantly improved experimental outcomes. Overall, this study offers a promising solution for accurately recognizing fatigue through the analysis of physiological signals, with potential applications in sports and physical fitness training contexts.

{"title":"A Deep Learning Approach for Mental Fatigue State Assessment.","authors":"Jiaxing Fan, Lin Dong, Gang Sun, Zhize Zhou","doi":"10.3390/s25020555","DOIUrl":"10.3390/s25020555","url":null,"abstract":"<p><p>This study investigates mental fatigue in sports activities by leveraging deep learning techniques, deviating from the conventional use of heart rate variability (HRV) feature analysis found in previous research. The study utilizes a hybrid deep neural network model, which integrates Residual Networks (ResNet) and Bidirectional Long Short-Term Memory (Bi-LSTM) for feature extraction, and a transformer for feature fusion. The model achieves an impressive accuracy of 95.29% in identifying fatigue from original ECG data, 2D spectral characteristics and physiological information of subjects. In comparison to traditional methods, such as Support Vector Machines (SVMs) and Random Forests (RFs), as well as other deep learning methods, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), the proposed approach demonstrates significantly improved experimental outcomes. Overall, this study offers a promising solution for accurately recognizing fatigue through the analysis of physiological signals, with potential applications in sports and physical fitness training contexts.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143040646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on Fire Detection of Cotton Picker Based on Improved Algorithm.
IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-19 DOI: 10.3390/s25020564
Zhai Shi, Fangwei Wu, Changjie Han, Dongdong Song

According to the physical characteristics of cotton and the work characteristics of cotton pickers in the field, during the picking process, there is a risk of cotton combustion. The cotton picker working environment is complex, cotton ignition can be hidden, and fire is difficult to detect. Therefore, in this study, we designed an improved algorithm for multi-sensor data fusion; built a cotton picker fire detection system by using infrared temperature sensors, CO sensors, and the upper computer; and proposed a BP neural network model based on improved mutation operator hybrid gray wolf optimizer and particle swarm optimization (MGWO-PSO) algorithm based on the BP neural network model. This algorithm includes the introduction of a mutation operator in the gray wolf algorithm to improve the search ability of the algorithm, and, at the same time, we introduce the PSO algorithm idea. The improved fusion algorithm is used as a learning algorithm to optimize the BP neural network, and the optimized network is used to process and predict the data collected from temperature and gas sensors, which effectively improves the accuracy of fire prediction. The sensor measurements were compared with the actual values to verify the effectiveness of the GWO-PSO-optimized BP neural network model. Once experimentally verified, the improved GWO-PSO algorithm achieves a correlation coefficient R of 0.96929, a prediction accuracy rate of 96.10%, and a prediction error rate of only 3.9%, while the system monitors an accurate early warning rate of 96.07%, and the false alarm and omission rates are both less than 5%. This study can detect cotton picker fires in real time and provide timely warnings, which provides a new method for the accurate detection of fires during the field operation of cotton pickers.

{"title":"Research on Fire Detection of Cotton Picker Based on Improved Algorithm.","authors":"Zhai Shi, Fangwei Wu, Changjie Han, Dongdong Song","doi":"10.3390/s25020564","DOIUrl":"10.3390/s25020564","url":null,"abstract":"<p><p>According to the physical characteristics of cotton and the work characteristics of cotton pickers in the field, during the picking process, there is a risk of cotton combustion. The cotton picker working environment is complex, cotton ignition can be hidden, and fire is difficult to detect. Therefore, in this study, we designed an improved algorithm for multi-sensor data fusion; built a cotton picker fire detection system by using infrared temperature sensors, CO sensors, and the upper computer; and proposed a BP neural network model based on improved mutation operator hybrid gray wolf optimizer and particle swarm optimization (MGWO-PSO) algorithm based on the BP neural network model. This algorithm includes the introduction of a mutation operator in the gray wolf algorithm to improve the search ability of the algorithm, and, at the same time, we introduce the PSO algorithm idea. The improved fusion algorithm is used as a learning algorithm to optimize the BP neural network, and the optimized network is used to process and predict the data collected from temperature and gas sensors, which effectively improves the accuracy of fire prediction. The sensor measurements were compared with the actual values to verify the effectiveness of the GWO-PSO-optimized BP neural network model. Once experimentally verified, the improved GWO-PSO algorithm achieves a correlation coefficient R of 0.96929, a prediction accuracy rate of 96.10%, and a prediction error rate of only 3.9%, while the system monitors an accurate early warning rate of 96.07%, and the false alarm and omission rates are both less than 5%. This study can detect cotton picker fires in real time and provide timely warnings, which provides a new method for the accurate detection of fires during the field operation of cotton pickers.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768599/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Radiance Fields for High-Fidelity Soft Tissue Reconstruction in Endoscopy.
IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-19 DOI: 10.3390/s25020565
Jinhua Liu, Yongsheng Shi, Dongjin Huang, Jiantao Qu

The advancement of neural radiance fields (NeRFs) has facilitated the high-quality 3D reconstruction of complex scenes. However, for most NeRFs, reconstructing 3D tissues from endoscopy images poses significant challenges due to the occlusion of soft tissue regions by invalid pixels, deformations in soft tissue, and poor image quality, which severely limits their application in endoscopic scenarios. To address the above issues, we propose a novel framework to reconstruct high-fidelity soft tissue scenes from low-quality endoscopic images. We first construct an EndoTissue dataset of soft tissue regions in endoscopic images and fine-tune the Segment Anything Model (SAM) based on EndoTissue to obtain a potent segmentation network. Given a sequence of monocular endoscopic images, this segmentation network can quickly obtain the tissue mask images. Additionally, we incorporate tissue masks into a dynamic scene reconstruction method called Tensor4D to effectively guide the reconstruction of 3D deformable soft tissues. Finally, we propose adopting the image enhancement model EDAU-Net to improve the quality of the rendered views. The experimental results show that our method can effectively focus on the soft tissue regions in the image, achieving higher fidelity in detail and geometric structural integrity in reconstruction compared to state-of-the-art algorithms. Feedback from the user study indicates high participant scores for our method.

{"title":"Neural Radiance Fields for High-Fidelity Soft Tissue Reconstruction in Endoscopy.","authors":"Jinhua Liu, Yongsheng Shi, Dongjin Huang, Jiantao Qu","doi":"10.3390/s25020565","DOIUrl":"10.3390/s25020565","url":null,"abstract":"<p><p>The advancement of neural radiance fields (NeRFs) has facilitated the high-quality 3D reconstruction of complex scenes. However, for most NeRFs, reconstructing 3D tissues from endoscopy images poses significant challenges due to the occlusion of soft tissue regions by invalid pixels, deformations in soft tissue, and poor image quality, which severely limits their application in endoscopic scenarios. To address the above issues, we propose a novel framework to reconstruct high-fidelity soft tissue scenes from low-quality endoscopic images. We first construct an EndoTissue dataset of soft tissue regions in endoscopic images and fine-tune the Segment Anything Model (SAM) based on EndoTissue to obtain a potent segmentation network. Given a sequence of monocular endoscopic images, this segmentation network can quickly obtain the tissue mask images. Additionally, we incorporate tissue masks into a dynamic scene reconstruction method called Tensor4D to effectively guide the reconstruction of 3D deformable soft tissues. Finally, we propose adopting the image enhancement model EDAU-Net to improve the quality of the rendered views. The experimental results show that our method can effectively focus on the soft tissue regions in the image, achieving higher fidelity in detail and geometric structural integrity in reconstruction compared to state-of-the-art algorithms. Feedback from the user study indicates high participant scores for our method.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monte Carlo Simulation of the Effect of Melanin Concentration on Light-Tissue Interactions in Reflectance Pulse Oximetry.
IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-19 DOI: 10.3390/s25020559
Raghda Al-Halawani, Meha Qassem, Panicos A Kyriacou

Over the past ten years, there has been an increasing demand for reliable consumer wearables as users are inclined to monitor their health and fitness metrics in real-time, especially since the COVID-19 pandemic. Reflectance pulse oximeters in fitness trackers and smartwatches provide convenient, non-invasive SpO2 measurements but face challenges in achieving medical-grade accuracy, particularly due to difficulties in capturing physiological signals, which may be affected by skin pigmentation. Hence, this study sets out to investigate the influence of skin pigmentation, particularly in individuals with darker skin, on the accuracy and reliability of SpO2 measurement in consumer wearables that utilise reflectance pulse oximeters. A Monte Carlo model is developed to assess the effect on simulated reflectance pulse oximetry measurements across light, moderate, and dark skin types for oxygen saturation levels between 70 and 100%. The results indicate that a one-algorithm-fits-all calibration approach may be insufficient, and root mean square errors (RMSEs) of at least 0.3956%, 0.9132%, and 8.4111% for light, moderate, and dark skin are observed when compared to transmittance calibration algorithms. Further research is required to validate these findings and improve the performance of reflectance pulse oximeters in real-world applications, particularly in the context of consumer wearables.

{"title":"Monte Carlo Simulation of the Effect of Melanin Concentration on Light-Tissue Interactions in Reflectance Pulse Oximetry.","authors":"Raghda Al-Halawani, Meha Qassem, Panicos A Kyriacou","doi":"10.3390/s25020559","DOIUrl":"10.3390/s25020559","url":null,"abstract":"<p><p>Over the past ten years, there has been an increasing demand for reliable consumer wearables as users are inclined to monitor their health and fitness metrics in real-time, especially since the COVID-19 pandemic. Reflectance pulse oximeters in fitness trackers and smartwatches provide convenient, non-invasive SpO<sub>2</sub> measurements but face challenges in achieving medical-grade accuracy, particularly due to difficulties in capturing physiological signals, which may be affected by skin pigmentation. Hence, this study sets out to investigate the influence of skin pigmentation, particularly in individuals with darker skin, on the accuracy and reliability of SpO<sub>2</sub> measurement in consumer wearables that utilise reflectance pulse oximeters. A Monte Carlo model is developed to assess the effect on simulated reflectance pulse oximetry measurements across light, moderate, and dark skin types for oxygen saturation levels between 70 and 100%. The results indicate that a one-algorithm-fits-all calibration approach may be insufficient, and root mean square errors (RMSEs) of at least 0.3956%, 0.9132%, and 8.4111% for light, moderate, and dark skin are observed when compared to transmittance calibration algorithms. Further research is required to validate these findings and improve the performance of reflectance pulse oximeters in real-world applications, particularly in the context of consumer wearables.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remaining Useful Life Prediction of Rolling Bearings Based on CBAM-CNN-LSTM.
IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-19 DOI: 10.3390/s25020554
Bo Sun, Wenting Hu, Hao Wang, Lei Wang, Chengyang Deng

Predicting the Remaining Useful Life (RUL) is vital for ensuring the reliability and safety of equipment and components. This study introduces a novel method for predicting RUL that utilizes the Convolutional Block Attention Module (CBAM) to address the problem that Convolutional Neural Networks (CNNs) do not effectively leverage data channel features and spatial features in residual life prediction. Firstly, Fast Fourier Transform (FFT) is applied to convert the data into the frequency domain. The resulting frequency domain data is then used as input to the convolutional neural network for feature extraction; Then, the weights of channel features and spatial features are assigned to the extracted features by CBAM, and the weighted features are then input into the Long Short-Term Memory (LSTM) network to learn temporal features. Finally, the effectiveness of the proposed model is verified using the PHM2012 bearing dataset. Compared to several existing RUL prediction methods, the mean squared error, mean absolute error, and root mean squared error of the proposed method in this paper are reduced by 53%, 16.87%, and 31.68%, respectively, which verifies the superiority of the method. Meanwhile, the experimental results demonstrate that the proposed method achieves good RUL prediction accuracy across various failure modes.

{"title":"Remaining Useful Life Prediction of Rolling Bearings Based on CBAM-CNN-LSTM.","authors":"Bo Sun, Wenting Hu, Hao Wang, Lei Wang, Chengyang Deng","doi":"10.3390/s25020554","DOIUrl":"10.3390/s25020554","url":null,"abstract":"<p><p>Predicting the Remaining Useful Life (RUL) is vital for ensuring the reliability and safety of equipment and components. This study introduces a novel method for predicting RUL that utilizes the Convolutional Block Attention Module (CBAM) to address the problem that Convolutional Neural Networks (CNNs) do not effectively leverage data channel features and spatial features in residual life prediction. Firstly, Fast Fourier Transform (FFT) is applied to convert the data into the frequency domain. The resulting frequency domain data is then used as input to the convolutional neural network for feature extraction; Then, the weights of channel features and spatial features are assigned to the extracted features by CBAM, and the weighted features are then input into the Long Short-Term Memory (LSTM) network to learn temporal features. Finally, the effectiveness of the proposed model is verified using the PHM2012 bearing dataset. Compared to several existing RUL prediction methods, the mean squared error, mean absolute error, and root mean squared error of the proposed method in this paper are reduced by 53%, 16.87%, and 31.68%, respectively, which verifies the superiority of the method. Meanwhile, the experimental results demonstrate that the proposed method achieves good RUL prediction accuracy across various failure modes.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements.
IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-18 DOI: 10.3390/s25020547
Wenhui Fang, Weizhen Chen

Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we developed the Tea Bud DSCF-YOLOv8n (TBF-YOLOv8n)lightweight detection model. Improvement of the Cross Stage Partial Bottleneck Module with Two Convolutions(C2f) module via efficient Distributed Shift Convolution (DSConv) yields the C2f module with DSConv(DSCf)module, which reduces the model's size. Additionally, the coordinate attention (CA) mechanism is incorporated to mitigate interference from irrelevant factors, thereby improving mean accuracy. Furthermore, the SIOU_Loss (SCYLLA-IOU_Loss) function and the Dynamic Sample(DySample)up-sampling operator are implemented to accelerate convergence and enhance both average precision and detection accuracy. The experimental results show that compared to the YOLOv8n model, the TBF-YOLOv8n model has a 3.7% increase in accuracy, a 1.1% increase in average accuracy, a 44.4% reduction in gigabit floating point operations (GFLOPs), and a 13.4% reduction in the total number of parameters included in the model. In comparison experiments with a variety of lightweight detection models, the TBF-YOLOv8n still performs well in terms of detection accuracy while remaining more lightweight. In conclusion, the TBF-YOLOv8n model achieves a commendable balance between efficiency and precision, offering valuable insights for advancing intelligent tea bud harvesting technologies.

{"title":"TBF-YOLOv8n: A Lightweight Tea Bud Detection Model Based on YOLOv8n Improvements.","authors":"Wenhui Fang, Weizhen Chen","doi":"10.3390/s25020547","DOIUrl":"10.3390/s25020547","url":null,"abstract":"<p><p>Tea bud localization detection not only ensures tea quality, improves picking efficiency, and advances intelligent harvesting, but also fosters tea industry upgrades and enhances economic benefits. To solve the problem of the high computational complexity of deep learning detection models, we developed the Tea Bud DSCF-YOLOv8n (TBF-YOLOv8n)lightweight detection model. Improvement of the Cross Stage Partial Bottleneck Module with Two Convolutions(C2f) module via efficient Distributed Shift Convolution (DSConv) yields the C2f module with DSConv(DSCf)module, which reduces the model's size. Additionally, the coordinate attention (CA) mechanism is incorporated to mitigate interference from irrelevant factors, thereby improving mean accuracy. Furthermore, the SIOU_Loss (SCYLLA-IOU_Loss) function and the Dynamic Sample(DySample)up-sampling operator are implemented to accelerate convergence and enhance both average precision and detection accuracy. The experimental results show that compared to the YOLOv8n model, the TBF-YOLOv8n model has a 3.7% increase in accuracy, a 1.1% increase in average accuracy, a 44.4% reduction in gigabit floating point operations (GFLOPs), and a 13.4% reduction in the total number of parameters included in the model. In comparison experiments with a variety of lightweight detection models, the TBF-YOLOv8n still performs well in terms of detection accuracy while remaining more lightweight. In conclusion, the TBF-YOLOv8n model achieves a commendable balance between efficiency and precision, offering valuable insights for advancing intelligent tea bud harvesting technologies.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometry-Based Synchrosqueezing S-Transform with Shifted Instantaneous Frequency Estimator Applied to Gearbox Fault Diagnosis.
IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2025-01-18 DOI: 10.3390/s25020540
Xinping Zhu, Wuxi Shi, Zhongxing Huang, Liqing Shi

This paper introduces a novel geometry-based synchrosqueezing S-transform (GSSST) for advanced gearbox fault diagnosis, designed to enhance diagnostic precision in both planetary and parallel gearboxes. Traditional time-frequency analysis (TFA) methods, such as the Synchrosqueezing S-transform (SSST), often face challenges in accurately representing fault-related features when significant mode closely spaced components are present. The proposed GSSST method overcomes these limitations by implementing an intuitive geometric reassignment framework, which reassigns time-frequency (TF) coefficients to maximize energy concentration, thereby allowing fault components to be distinctly isolated even under challenging conditions. The GSSST algorithm calculates a new instantaneous frequency (IF) estimator that aligns closely with the ideal IF, thus concentrating TF coefficients more effectively than existing methods. Experimental validation, including tests on simulated signals and real-world gearbox fault data, demonstrates that GSSST achieves high robustness and diagnostic accuracy across various types of gearbox faults even in the presence of noise. Moreover, unlike conventional reassignment method, GSSST supports partial signal reconstruction, a key advantage for applications requiring accurate signal recovery. This research highlights GSSST as a promising and versatile tool for diagnosing complex mechanical faults and provides new insights for the future development of TFA methods in mechanical fault analysis.

{"title":"Geometry-Based Synchrosqueezing S-Transform with Shifted Instantaneous Frequency Estimator Applied to Gearbox Fault Diagnosis.","authors":"Xinping Zhu, Wuxi Shi, Zhongxing Huang, Liqing Shi","doi":"10.3390/s25020540","DOIUrl":"10.3390/s25020540","url":null,"abstract":"<p><p>This paper introduces a novel geometry-based synchrosqueezing S-transform (GSSST) for advanced gearbox fault diagnosis, designed to enhance diagnostic precision in both planetary and parallel gearboxes. Traditional time-frequency analysis (TFA) methods, such as the Synchrosqueezing S-transform (SSST), often face challenges in accurately representing fault-related features when significant mode closely spaced components are present. The proposed GSSST method overcomes these limitations by implementing an intuitive geometric reassignment framework, which reassigns time-frequency (TF) coefficients to maximize energy concentration, thereby allowing fault components to be distinctly isolated even under challenging conditions. The GSSST algorithm calculates a new instantaneous frequency (IF) estimator that aligns closely with the ideal IF, thus concentrating TF coefficients more effectively than existing methods. Experimental validation, including tests on simulated signals and real-world gearbox fault data, demonstrates that GSSST achieves high robustness and diagnostic accuracy across various types of gearbox faults even in the presence of noise. Moreover, unlike conventional reassignment method, GSSST supports partial signal reconstruction, a key advantage for applications requiring accurate signal recovery. This research highlights GSSST as a promising and versatile tool for diagnosing complex mechanical faults and provides new insights for the future development of TFA methods in mechanical fault analysis.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143041732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Sensors
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1